This file is indexed.

/usr/include/TiledArray/reduce_task.h is in libtiledarray-dev 0.4.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
/*
 *  This file is a part of TiledArray.
 *  Copyright (C) 2013  Virginia Tech
 *
 *  This program is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 */

#ifndef TILEDARRAY_REDUCE_TASK_H__INCLUDED
#define TILEDARRAY_REDUCE_TASK_H__INCLUDED

#include <TiledArray/error.h>
#include <TiledArray/madness.h>

namespace TiledArray {
  namespace detail {

    template <typename T>
    struct ArgumentHelper {
      typedef Future<T> type;
    }; // struct ArgumentHelper

    template <typename T>
    struct ArgumentHelper<Future<T> > {
      typedef Future<T> type;
    }; // struct ArgumentHelper

    template <typename T, typename U>
    struct ArgumentHelper<std::pair<Future<T>, Future<U> > > {
      typedef std::pair<Future<T>, Future<U> > type;
    }; // struct ArgumentHelper

    /// Wrapper that to convert a pair-wise reduction into a standard reduction

    /// \tparam opT The pair-wise reduction operation to be reduced
    template <typename opT>
    class ReducePairOpWrapper {
    public:
      typedef typename opT::result_type result_type;
      ///< The result type of this reduction operation
      typedef typename std::remove_cv<typename std::remove_reference<
          typename opT::first_argument_type>::type>::type first_argument_type;
      ///< The left-hand argument type
      typedef typename std::remove_cv<typename std::remove_reference<
          typename opT::second_argument_type>::type>::type second_argument_type;
      ///< The right-hand argument type
      typedef std::pair<Future<first_argument_type>,
          Future<second_argument_type> > argument_type;
      ///< The combine argument type

    private:
      opT op_; ///< The pairwise reduction operation

    public:
      /// Default constructor
      ReducePairOpWrapper() : op_() { }

      /// Constructor

      /// \param op The base operation
      ReducePairOpWrapper(const opT& op) : op_(op) { }

      /// Copy constructor

      /// \param other The other operation to be copied
      ReducePairOpWrapper(const ReducePairOpWrapper<opT>& other) :
        op_(other.op_)
      { }

      /// Destructor
      ~ReducePairOpWrapper() { }

      /// Copy assignment operator

      /// \param other The other operation to be copied
      /// \return This operation
      ReducePairOpWrapper<opT>& operator=(const ReducePairOpWrapper<opT>& other) {
        op_ = other.op_;
        return *this;
      }

      /// Create an default reduction object
      result_type operator()() const { return op_(); }

      result_type operator()(const result_type temp) const { return op_(temp); }

      /// Reduce two result objects

      /// \param[out] result The object that will hold the result of this reduction
      /// \param[in] arg The result of another reduction operation
      void operator()(result_type& result, const result_type& arg) {
        op_(result, arg);
      }

      /// Reduce an argument pair

      /// \param[out] result The object that will hold the result of this reduction
      /// \param[in] arg The argument pair to be reduced
      void operator()(result_type& result, const argument_type& arg) const {
        op_(result, arg.first, arg.second);
      }

    }; // class ReducePairOpWrapper


    /// Reduce task

    /// This task will reduce an arbitrary number of objects. It is optimized
    /// for reduction of data that is the result of other tasks or remote data.
    /// Also, it is assumed that individual reduction operations require a
    /// substantial amount of work (i.e. your reduction operation should reduce
    /// a vector of data, not two numbers). The reduction arguments are reduced
    /// as they become ready, which results in non-deterministic reduction
    /// order. This is much faster than a simple binary tree reduction since the
    /// reduction tasks do not have to wait for specific pairs of data. Though
    /// data that is not stored in a future can be used, it may not be the best
    /// choice in that case.
    ///
    /// The reduction operation must have the following form:
    /// \code
    /// struct ReductionOp {
    ///     // typedefs
    ///     typedef ... result_type;
    ///     typedef ... argument_type;
    ///
    ///     // Constructors
    ///     ReductionOp();
    ///     ReductionOp(const ReductionOp&);
    ///     ReductionOp& operator=(const ReductionOp&);
    ///
    ///     // Reduction functions
    ///
    ///     // Make an empty result object
    ///     result_type operator()() const;
    ///
    ///     // Post process the result
    ///     result_type operator()(const result_type&) const;
    ///
    ///     // Reduce two result objects
    ///     void operator()(result_type&, const result_type&) const;
    ///
    ///     // Reduce an argument
    ///     void operator()(result_type&, const argument_type&) const;
    ///
    /// }; // struct ReductionOp
    /// \endcode
    ///
    /// For example, a vector sum function might look like:
    ///
    /// \code
    /// struct VectorSum {
    ///     // typedefs
    ///     typedef double result_type;
    ///     typedef std::vector<double> argument_type;
    ///
    ///     // Compiler generated constructors and assignment operators are OK here
    ///
    ///     // Reduction functions
    ///
    ///     // Make an empty result object
    ///     result_type operator()() const { return 0; }
    ///
    ///     // Post process the result (no operation, passthrough)
    ///     const result_type& operator()(const result_type& result) const {
    ///       return result;
    ///     }
    ///
    ///     void operator()(result_type& result, const result_type& arg) const {
    ///         result += arg;
    ///     }
    ///
    ///     /// Reduce an argument pair
    ///     void operator()(result_type& result, const argument_type& arg) const {
    ///         for(std::size_t i = 0ul; i < first.size(); ++i)
    ///             result += arg[i];
    ///     }
    /// }; // struct VectorProduct
    /// \endcode
    /// \note There is no need to add this object to the MADNESS task queue. It
    /// will be handled internally by the object. Simply call \c submit() to add
    /// this task to the task queue.
    /// \tparam opT The reduction operation type
    template <typename opT>
    class ReduceTask {
    private:
      typedef typename opT::result_type result_type;
      typedef typename std::remove_const<typename std::remove_reference<
          typename opT::argument_type>::type>::type argument_type;

      /// Reduction task implementation

      /// This object is the implementation object and the task object that is
      /// submitted to the task queue. It is also used by other associated task
      /// data sharing.
      class ReduceTaskImpl : public madness::TaskInterface {
      public:

        /// Reduction argument container

        /// This object holds the reduction argument. When the arguments to
        /// this object are ready, it will invoke the parent callback.
        class ReduceObject : public madness::CallbackInterface {
        private:

          ReduceTaskImpl* parent_; ///< The parent task
          typename ArgumentHelper<argument_type>::type arg_; ///< The reduction argument
          madness::CallbackInterface* callback_; ///< Reduction callback
          madness::AtomicInt count_; ///< Dependency counter

          /// Register a future as a dependency

          /// \tparam T The type of the future
          /// \param f The future that this object depends on
          template <typename T>
          void register_callbacks(Future<T>& f) {
            if(f.probe()) {
              parent_->ready(this);
            } else {
              count_ = 1;
              f.register_callback(this);
            }
          }

          /// Register a pair of futures as dependencies

          /// \tparam T The type of the first future
          /// \tparam U The type of the second future
          /// \param p The pair of futures that this object depends on
          template <typename T, typename U>
          void register_callbacks(std::pair<Future<T>, Future<U> >& p) {
            if(p.first.probe() && p.second.probe()) {
              parent_->ready(this);
            } else {
              count_ = 2;
              p.first.register_callback(this);
              p.second.register_callback(this);
            }
          }

        public:

          /// Constructor

          /// \tparam Arg The argument type
          /// \param parent The owner of this object
          /// \param arg The reduction argument
          /// \param callback The callback to invoke when this argument has been reduced
          template <typename Arg>
          ReduceObject(ReduceTaskImpl* parent, const Arg& arg, madness::CallbackInterface* callback) :
          parent_(parent), arg_(arg), callback_(callback)
          {
            MADNESS_ASSERT(parent_);
            register_callbacks(arg_);
          }

          virtual ~ReduceObject() { }

          /// Callback function that is invoked when the argument is ready
          virtual void notify() { if((--count_) == 0) parent_->ready(this); }

          /// Argument accessor

          /// \return A const reference to the reduction argument
          const argument_type& arg() const { return arg_; }

          /// Destroy the \c object

          /// This function will invoke the callback and delete object.
          /// \param object The reduce object to be destroyed
          static void destroy(const ReduceObject* object) {
            if(object->callback_)
              object->callback_->notify();
            delete object;
          }

        }; // class ReduceObject

        virtual void get_id(std::pair<void*,unsigned short>& id) const {
          return PoolTaskInterface::make_id(id, *this);
        }

        /// Check for ready reduce arguments and reduce them

        /// This function will check for and reduce data that is ready until
        /// there is no more data to be reduced. Once there is no more data
        /// that is ready to be reduced, result will be placed in the ready
        /// state.
        /// \param result The result object that will be used to reduce
        /// other data
        void reduce(std::shared_ptr<result_type>& result) {
          while(result) {
            lock_.lock(); // <<< Begin critical section
            if(ready_object_) {
              // Get the ready argument
              ReduceObject* ready_object = const_cast<ReduceObject*>(ready_object_);
              ready_object_ = nullptr;
              lock_.unlock(); // <<< End critical section

              // Reduce the argument that was held by ready_object_
              op_(*result, ready_object->arg());

              // cleanup the argument
              ReduceObject::destroy(ready_object);
              this->dec();
            } else if(ready_result_) {
              // Get the ready result
              std::shared_ptr<result_type> ready_result = ready_result_;
              ready_result_.reset();
              lock_.unlock(); // <<< End critical section

              // Reduce the result that was held by ready_result_
              op_(*result, *ready_result);

              // cleanup the result
              ready_result.reset();
            } else {
              // Nothing is ready, so place result in the ready state.
              ready_result_ = result;
              result.reset();
              lock_.unlock(); // <<< End critical section
            }
          }
        }

        /// Reduce an argument

        /// \param result The target of the reduction
        /// \param object The reduction argument to be reduced
        void reduce_result_object(std::shared_ptr<result_type> result, const ReduceObject* object) {
          // Reduce the argument
          op_(*result, object->arg());

          // Cleanup the argument
          ReduceObject::destroy(object);

          // Check for more reductions
          reduce(result);

          // Decrement the dependency counter for the argument. This must
          // be done after the reduce call to avoid a race condition.
          this->dec();
        }

        /// Reduce two reduction arguments
        void reduce_object_object(const ReduceObject* object1, const ReduceObject* object2) {
          // Construct an empty result object
          std::shared_ptr<result_type> result(new result_type(op_()));

          // Reduce the two arguments
          op_(*result, object1->arg());
          op_(*result, object2->arg());

          // Cleanup arguments
          ReduceObject::destroy(object1);
          ReduceObject::destroy(object2);

          // Check for more reductions
          reduce(result);

          // Decrement the dependency counter for the two arguments. This
          // must be done after the reduce call to avoid a race condition.
          this->dec();
          this->dec();
        }

        World& world_; ///< The world that owns this task
        opT op_; ///< The reduction operation
        std::shared_ptr<result_type> ready_result_; ///< Result object that is ready to be reduced
        volatile ReduceObject* ready_object_; ///< Reduction argument that is ready to be reduced
        Future<result_type> result_; ///< The result of the reduction task
        madness::Spinlock lock_; ///< Task lock
        madness::CallbackInterface* callback_; ///< The completion callback

      public:

        /// Implementation constructor

        /// \param world The world that owns this task
        /// \param op The reduction operation
        /// \param callback The callback that will be invoked when this task
        /// has completed
        ReduceTaskImpl(World& world, opT op, madness::CallbackInterface* callback) :
          madness::TaskInterface(1, TaskAttributes::hipri()),
          world_(world), op_(op), ready_result_(new result_type(op())),
          ready_object_(nullptr), result_(), lock_(), callback_(callback)
        { }

        virtual ~ReduceTaskImpl() { }

        /// Task function
        virtual void run(const madness::TaskThreadEnv&) {
          MADNESS_ASSERT(ready_result_);
          result_.set(op_(*ready_result_));
          if(callback_)
            callback_->notify();
        }

        /// Callback function invoked by \c ReductionObject

        /// This function will place \c object in the ready state. If
        /// another object is already in the ready state, then both objects
        /// are used to spawn a task
        /// \param object The reduction object that is ready to be reduced
        void ready(ReduceObject* object) {
          MADNESS_ASSERT(object);
          lock_.lock(); // <<< Begin critical section
          if(ready_result_) {
            std::shared_ptr<result_type> ready_result = ready_result_;
            ready_result_.reset();
            lock_.unlock(); // <<< End critical section
            MADNESS_ASSERT(ready_result);
            world_.taskq.add(this, & ReduceTaskImpl::reduce_result_object,
                ready_result, object, TaskAttributes::hipri());
          } else if(ready_object_) {
            ReduceObject* ready_object = const_cast<ReduceObject*>(ready_object_);
            ready_object_ = nullptr;
            lock_.unlock(); // <<< End critical section
            MADNESS_ASSERT(ready_object);
            world_.taskq.add(this, & ReduceTaskImpl::reduce_object_object,
                object, ready_object, TaskAttributes::hipri());
          } else {
            ready_object_ = object;
            lock_.unlock(); // <<< End critical section
          }
        }

        /// Task result accessor

        /// \return A future that will hold the result of the reduction task
        const Future<result_type>& result() const { return result_; }

        /// World accessor

        /// \return The world that owns this task.
        World& get_world() const { return world_; }

      }; // class ReduceTaskImpl


      ReduceTaskImpl* pimpl_; ///< The reduction task object.
      std::size_t count_; ///< Reduction argument counter

    public:

      /// Default constructor
      ReduceTask() : pimpl_(nullptr), count_(0ul) { }


      /// Constructor

      /// \param world The world that owns this task
      /// \param op The reduction operation [ default = opT() ]
      /// \param callback The callback that will be invoked when this task is
      /// complete
      ReduceTask(World& world, const opT& op = opT(),
          madness::CallbackInterface* callback = nullptr) :
        pimpl_(new ReduceTaskImpl(world, op, callback)), count_(0ul)
      { }

      /// Move constructor

      /// \param other The object to be moved
      ReduceTask(ReduceTask<opT>&& other) noexcept :
        pimpl_(other.pimpl_), count_(other.count_)
      {
        other.pimpl_ = nullptr;
        other.count_ = 0ul;
      }

      /// Destructor

      /// If the reduction has not been submitted or \c destroy() has not been
      /// called, it well be submitted when the the destructor is called.
      ~ReduceTask() { delete pimpl_; }

      /// Move assignment operator

      /// \param other The object to be moved
      ReduceTask<opT>& operator=(ReduceTask<opT>&& other) noexcept {
        pimpl_ = other.pimpl_;
        count_ = other.count_;
        other.pimpl_ = nullptr;
        other.count_ = 0;
        return *this;
      }

      // Non-copyable
      ReduceTask(const ReduceTask<opT>&) = delete;
      ReduceTask<opT>& operator=(const ReduceTask<opT>&) = delete;

      /// Add an argument to the reduction task

      /// \c arg may be of the argument type of \c opT, a \c Future to the
      /// argument type, or \c RemoteReference<FutureImpl> to the argument
      /// type.
      /// \tparam Arg The argument type
      /// \param arg The argument that will be reduced
      /// \param callback The callback that will be invoked when this argument
      /// pair has been reduced [ default = nullptr ]
      template <typename Arg>
      int add(const Arg& arg, madness::CallbackInterface* callback = nullptr) {
        MADNESS_ASSERT(pimpl_);
        pimpl_->inc();
        new typename ReduceTaskImpl::ReduceObject(pimpl_, arg, callback);
        return ++count_;
      }

      /// Argument count

      /// \return The total number of arguments added to this task
      int count() const { return count_; }

      /// Submit the reduction task to the task queue

      /// \return The result of the reduction
      /// \note Arguments can no longer be added to the reduction after
      /// calling \c submit().
      Future<result_type> submit() {
        MADNESS_ASSERT(pimpl_);

        // Get the result before submitting/running the task, otherwise the
        // task could run and be deleted before we are done here.
        Future<result_type> result = pimpl_->result();

        pimpl_->dec();
        World& world = pimpl_->get_world();
        world.taskq.add(pimpl_);

        pimpl_ = nullptr;
        return result;
      }

      /// Type conversion operator

      /// \return \c true if the task object is initialized.
      operator bool() const { return pimpl_ != nullptr; }

    }; // class ReduceTask



    /// Reduce pair task

    /// This task will reduce an arbitrary number of pairs of objects. This task
    /// is optimized for reduction of data that is the result of other tasks or
    /// remote data. Also, it is assumed that individual reduction operations
    /// require a substantial amount of work (i.e. your reduction operation
    /// should reduce a vector of data, not two numbers). The reduction
    /// arguments are reduced as they become ready, which results in non-
    /// deterministic reduction order. This is much faster than a simple binary
    /// tree reduction since the reduction tasks do not have to wait for
    /// specific pairs of data. Though data that is not stored in a future can
    /// be used, it may not be the best choice in that case. \n
    /// The reduction operation must have the following form:
    /// \code
    /// struct ReductionOp {
    ///     // typedefs
    ///     typedef ... result_type;
    ///     typedef ... first_argument_type;
    ///     typedef ... second_argument_type;
    ///
    ///     // Constructors
    ///     ReductionOp();
    ///     ReductionOp(const ReductionOp&);
    ///     ReductionOp& operator=(const ReductionOp&);
    ///
    ///     // Reduction functions
    ///
    ///     // Make an empty result object
    ///     result_type operator()() const;
    ///
    ///     // Post process the result
    ///     const result_type& operator()(const result_type&) const;
    ///
    ///     // Reduce two result objects
    ///     void operator()(result_type&, const result_type&) const;
    ///
    ///     // Reduce an argument pair
    ///     void operator()(result_type&, const first_argument_type&,
    ///         const second_argument_type&) const;
    ///
    /// }; // struct ReductionOp
    /// \endcode
    ///
    /// For example, a dot product function might look like:
    ///
    /// \code
    /// struct DotProduct {
    ///     // typedefs
    ///     typedef double result_type;
    ///     typedef std::vector<double> first_argument_type;
    ///     tyepdef std::vector<double> second_argument_type;
    ///
    ///     // Compiler generated constructors or assignment operator OK here
    ///
    ///     // Reduction functions
    ///
    ///     // Make an empty result object
    ///     result_type operator()() const { return 0; }
    ///
    ///     // Post process the result (no operation, passthrough)
    ///     const result_type& operator()(const result_type& result) const {
    ///       return result;
    ///     }
    ///
    ///     void operator()(result_type& result, const result_type& arg) const {
    ///         result += arg;
    ///     }
    ///
    ///     /// Reduce an argument pair
    ///     void operator()(result_type& result,
    ///             const first_argument_type& first, const second_argument_type& second) const
    ///     {
    ///         assert(first.size() == second.size());
    ///         for(std::size_t i = 0ul; i < first.size(); ++i)
    ///             result += first[i] * second[i];
    ///     }
    ///
    /// }; // struct DotProduct
    /// \endcode
    /// \note There is no need to add this object to the MADNESS task queue. It
    /// will be handled internally by the object. Simply call \c submit() to add
    /// this task to the task queue.
    /// \tparam opT The reduction operation type
    template <typename opT>
    class ReducePairTask : public ReduceTask<ReducePairOpWrapper<opT> > {
    private:

      typedef ReducePairOpWrapper<opT> op_type; ///< The reduction operation type
      typedef typename op_type::first_argument_type first_argument_type; ///< The left-hand reduction argument type
      typedef typename op_type::second_argument_type second_argument_type; /// The right-hand reduction argument type
      typedef typename op_type::argument_type argument_type; ///< The pair reduction argument type
      typedef ReduceTask<op_type> ReduceTask_; ///< The base class

    public:

      /// Default constructor
      ReducePairTask() : ReduceTask_() { }

      /// Constructor

      /// \param world The world that owns this task
      /// \param op The pair reduction operation [ default = opT() ]
      /// \param callback The callback that will be invoked when this task is
      /// complete
      ReducePairTask(World& world, const opT& op = opT(), madness::CallbackInterface* callback = nullptr) :
        ReduceTask_(world, op_type(op), callback)
      { }

      /// Move constructor

      /// \param other The object to be moved
      ReducePairTask(ReducePairTask<opT>&& other) noexcept :
        ReduceTask_(std::move(other))
      { }

      /// Move assignment operator

      /// \param other The object to be moved
      ReducePairTask<opT>& operator=(ReducePairTask<opT>&& other) noexcept {
        ReduceTask_::operator=(std::move(other));
        return *this;
      }

      /// Non-copyabe
      ReducePairTask(const ReducePairTask<opT>&) = delete;
      ReducePairTask<opT> operator=(const ReducePairTask<opT>&) = delete;

      /// Add a pair of arguments to the reduction task

      /// \c left and \c right may be of the argument types of \c opT, a
      /// \c Future to the argument types,
      /// \c RemoteReference<FutureImpl> to the argument
      //// types, or any combination of the above.
      /// \tparam L The left-hand object type
      /// \tparam R The right-hand object type
      /// \param left The left-hand argument that will be reduced
      /// \param right The right-hand argument that will be reduced
      /// \param callback The callback that will be invoked when this argument
      /// pair has been reduced [ default = nullptr ]
      template <typename L, typename R>
      void add(const L& left, const R& right, madness::CallbackInterface* callback = nullptr) {
        ReduceTask_::add(argument_type(Future<first_argument_type>(left),
            Future<second_argument_type>(right)), callback);
      }

    }; // class ReducePairTask

  } // namespace detail
} // namespace TiledArray

#endif // TILEDARRAY_REDUCE_TASK_H__INCLUDED