/usr/include/terralib/stat/TeKMeansGrouping.h is in libterralib-dev 4.3.0+dfsg.2-4build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 | /************************************************************************************
TerraLib - a library for developing GIS applications.
Copyright © 2001-2007 INPE and Tecgraf/PUC-Rio.
This code is part of the TerraLib library.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
You should have received a copy of the GNU Lesser General Public
License along with this library.
The authors reassure the license terms regarding the warranties.
They specifically disclaim any warranties, including, but not limited to,
the implied warranties of merchantability and fitness for a particular purpose.
The library provided hereunder is on an "as is" basis, and the authors have no
obligation to provide maintenance, support, updates, enhancements, or modifications.
In no event shall INPE and Tecgraf / PUC-Rio be held liable to any party for direct,
indirect, special, incidental, or consequential damages arising out of the use
of this library and its documentation.
*************************************************************************************/
/*! \file TeKMeansGrouping.h
\brief This file contains functions related to the K Means clustering algorithm
*/
#ifndef __TERRALIB_INTERNAL_KMEANSGROUPING_H
#define __TERRALIB_INTERNAL_KMEANSGROUPING_H
#include "TeGroupingAlgorithms.h"
template<typename I, typename T> int
TeMinimumDistance(I it, T& centroides )
{
double distmin = TeMAXFLOAT, dist;
int j = -1;
for (int i=0; i< centroides.size(); i++)
{
dist = TeEuclidianDistance(it,centroides[i]);
if ( dist < distmin )
{
j = i;
distmin = dist;
}
}
return j;
}
template<typename I, typename T>
double
TeEuclidianDistance(I it, T& centroide)
{
double val = 0;
int n = centroide.size();
for (int i=0; i<n; i++)
{
double v1 = (*it)[i];
double v2 = centroide[i];
val += pow(v1-v2,2);
}
return sqrt(val);
}
template<typename T>
void
Initialize(T& centroide, vector<double>& minValue, vector<double>& maxValue)
{
int n = centroide.size();
for (int i=0; i<n; i++)
{
double val = (rand()* (maxValue[i]-minValue[i]))/RAND_MAX;
centroide[i] = val;
}
return;
}
template<typename T>
bool
CheckConvergence(T& toUpdate, T& newCentroides, double limiar )
{
int k = newCentroides.size();
int n = newCentroides[0].size();
for (int i=0; i<k; i++)
for (int j = 0; j<n; j++)
{
double num = newCentroides[i][j];
double den = toUpdate[i][j];
/* if (num > den)
{
double aux = den;
den = num;
num = aux;
}
val = (1-num/den)*100.;
if (val > limiar)
return false;
*/
if (num != den)
return false;
}
return true;
}
template<typename It, typename C>
void
ReCalculate(It it, C& nearest)
{
for (int i=0; i<nearest.size(); i++)
nearest[i] = (nearest[i] + (*it)[i])/2.0;
return;
}
template<typename It, typename C> void
TeKMeans (It begin, It end, C& result, double conv)
{
srand( static_cast<unsigned>(time(NULL)));
C centroides(result), centr_aux(result);
int n = result[0].size();
vector<double> minValue(n);
vector<double> maxValue(n);
TeMinimumValue(begin, end, minValue);
TeMaximumValue(begin, end, maxValue);
for (int i=0; i<result.size(); i++)
{
// Falta verificar se não gera centroides iniciais iguais
Initialize(centroides[i], minValue, maxValue);
}
centr_aux = centroides;
bool converge = false;
int j, niter=0;
while (!converge)
{
for (It it=begin; it!= end; it++)
{
j = TeMinimumDistance(it, centroides);
ReCalculate(it,centr_aux[j]);
}
converge = CheckConvergence(centroides, centr_aux,conv);
centroides = centr_aux;
niter++;
}
result = centroides;
}
template<typename ItIn, typename C, typename ItOut> void
TeEuclidianClassify (ItIn begin, ItIn end, ItOut& result, C& kmeans)
{
int j;
for (ItIn it=begin; it!= end; it++)
{
j = TeMinimumDistance(it, kmeans);
(*result) = j;
result++;
}
}
#endif
|