/usr/include/ThePEG/Config/Unitsystem.h is in libthepeg-dev 1.8.0-1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 | // -*- C++ -*-
//
// Unitsystem.h is a part of ThePEG - Toolkit for HEP Event Generation
// Copyright (C) 1999-2011 Leif Lonnblad, David Grellscheid
//
// ThePEG is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef ThePEG_Units_H
#define ThePEG_Units_H
#include "ThePEG/Vectors/Lorentz5Vector.fh"
#include "ThePEG/Vectors/LorentzVector.fh"
#include "ThePEG/Vectors/ThreeVector.fh"
#include "ThePEG/Vectors/Transverse.fh"
#include "ThePEG_Qty.h"
namespace ThePEG {
/**
* The Units namespace contains the declaration of a number of classes
* for variables with dimension. Currently they are all typedefs of
* double, but in the future the SIUnits package will be used.
*
* The file Utilities/UnitIO.h defines helper-classes and helper
* functions to read and write variables with dimensions. As an
* example, to read and write an energy variable <code>e</code> in
* units of GeV, use: <code>os << ounit(e, GeV)</code> and <code>is >>
* iunit(e, GeV)</code>
*/
namespace Units {
/** Energy. */
typedef QTY<0,1,0>::Type Energy;
/** Mass has the same unit as Energy <=> c == 1. */
typedef Energy Mass;
/** Length. */
typedef QTY<1,0,0>::Type Length;
/** Time has the same unit as Length. <=> c == 1. */
typedef Length Time;
/** Inverse Length. */
typedef QTY<-1,0,0>::Type InvLength;
/** Velocities are dimensionless fractions of c. */
typedef double Velocity;
/** Charge. */
typedef QTY<0,0,1>::Type Charge;
/** Angular momentum. */
typedef QTY<1,1,0>::Type AngularMomentum;
/** Tension. */
typedef QTY<-1,1,0>::Type Tension;
/** Area will be assumed to be Length\f$^2\f$. */
typedef QTY<2,0,0>::Type Area;
/** Inverse Area. */
typedef QTY<-2,0,0>::Type InvArea;
/** Cross section is an area. */
typedef Area CrossSection;
/**
* @name Higher powers of energy.
* Even higher powers can be created with similar typedefs.
*/
//@{
typedef QTY<0, 2, 0>::Type Energy2;
typedef QTY<0, 3, 0>::Type Energy3;
typedef QTY<0, 4, 0>::Type Energy4;
typedef QTY<0, 5, 0>::Type Energy5;
typedef QTY<0, 6, 0>::Type Energy6;
typedef QTY<0, 7, 0>::Type Energy7;
typedef QTY<0, 8, 0>::Type Energy8;
typedef QTY<0, 9, 0>::Type Energy9;
typedef QTY<0,10, 0>::Type Energy10;
typedef QTY<0,11, 0>::Type Energy11;
typedef QTY<0,12, 0>::Type Energy12;
typedef QTY<0, 1,0, 1,2,1>::Type SqrtEnergy;
typedef QTY<0,-1,0, 1,2,1>::Type InvSqrtEnergy;
typedef QTY<0, -1, 0>::Type InvEnergy;
typedef QTY<0, -2, 0>::Type InvEnergy2;
typedef QTY<0, -3, 0>::Type InvEnergy3;
typedef QTY<0, -4, 0>::Type InvEnergy4;
typedef QTY<0, -5, 0>::Type InvEnergy5;
typedef QTY<0, -6, 0>::Type InvEnergy6;
typedef QTY<0, -7, 0>::Type InvEnergy7;
typedef QTY<0, -8, 0>::Type InvEnergy8;
typedef QTY<0, -9, 0>::Type InvEnergy9;
typedef QTY<0,-10, 0>::Type InvEnergy10;
typedef QTY<0,-11, 0>::Type InvEnergy11;
typedef QTY<0,-12, 0>::Type InvEnergy12;
//@}
/** CrossSection*Energy2. */
typedef QTY<2,2,0>::Type Energy2XSec;
/** CrossSection/Energy2. */
typedef QTY<2,-2,0>::Type DiffXSec;
/** CrossSection/Energy4. */
typedef QTY<2,-4,0>::Type Diff2XSec;
/** CrossSection/Energy6 */
typedef QTY<2,-6,0>::Type Diff3XSec;
/** Scale is the same as a squared energy. */
typedef Energy2 Scale;
/** A point in three-dimensional euclidean space. */
typedef ThreeVector<Length> Point;
/** A distance in three-dimensional euclidean space. */
typedef ThreeVector<Length> Distance;
/** A direction in three-dimensional euclidean space. */
typedef ThreeVector<double> Axis;
/** A momentum in three-dimensional euclidean space. */
typedef ThreeVector<Energy> Momentum3;
/** A three-dimensional boost vector. */
typedef ThreeVector<double> Boost;
/** A distance in four-dimensional space-time. */
typedef LorentzVector<Length> LorentzDistance;
/** A distance in four-dimensional space-time with an explicit
* invariant time component. */
typedef Lorentz5Vector<Length> Lorentz5Distance;
/** A point in four-dimensional space-time. */
typedef LorentzVector<Length> LorentzPoint;
/** A momentum in four-dimensional space-time. */
typedef LorentzVector<Energy> LorentzMomentum;
/** A momentum in four-dimensional space-time with an explicit
* invariant mass component. */
typedef Lorentz5Vector<Energy> Lorentz5Momentum;
/** Transverse components of a momentum. */
typedef Transverse<Energy> TransverseMomentum;
/// @name Pre-defined basic units.
//@{
const Length millimeter = TypeTraits<Length>::baseunit;
const Energy MeV = TypeTraits<Energy>::baseunit;
const Charge eplus = TypeTraits<Charge>::baseunit;
const Energy keV = 1.0e-3 * MeV;
const Energy GeV = 1.0e3 * MeV;
const Energy TeV = 1.0e6 * MeV;
const Energy2 MeV2 = MeV * MeV;
const Energy2 GeV2 = GeV * GeV;
const InvEnergy InvGeV = 1/GeV;
const Length meter = 1.0e3 * millimeter;
const Length mm = millimeter;
const Length centimeter = 10.0*millimeter;
const Length micrometer = 1.0e-3 * millimeter;
const Length nanometer = 1.0e-6 * millimeter;
const Length picometer = 1.0e-9 * millimeter;
const Length femtometer = 1.0e-12 * millimeter;
const Area picobarn = 1.0e-40 * meter * meter;
const Area nanobarn = 1.0e3 * picobarn;
const Area microbarn = 1.0e6 * picobarn;
const Area millibarn = 1.0e9 * picobarn;
const Area barn = 1.0e12 * picobarn;
const Area femtobarn = 1.0e-3 * picobarn;
//@}
/// Planck's constant times c (PDG 2006 value 197.326968(17) MeV fm)
const QTY<1,1,0>::Type hbarc = 197.326968e-15 * MeV * meter;
/// Planck's constant (PDG 2006 value 197.326968(17) MeV fm)
const QTY<1,1,0>::Type hbar_Planck = hbarc / 1.0;
}
/**
* Use symbols from this namespace to make forced breaks of unit
* consistency explicit.
*/
namespace UnitRemoval {
/// @name Helper units to make breaks of unit consistency explicit.
//@{
const Units::Energy E = Units::MeV;
const Units::Energy2 E2 = E*E;
const Units::Energy3 E3 = E*E2;
const Units::Energy4 E4 = E2*E2;
const Units::InvEnergy InvE = 1.0/E;
const Units::InvEnergy2 InvE2 = 1.0/E2;
const Units::InvEnergy3 InvE3 = 1.0/E3;
const Units::InvEnergy4 InvE4 = 1.0/E4;
const Units::SqrtEnergy SqrtE = sqrt(E);
const Units::InvSqrtEnergy InvSqrtE = 1.0/sqrt(E);
//@}
}
}
#endif /* ThePEG_Units_H */
|