This file is indexed.

/usr/include/TiledArray/conversions/foreach.h is in libtiledarray-dev 0.4.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
/*
 *  This file is a part of TiledArray.
 *  Copyright (C) 2015  Virginia Tech
 *
 *  This program is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 *  Justus Calvin
 *  Department of Chemistry, Virginia Tech
 *
 *  truncate.h
 *  Apr 15, 2015
 *
 */

#ifndef TILEDARRAY_CONVERSIONS_FOREACH_H__INCLUDED
#define TILEDARRAY_CONVERSIONS_FOREACH_H__INCLUDED

#include <TiledArray/type_traits.h>

/// Forward declarations
namespace Eigen {
  template <typename> class aligned_allocator;
} // namespace Eigen

namespace TiledArray {

  /// Forward declarations
  template <typename, unsigned int, typename, typename> class Array;
  template <typename, typename> class Tensor;
  class DensePolicy;
  class SparsePolicy;

  /// Apply a function to each tile of a dense Array

  /// The expected signature of the tile operation is:
  /// \code
  /// void op(typename TiledArray::Array<T,DIM,Tile,DensePolicy>::value_type& result_tile,
  ///     const typename TiledArray::Array<T,DIM,Tile,DensePolicy>::value_type& arg_tile);
  /// \endcode
  /// \tparam Op Tile operation
  /// \tparam T Element type of the array
  /// \tparam DIM Dimension of the array
  /// \tparam Tile The tile type of the array
  /// \param op The tile function
  /// \param arg The argument array
  template <typename T, unsigned int DIM, typename Tile, typename Op>
  inline Array<T, DIM, Tile, DensePolicy>
  foreach(const Array<T, DIM, Tile, DensePolicy>& arg, Op&& op) {
    typedef Array<T, DIM, Tile, DensePolicy> array_type;
    typedef typename array_type::size_type size_type;

    World& world = arg.get_world();

    // Make an empty result array
    array_type result(world, arg.trange(), arg.get_pmap());

    // Iterate over local tiles of arg
    typename array_type::pmap_interface::const_iterator
    it = arg.get_pmap()->begin(),
    end = arg.get_pmap()->end();
    for(; it != end; ++it) {
      // Spawn a task to evaluate the tile
      Future<typename array_type::value_type> tile =
          world.taskq.add([=] (const typename array_type::value_type arg_tile) {
            typename array_type::value_type result_tile;
            op(result_tile, arg_tile);
            return result_tile;
          }, arg.find(*it));

      // Store result tile
      result.set(*it, tile);
    }

    return result;
  }

  /// Apply a function to each tile of a dense Array

  /// The expected signature of the tile operation is:
  /// \code
  /// void op(typename TiledArray::Array<T,DIM,Tile,DensePolicy>::value_type& tile);
  /// \endcode
  /// \tparam Op Mutating tile operation
  /// \tparam T Element type of the array
  /// \tparam DIM Dimension of the array
  /// \tparam Tile The tile type of the array
  /// \param op The mutating tile function
  /// \param arg The argument array to be modified
  /// \param fence A flag that indicates fencing behavior. If \c true this
  /// function will fence before data is modified.
  /// \warning This function fences by default to avoid data race conditions.
  /// Only disable the fence if you can ensure, the data is not being read by
  /// another thread.
  /// \warning If there is a another copy of \c arg that was created via (or
  /// arg was created by) the \c Array copy constructor or copy assignment
  /// operator, this function will modify the data of that array since the data
  /// of a tile is held in a \c std::shared_ptr. If you need to ensure other
  /// copies of the data are not modified or this behavior causes problems in
  /// your application, use the \c TiledArray::foreach function instead.
  template <typename T, unsigned int DIM, typename Tile, typename Op>
  inline void
  foreach_inplace(Array<T, DIM, Tile, DensePolicy>& arg, Op&& op, bool fence = true) {
    typedef Array<T, DIM, Tile, DensePolicy> array_type;
    typedef typename array_type::value_type value_type;
    typedef typename array_type::size_type size_type;

    World& world = arg.get_world();

    // The tile data is being modified in place, which means we may need to
    // fence to ensure no other threads are using the data.
    if(fence)
      world.gop.fence();

    // Make an empty result array
    array_type result(world, arg.trange(), arg.get_pmap());

    // Iterate over local tiles of arg
    typename array_type::pmap_interface::const_iterator
    it = arg.get_pmap()->begin(),
    end = arg.get_pmap()->end();
    for(; it != end; ++it) {
      // Spawn a task to evaluate the tile
      Future<value_type> tile =
          world.taskq.add([=] (value_type& arg_tile) {
            op(arg_tile);
            return arg_tile;
          }, arg.find(*it));

      // Store result tile
      result.set(*it, tile);
    }

    // Set the arg with the new array
    arg = result;
  }

  /// Apply a function to each tile of a sparse Array

  /// The expected signature of the tile operation is:
  /// \code
  /// float op(typename TiledArray::Array<T,DIM,Tile,SparsePolicy>::value_type& result_tile,
  ///     const typename TiledArray::Array<T,DIM,Tile,SparsePolicy>::value_type& arg_tile);
  /// \endcode
  /// where the return value of \c op is the 2-norm (Fibrinous norm).
  /// \tparam Op Tile operation
  /// \tparam T Element type of the array
  /// \tparam DIM Dimension of the array
  /// \tparam Tile The tile type of the array
  /// \param op The tile function
  /// \param arg The argument array
  template <typename T, unsigned int DIM, typename Tile, typename Op>
  inline Array<T, DIM, Tile, SparsePolicy>
  foreach(const Array<T, DIM, Tile, SparsePolicy> arg, Op&& op) {
    typedef Array<T, DIM, Tile, SparsePolicy> array_type;
    typedef typename array_type::value_type value_type;
    typedef typename array_type::size_type size_type;
    typedef typename array_type::shape_type shape_type;
    typedef Future<value_type> future_type;
    typedef std::pair<size_type, future_type> datum_type;

    // Create a vector to hold local tiles
    std::vector<datum_type> tiles;
    tiles.reserve(arg.get_pmap()->size());

    // Collect updated shape data.
    TiledArray::Tensor<typename shape_type::value_type,
        Eigen::aligned_allocator<typename shape_type::value_type> >
    tile_norms(arg.trange().tiles(), 0);

    // Construct the new tile norms and
    madness::AtomicInt counter; counter = 0;
    int task_count = 0;
    auto task = [&](const size_type index, const value_type& arg_tile) {
      value_type result_tile;
      tile_norms[index] = op(result_tile, arg_tile);
      ++counter;
      return result_tile;
    };

    World& world = arg.get_world();

    // Get local tile index iterator
    typename array_type::pmap_interface::const_iterator
        it = arg.get_pmap()->begin(),
        end = arg.get_pmap()->end();
    for(; it != end; ++it) {
      const size_type index = *it;
      if(arg.is_zero(index))
        continue;
      future_type arg_tile = arg.find(index);
      future_type result_tile = world.taskq.add(task, index, arg_tile);
      ++task_count;
      tiles.push_back(datum_type(index, result_tile));
    }

    // Wait for tile norm data to be collected.
    if(task_count > 0)
      world.await([&counter,task_count] () {return counter == task_count; });

    // Construct the new array
    array_type result(world, arg.trange(),
        shape_type(world, tile_norms, arg.trange()), arg.get_pmap());
    for(typename std::vector<datum_type>::const_iterator it = tiles.begin(); it != tiles.end(); ++it) {
      const size_type index = it->first;
      if(! result.is_zero(index))
        result.set(it->first, it->second);
    }

    return result;
  }


  /// Modify the tiles of

  /// The expected signature of the tile operation is:
  /// \code
  /// float op(typename TiledArray::Array<T,DIM,Tile,SparsePolicy>::value_type& tile);
  /// \endcode
  /// where the return value of \c op is the 2-norm (Fibrinous norm).
  /// \tparam Op Tile operation
  /// \tparam T Element type of the array
  /// \tparam DIM Dimension of the array
  /// \tparam Tile The tile type of the array
  /// \param op The mutating tile function
  /// \param arg The argument array to be modified
  /// \param fence A flag that indicates fencing behavior. If \c true this
  /// function will fence before data is modified.
  /// \warning This function fences by default to avoid data race conditions.
  /// Only disable the fence if you can ensure, the data is not being read by
  /// another thread.
  /// \warning If there is a another copy of \c arg that was created via (or
  /// arg was created by) the \c Array copy constructor or copy assignment
  /// operator, this function will modify the data of that array since the data
  /// of a tile is held in a \c std::shared_ptr. If you need to ensure other
  /// copies of the data are not modified or this behavior causes problems in
  /// your application, use the \c TiledArray::foreach function instead.
  template <typename T, unsigned int DIM, typename Tile, typename Op>
  inline void
  foreach_inplace(Array<T, DIM, Tile, SparsePolicy>& arg, Op&& op, bool fence = true) {
    typedef Array<T, DIM, Tile, SparsePolicy> array_type;
    typedef typename array_type::value_type value_type;
    typedef typename array_type::size_type size_type;
    typedef typename array_type::shape_type shape_type;
    typedef Future<value_type> future_type;
    typedef std::pair<size_type, future_type> datum_type;

    // Create a vector to hold local tiles
    std::vector<datum_type> tiles;
    tiles.reserve(arg.get_pmap()->size());

    // Collect updated shape data.
    TiledArray::Tensor<typename shape_type::value_type,
        Eigen::aligned_allocator<typename shape_type::value_type> >
    tile_norms(arg.trange().tiles(), 0);

    // Construct the new tile norms and
    madness::AtomicInt counter; counter = 0;
    int task_count = 0;
    auto task = [&](const size_type index, value_type& arg_tile) {
      tile_norms[index] = op(arg_tile);
      ++counter;
      return arg_tile;
    };

    World& world = arg.get_world();

    // The tile data is being modified in place, which means we may need to
    // fence to ensure no other threads are using the data.
    if(fence)
      world.gop.fence();

    // Get local tile index iterator
    typename array_type::pmap_interface::const_iterator
        it = arg.get_pmap()->begin(),
        end = arg.get_pmap()->end();
    for(; it != end; ++it) {
      const size_type index = *it;
      if(arg.is_zero(index))
        continue;
      future_type arg_tile = arg.find(index);
      future_type result_tile = world.taskq.add(task, index, arg_tile);
      ++task_count;
      tiles.push_back(datum_type(index, result_tile));
    }

    // Wait for tile norm data to be collected.
    if(task_count > 0)
      world.await([&counter,task_count] () {return counter == task_count; });

    // Construct the new array
    array_type result(world, arg.trange(),
        shape_type(world, tile_norms, arg.trange()), arg.get_pmap());
    for(typename std::vector<datum_type>::const_iterator it = tiles.begin(); it != tiles.end(); ++it) {
      const size_type index = it->first;
      if(! result.is_zero(index))
        result.set(it->first, it->second);
    }

    // Set the arg with the new array
    arg = result;
  }

} // namespace TiledArray

#endif // TILEDARRAY_CONVERSIONS_TRUNCATE_H__INCLUDED