This file is indexed.

/usr/include/TiledArray/proc_grid.h is in libtiledarray-dev 0.4.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
/*
 *  This file is a part of TiledArray.
 *  Copyright (C) 2013  Virginia Tech
 *
 *  This program is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 *  Justus Calvin
 *  Department of Chemistry, Virginia Tech
 *
 *  proc_grid.h
 *  Nov 6, 2013
 *
 */

#ifndef TILEDARRAY_GRID_H__INCLUDED
#define TILEDARRAY_GRID_H__INCLUDED

#include <TiledArray/pmap/cyclic_pmap.h>
#include <TiledArray/math/eigen.h>

namespace TiledArray {
  namespace detail {

    /// A 2D processor grid

    /// ProcGrid attempts to create a near optimal 2D grid of P processes for
    /// an MxN grid of tiles. The size of the grid is optimized such that the
    /// total communication time required for SUMMA and the number of unused
    /// processes is minimized. The total communication time of SUMMA is given
    /// by:
    /// \f[
    ///   T = \frac{MK}{P_{\rm{row}}} \left(\alpha + \frac{mk}{\beta}\right)
    ///     \left((P/P_{\rm{row}}) - 1\right) + \frac{KN}{P/P_{\rm{row}}}
    ///     \left(\alpha + \frac{kn}{\beta}\right) \left(P_{\rm{row}} - 1\right)
    /// \f]
    /// where \f$P_{\rm{row}}\f$ is the number of process rows; \f$M\f$,
    /// \f$N\f$, and \f$K\f$ are the number of tile rows and columns in a matrix
    /// product with average tiles sizes of \f$m\f$, \f$n\f$, and \f$k\f$,
    /// respectively; \f$P\f$ is the number or available processes; \f$\alpha\f$
    /// is the message latency; and \f$\beta\f$ is the message data rate. If we
    /// evaluate \f$dT/dP_{\rm{row}} = 0\f$ and assume that
    /// \f$\alpha \approx 0\f$, the expression simplifies to:
    /// \f[
    ///   Nn(2 P_{\rm{row}}^4 - P_{\rm{row}}^3) + Mm(P P_{\rm{row}} - P^2) = 0
    /// \f]
    /// where the positive, real root of \f$P_{\rm{row}}\f$ give the optimal
    /// optimal communication time.
    class ProcGrid {
    public:
      typedef uint_fast32_t size_type;

    private:
      World* world_; ///< The world where this process grid lives
      size_type rows_; ///< Number of element rows
      size_type cols_; ///< Number of element columns
      size_type size_; ///< Number of elements
      size_type proc_rows_; ///< Number of rows in the process grid
      size_type proc_cols_; ///< Number of columns in the process grid
      size_type proc_size_; ///< Number of processes in the process grid. This
                         ///<  may be less than the number of processes in world.
      ProcessID rank_row_; ///< This process's row in the process grid
      ProcessID rank_col_; ///< This process's column in the process grid
      size_type local_rows_; ///< The number of local element rows
      size_type local_cols_; ///< The number of local element columns
      size_type local_size_; ///< Number of local elements


      /// Compute the number of process rows that minimizes communication

      /// This function computes the optimal number of process row such that the
      /// communication time of a single SUMMA iteration is minimum.
      /// \param nprocs The number of processes
      /// \param Mm The number of row elements
      /// \param Nn The number of column elements
      /// \return The number of process rows that minimizes communication time
      static size_type optimal_proc_row(const double nprocs, const double Mm,
          const double Nn)
      {
        // Compute the initial guess for P_row. This is the optimal guess when
        // Mm is equal to Nn, and the ideal solution.
        double P_row_estimate = std::sqrt(nprocs);

        // Here we want to find the positive, real root of the polynomial:
        //   Nn(2x^4 - x^3) + Mm(Px - 2P^2) = 0
        // using a Newton-Raphson algorithm.

        // Precompute some constants
        const double PMm = nprocs * Mm;
        const double two_P = nprocs + nprocs;

        const unsigned int max_it = 21u;
        unsigned int it = 0u;
        double r = 0.0;
        do {
          // Precompute P_row squared
          const double P_row2 = P_row_estimate * P_row_estimate;
          const double NnP_row2 = Nn * P_row2;

          // Compute the value of f(P_row_estimate) and df(P_row_estimate)
          const double f = NnP_row2 * ( 2.0 * P_row2 - P_row_estimate)
              + PMm * ( P_row_estimate - two_P);
          const double df = NnP_row2 * ( 8.0 * P_row_estimate - 3.0) + PMm;

          // Compute a new guess for P_row
          const double P_row_n1 = P_row_estimate - (f / df);

          // Compute the residual for this iteration
          r = std::abs(P_row_n1 - P_row_estimate);

          // Update the guess
          P_row_estimate = P_row_n1;

        } while((r > 0.1) && ((++it) < max_it));

        return P_row_estimate + 0.5;
      }

      /// Search for optimal values of x and y

      /// This function will search for values of x and y such that minimize the
      /// number of unused processes, subject to the constraint that
      /// <tt>x*y <= nprocs</tt>. When the number of unused processes is equal,
      /// the solution that is closest to the initial guess for x and y will be
      /// used, which is also the solution with lower communication cost.
      /// \param[in,out] x The initial guess for the number of rows
      /// \param[in,out] y The initial guess for the number of columns
      /// \param[in] nprocs The number of available processes
      /// \param[in] min_x The minimum valid value for x
      /// \param[in] max_x The maximum valid value for x
      void minimize_unused_procs(size_type& x, size_type& y,
          const size_type nprocs, const size_type min_x, const size_type max_x)
      {
        // Check for the quick exit
        size_type unused = x * y;
        if(unused == 0u)
          return;

        // Compute the range of values for x to be tested.
        const size_type delta = std::max<size_type>(1ul, std::log2(nprocs));

        const size_type optimal_x = x;
        size_type diff = 0ul;
        const size_type min_test_x = std::max<int_fast32_t>(min_x, int_fast32_t(x) - delta);
        size_type test_x = std::min(x + delta, max_x);

        for(; test_x >= min_test_x; --test_x) {
          const size_type test_y = nprocs / test_x;
          const size_type test_unused = nprocs - test_x * test_y;
          const size_type test_diff = std::abs(long(optimal_x) - long(test_x));

          if((test_unused < unused) || ((test_unused == unused) && (test_diff < diff))) {
            x = test_x;
            y = test_y;
            unused = test_unused;
            diff = test_diff;
          }
        }
      }

      /// Member variable initialization

      /// This function initializes the member variables with with the optimal
      /// sizes.
      void init(const size_type rank, const size_type nprocs,
          const std::size_t row_size, const std::size_t col_size)
      {
        // Check for the simple cases first ...
        if(nprocs == 1u) { // Only one process

          // Set process grid sizes
          proc_rows_ = 1u;
          proc_cols_ = 1u;
          proc_size_ = 1u;

          // Set this process rank
          rank_row_ = 0;
          rank_col_ = 0;

          // Set local counts
          local_rows_ = rows_;
          local_cols_ = cols_;
          local_size_ = size_;

        } else if(size_ <= nprocs) { // Max one tile per process

          // Set process grid sizes
          proc_rows_ = rows_;
          proc_cols_ = cols_;
          proc_size_ = size_;

          if(rank < proc_size_) {
            // Set this process rank
            rank_row_ = rank / proc_cols_;
            rank_col_ = rank % proc_cols_;

            // Set local counts
            local_rows_ = 1u;
            local_cols_ = 1u;
            local_size_ = 1u;
          }

        } else { // The not so simple case

          // Compute the limits for process rows
          const size_type min_proc_rows =
              std::max<size_type>(((nprocs + cols_ - 1ul) / cols_), 1ul);
          const size_type max_proc_rows = std::min<size_type>(nprocs, rows_);

          // Compute optimal the number of process rows and columns in terms of
          // communication time.
          proc_rows_ = std::max<size_type>(min_proc_rows,
              std::min<size_type>(optimal_proc_row(nprocs, row_size, col_size),
                  max_proc_rows));
          proc_cols_ = nprocs / proc_rows_;

          if((proc_rows_ > min_proc_rows) && (proc_rows_ < max_proc_rows)) {
            // Search for the values of proc_rows_ and proc_cols_ that minimizes
            // the number of unused processes in the process grid.
            minimize_unused_procs(proc_rows_, proc_cols_, nprocs,
                min_proc_rows, max_proc_rows);
          }

          proc_size_ = proc_rows_ * proc_cols_;

          if(rank < proc_size_) {
            // Set this process rank
            rank_row_ = rank / proc_cols_;
            rank_col_ = rank % proc_cols_;

            // Set local counts
            local_rows_ = (rows_ / proc_rows_) + (size_type(rank_row_) < (rows_ % proc_rows_) ? 1u : 0u);
            local_cols_ = (cols_ / proc_cols_) + (size_type(rank_col_) < (cols_ % proc_cols_) ? 1u : 0u);
            local_size_ = local_rows_ * local_cols_;
          }
        }
      }

    public:
      /// Default constructor

      /// All sizes are initialized to zero.
      ProcGrid() :
        world_(NULL), rows_(0u), cols_(0u), size_(0u), proc_rows_(0u),
        proc_cols_(0u), proc_size_(0u), rank_row_(0), rank_col_(0),
        local_rows_(0u), local_cols_(0u), local_size_(0u)
      { }

      /// Construct a process grid

      // This constructor makes a rough estimate of the optimal process
      // dimensions. The goal is for the ratios of proc_rows/proc_cols and
      // rows/cols to be approximately equal.
      /// \param world The world where the process grid will live
      /// \param rows The number of tile rows
      /// \param cols The number of tile columns
      /// \param row_size The number of element rows
      /// \param col_size The number of element columns
      ProcGrid(World& world, const size_type rows, const size_type cols,
          const std::size_t row_size, const std::size_t col_size) :
        world_(&world), rows_(rows), cols_(cols), size_(rows_ * cols_),
        proc_rows_(0ul), proc_cols_(0ul), proc_size_(0ul),
        rank_row_(-1), rank_col_(-1),
        local_rows_(0ul), local_cols_(0ul), local_size_(0ul)
      {
        // Check for non-zero sizes
        TA_ASSERT(rows_ >= 1u);
        TA_ASSERT(cols_ >= 1u);
        TA_ASSERT(row_size >= 1ul);
        TA_ASSERT(col_size >= 1ul);

        init(world_->rank(), world_->size(), row_size, col_size);
      }

#ifdef TILEDARRAY_ENABLE_TEST_PROC_GRID
      // Note: The following function is here for testing purposes only. It
      // has the same functionality as the default constructor above, except the
      // rank and number of processes can be specified.


      /// Construct a process grid

      // This constructor makes a rough estimate of the optimal process
      // dimensions. The goal is for the ratios of proc_rows/proc_cols and
      // rows/cols to be approximately equal.
      /// \param world The world where the process grid will live
      /// \param test_rank Test rank
      /// \param test_nprocs Test number of procs
      /// \param rows The number of tile rows
      /// \param cols The number of tile columns
      /// \param row_size The number of element rows
      /// \param col_size The number of element columns
      ProcGrid(World& world, const size_type test_rank, size_type test_nprocs,
          const size_type rows, const size_type cols,
          const std::size_t row_size, const std::size_t col_size) :
        world_(&world), rows_(rows), cols_(cols), size_(rows_ * cols_),
        proc_rows_(0u), proc_cols_(0u), proc_size_(0u), rank_row_(-1),
        rank_col_(-1), local_rows_(0u), local_cols_(0u), local_size_(0u)
      {
        // Check for non-zero sizes
        TA_ASSERT(rows >= 1u);
        TA_ASSERT(cols >= 1u);
        TA_ASSERT(row_size >= 1u);
        TA_ASSERT(col_size >= 1u);
        TA_ASSERT(test_rank < test_nprocs);

        init(test_rank, test_nprocs, row_size, col_size);
      }
#endif // TILEDARRAY_ENABLE_TEST_PROC_GRID

      /// Copy constructor

      // This constructor makes a rough estimate of the optimal process
      // dimensions. The goal is for the ratios of proc_rows/proc_cols and
      // rows/cols to be approximately equal.
      /// \param other The other process grid to be copied
      ProcGrid(const ProcGrid& other) :
        world_(other.world_), rows_(other.rows_), cols_(other.cols_),
        size_(other.size_), proc_rows_(other.proc_rows_),
        proc_cols_(other.proc_cols_), proc_size_(other.proc_size_),
        rank_row_(other.rank_row_), rank_col_(other.rank_col_),
        local_rows_(other.local_rows_), local_cols_(other.local_cols_),
        local_size_(other.local_size_)
      { }

      /// Copy assignment operator

      /// \param other The other process grid to be copied
      ProcGrid& operator=(const ProcGrid& other) {
        world_ = other.world_;
        rows_ = other.rows_;
        cols_ = other.cols_;
        size_ = other.size_;
        proc_rows_ = other.proc_rows_;
        proc_cols_ = other.proc_cols_;
        proc_size_ = other.proc_size_;
        rank_row_ = other.rank_row_;
        rank_col_ = other.rank_col_;
        local_rows_ = other.local_rows_;
        local_cols_ = other.local_cols_;
        local_size_ = other.local_size_;

        return *this;
      }

      /// Element row count accessor

      /// \return The number of element rows
      size_type rows() const { return rows_; }

      /// Element column count accessor

      /// \return The number of element columns
      size_type cols() const { return cols_; }

      /// Element count accessor

      /// \return The number of element
      size_type size() const { return size_; }

      /// Local element row count accessor

      /// \return The number of element rows
      size_type local_rows() const { return local_rows_; }

      /// Local element column count accessor

      /// \return The number of element columns
      size_type local_cols() const { return local_cols_; }

      /// Local element count accessor

      /// \return The number of element
      size_type local_size() const { return local_size_; }

      /// Rank row accessor

      /// \return The row of this process in the process grid
      ProcessID rank_row() const { return rank_row_; }

      /// Rank row accessor

      /// \return The column of this process in the process grid
      ProcessID rank_col() const { return rank_col_; }

      /// Process row count accessor

      /// \return The number of rows in the process grid
      size_type proc_rows() const { return proc_rows_; }

      /// Process column count accessor

      /// \return The number of columns in the process grid
      size_type proc_cols() const { return proc_cols_; }

      /// Process grid size accessor

      /// \return The number of processes included in the process grid (may be
      /// less than the number of process in world).
      size_type proc_size() const { return proc_size_; }


      /// Construct a row group

      /// \param did The distributed id for the result group
      /// \return A \c Group object that includes all processes in \c rank_row
      madness::Group make_row_group(const madness::DistributedID& did) const {
        TA_ASSERT(world_);

        madness::Group group;

        if(local_size_ != 0u) {
          // Construct a vector to hold the
          std::vector<ProcessID> proc_list;
          proc_list.reserve(proc_cols_);

          // Populate the row process list
          size_type p = rank_row_ * proc_cols_;
          const size_type row_end = p + proc_cols_;
          for(; p < row_end; ++p)
            proc_list.push_back(p);

          // Construct the group
          group = madness::Group(*world_, proc_list, did);
        }

        return group;
      }

      /// Construct a column group

      /// \param did The distributed id for the result group
      /// \return A \c Group object that includes all processes in \c rank_col
      madness::Group make_col_group(const madness::DistributedID& did) const {
        TA_ASSERT(world_);

        madness::Group group;

        if(local_size_ != 0u) {
          // Generate the list of processes in rank_row
          std::vector<ProcessID> proc_list;
          proc_list.reserve(proc_rows_);

          // Populate the column process list
          for(size_type p = rank_col_; p < proc_size_; p += proc_cols_)
            proc_list.push_back(p);

          // Construct the group
          if(proc_list.size() != 0)
            group = madness::Group(*world_, proc_list, did);
        }

        return group;
      }

      /// Map a row to the process in this process's column

      /// \param row The row to be mapped
      /// \return The process the corresponds to the process coordinate \c (row,rank_col)
      ProcessID map_row(const size_type row) const {
        TA_ASSERT(row < proc_rows_);
        return rank_col_ + row * proc_cols_;
      }

      /// Map a column to the process in this process's row

      /// \param col The column to be mapped
      /// \return The process the corresponds to the process coordinate \c (rank_row,col)
      ProcessID map_col(const size_type col) const {
        TA_ASSERT(col < proc_cols_);
        return rank_row_ * proc_cols_ + col;
      }

      /// Construct a cyclic process

      /// Construct a cyclic process map with the same phase as the process grid.
      /// \return Cyclic process map
      std::shared_ptr<Pmap> make_pmap() const {
        TA_ASSERT(world_);

        return std::shared_ptr<Pmap>(new CyclicPmap(*world_, rows_, cols_, proc_rows_, proc_cols_));
      }

      /// Construct column phased a cyclic process

      /// Construct a cyclic process map where the column phase of the process
      /// matches that of this process grid.
      /// \param rows The number of rows in the process map
      /// \return Cyclic process map with matching column phase
      std::shared_ptr<Pmap> make_col_phase_pmap(const size_type rows) const {
        TA_ASSERT(world_);

        return std::shared_ptr<Pmap>(new CyclicPmap(*world_, rows, cols_, proc_rows_, proc_cols_));
      }

      /// Construct row phased a cyclic process

      /// Construct a cyclic process map where the column phase of the process
      /// matches that of this process grid.
      /// \param cols The number of columns in the process map
      /// \return Cyclic process map with matching column phase
      std::shared_ptr<Pmap> make_row_phase_pmap(const size_type cols) const {
        TA_ASSERT(world_);

        return std::shared_ptr<Pmap>(new CyclicPmap(*world_, rows_, cols, proc_rows_, proc_cols_));
      }
    }; // class Grid

  } // namespace detail
} // namespace TiledArray

#endif // TILEDARRAY_GRID_H__INCLUDED