/usr/include/trilinos/Amesos2_Superlu_def.hpp is in libtrilinos-amesos2-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 | // @HEADER
//
// ***********************************************************************
//
// Amesos2: Templated Direct Sparse Solver Package
// Copyright 2011 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
//
// @HEADER
/**
\file Amesos2_Superlu_def.hpp
\author Eric Bavier <etbavier@sandia.gov>
\date Thu Jul 8 22:43:51 2010
\brief Definitions for the Amesos2 Superlu solver interface
*/
#ifndef AMESOS2_SUPERLU_DEF_HPP
#define AMESOS2_SUPERLU_DEF_HPP
#include <Teuchos_Tuple.hpp>
#include <Teuchos_ParameterList.hpp>
#include <Teuchos_StandardParameterEntryValidators.hpp>
#include "Amesos2_SolverCore_def.hpp"
#include "Amesos2_Superlu_decl.hpp"
namespace Amesos2 {
template <class Matrix, class Vector>
Superlu<Matrix,Vector>::Superlu(
Teuchos::RCP<const Matrix> A,
Teuchos::RCP<Vector> X,
Teuchos::RCP<const Vector> B )
: SolverCore<Amesos2::Superlu,Matrix,Vector>(A, X, B)
, nzvals_() // initialize to empty arrays
, rowind_()
, colptr_()
{
// ilu_set_default_options is called later in set parameter list if required.
// This is not the ideal way, but the other option to always call
// ilu_set_default_options here and assuming it won't have any side effect
// in the TPL is more dangerous. It is not a good idea to rely on external
// libraries' internal "features".
SLU::set_default_options(&(data_.options));
// Override some default options
data_.options.PrintStat = SLU::NO;
SLU::StatInit(&(data_.stat));
data_.perm_r.resize(this->globalNumRows_);
data_.perm_c.resize(this->globalNumCols_);
data_.etree.resize(this->globalNumCols_);
data_.R.resize(this->globalNumRows_);
data_.C.resize(this->globalNumCols_);
data_.relax = SLU::sp_ienv(2); // Query optimal relax param from superlu
data_.panel_size = SLU::sp_ienv(1); // Query optimal panel size
data_.equed = 'N'; // No equilibration
data_.A.Store = NULL;
data_.L.Store = NULL;
data_.U.Store = NULL;
data_.X.Store = NULL;
data_.B.Store = NULL;
ILU_Flag_=false; // default: turn off ILU
}
template <class Matrix, class Vector>
Superlu<Matrix,Vector>::~Superlu( )
{
/* Free Superlu data_types
* - Matrices
* - Vectors
* - Stat object
*/
SLU::StatFree( &(data_.stat) ) ;
// Storage is initialized in numericFactorization_impl()
if ( data_.A.Store != NULL ){
SLU::Destroy_SuperMatrix_Store( &(data_.A) );
}
// only root allocated these SuperMatrices.
if ( data_.L.Store != NULL ){ // will only be true for this->root_
SLU::Destroy_SuperNode_Matrix( &(data_.L) );
SLU::Destroy_CompCol_Matrix( &(data_.U) );
}
}
template <class Matrix, class Vector>
std::string
Superlu<Matrix,Vector>::description() const
{
std::ostringstream oss;
oss << "SuperLU solver interface";
if (ILU_Flag_) {
oss << ", \"ILUTP\" : {";
oss << "drop tol = " << data_.options.ILU_DropTol;
oss << ", fill factor = " << data_.options.ILU_FillFactor;
oss << ", fill tol = " << data_.options.ILU_FillTol;
switch(data_.options.ILU_MILU) {
case SLU::SMILU_1 :
oss << ", MILU 1";
break;
case SLU::SMILU_2 :
oss << ", MILU 2";
break;
case SLU::SMILU_3 :
oss << ", MILU 3";
break;
case SLU::SILU :
default:
oss << ", regular ILU";
}
switch(data_.options.ILU_Norm) {
case SLU::ONE_NORM :
oss << ", 1-norm";
break;
case SLU::TWO_NORM :
oss << ", 2-norm";
break;
case SLU::INF_NORM :
default:
oss << ", infinity-norm";
}
oss << "}";
} else {
oss << ", direct solve";
}
return oss.str();
/*
// ILU parameters
if( parameterList->isParameter("RowPerm") ){
RCP<const ParameterEntryValidator> rowperm_validator = valid_params->getEntry("RowPerm").validator();
parameterList->getEntry("RowPerm").setValidator(rowperm_validator);
data_.options.RowPerm = getIntegralValue<SLU::rowperm_t>(*parameterList, "RowPerm");
}
*/
}
template<class Matrix, class Vector>
int
Superlu<Matrix,Vector>::preOrdering_impl()
{
/*
* Get column permutation vector perm_c[], according to permc_spec:
* permc_spec = NATURAL: natural ordering
* permc_spec = MMD_AT_PLUS_A: minimum degree on structure of A'+A
* permc_spec = MMD_ATA: minimum degree on structure of A'*A
* permc_spec = COLAMD: approximate minimum degree column ordering
* permc_spec = MY_PERMC: the ordering already supplied in perm_c[]
*/
int permc_spec = data_.options.ColPerm;
if ( permc_spec != SLU::MY_PERMC && this->root_ ){
#ifdef HAVE_AMESOS2_TIMERS
Teuchos::TimeMonitor preOrderTimer(this->timers_.preOrderTime_);
#endif
SLU::get_perm_c(permc_spec, &(data_.A), data_.perm_c.getRawPtr());
}
return(0);
}
template <class Matrix, class Vector>
int
Superlu<Matrix,Vector>::symbolicFactorization_impl()
{
/*
* SuperLU performs symbolic factorization and numeric factorization
* together, but does leave some options for reusing symbolic
* structures that have been created on previous factorizations. If
* our Amesos2 user calls this function, that is an indication that
* the symbolic structure of the matrix is no longer valid, and
* SuperLU should do the factorization from scratch.
*
* This can be accomplished by setting the options.Fact flag to
* DOFACT, as well as setting our own internal flag to false.
*/
same_symbolic_ = false;
data_.options.Fact = SLU::DOFACT;
return(0);
}
template <class Matrix, class Vector>
int
Superlu<Matrix,Vector>::numericFactorization_impl()
{
using Teuchos::as;
// Cleanup old L and U matrices if we are not reusing a symbolic
// factorization. Stores and other data will be allocated in gstrf.
// Only rank 0 has valid pointers
if ( !same_symbolic_ && data_.L.Store != NULL ){
SLU::Destroy_SuperNode_Matrix( &(data_.L) );
SLU::Destroy_CompCol_Matrix( &(data_.U) );
data_.L.Store = NULL;
data_.U.Store = NULL;
}
if( same_symbolic_ ) data_.options.Fact = SLU::SamePattern_SameRowPerm;
int info = 0;
if ( this->root_ ){
#ifdef HAVE_AMESOS2_DEBUG
TEUCHOS_TEST_FOR_EXCEPTION( data_.A.ncol != as<int>(this->globalNumCols_),
std::runtime_error,
"Error in converting to SuperLU SuperMatrix: wrong number of global columns." );
TEUCHOS_TEST_FOR_EXCEPTION( data_.A.nrow != as<int>(this->globalNumRows_),
std::runtime_error,
"Error in converting to SuperLU SuperMatrix: wrong number of global rows." );
#endif
if( data_.options.Equil == SLU::YES ){
magnitude_type rowcnd, colcnd, amax;
int info2 = 0;
// calculate row and column scalings
function_map::gsequ(&(data_.A), data_.R.getRawPtr(),
data_.C.getRawPtr(), &rowcnd, &colcnd,
&amax, &info2);
TEUCHOS_TEST_FOR_EXCEPTION( info2 != 0,
std::runtime_error,
"SuperLU gsequ returned with status " << info2 );
// apply row and column scalings if necessary
function_map::laqgs(&(data_.A), data_.R.getRawPtr(),
data_.C.getRawPtr(), rowcnd, colcnd,
amax, &(data_.equed));
// // check what types of equilibration was actually done
// data_.rowequ = (data_.equed == 'R') || (data_.equed == 'B');
// data_.colequ = (data_.equed == 'C') || (data_.equed == 'B');
}
// Apply the column permutation computed in preOrdering. Place the
// column-permuted matrix in AC
SLU::sp_preorder(&(data_.options), &(data_.A), data_.perm_c.getRawPtr(),
data_.etree.getRawPtr(), &(data_.AC));
{ // Do factorization
#ifdef HAVE_AMESOS2_TIMERS
Teuchos::TimeMonitor numFactTimer(this->timers_.numFactTime_);
#endif
#ifdef HAVE_AMESOS2_VERBOSE_DEBUG
std::cout << "Superlu:: Before numeric factorization" << std::endl;
std::cout << "nzvals_ : " << nzvals_.toString() << std::endl;
std::cout << "rowind_ : " << rowind_.toString() << std::endl;
std::cout << "colptr_ : " << colptr_.toString() << std::endl;
#endif
if(ILU_Flag_==false) {
function_map::gstrf(&(data_.options), &(data_.AC),
data_.relax, data_.panel_size, data_.etree.getRawPtr(),
NULL, 0, data_.perm_c.getRawPtr(), data_.perm_r.getRawPtr(),
&(data_.L), &(data_.U), &(data_.stat), &info);
}
else {
function_map::gsitrf(&(data_.options), &(data_.AC),
data_.relax, data_.panel_size, data_.etree.getRawPtr(),
NULL, 0, data_.perm_c.getRawPtr(), data_.perm_r.getRawPtr(),
&(data_.L), &(data_.U), &(data_.stat), &info);
}
}
// Cleanup. AC data will be alloc'd again for next factorization (if at all)
SLU::Destroy_CompCol_Permuted( &(data_.AC) );
// Set the number of non-zero values in the L and U factors
this->setNnzLU( as<size_t>(((SLU::SCformat*)data_.L.Store)->nnz +
((SLU::NCformat*)data_.U.Store)->nnz) );
}
/* All processes should have the same error code */
Teuchos::broadcast(*(this->matrixA_->getComm()), 0, &info);
global_size_type info_st = as<global_size_type>(info);
TEUCHOS_TEST_FOR_EXCEPTION( (info_st > 0) && (info_st <= this->globalNumCols_),
std::runtime_error,
"Factorization complete, but matrix is singular. Division by zero eminent");
TEUCHOS_TEST_FOR_EXCEPTION( (info_st > 0) && (info_st > this->globalNumCols_),
std::runtime_error,
"Memory allocation failure in Superlu factorization");
data_.options.Fact = SLU::FACTORED;
same_symbolic_ = true;
return(info);
}
template <class Matrix, class Vector>
int
Superlu<Matrix,Vector>::solve_impl(const Teuchos::Ptr<MultiVecAdapter<Vector> > X,
const Teuchos::Ptr<const MultiVecAdapter<Vector> > B) const
{
using Teuchos::as;
const global_size_type ld_rhs = this->root_ ? X->getGlobalLength() : 0;
const size_t nrhs = X->getGlobalNumVectors();
const size_t val_store_size = as<size_t>(ld_rhs * nrhs);
Teuchos::Array<slu_type> xValues(val_store_size);
Teuchos::Array<slu_type> bValues(val_store_size);
{ // Get values from RHS B
#ifdef HAVE_AMESOS2_TIMERS
Teuchos::TimeMonitor mvConvTimer(this->timers_.vecConvTime_);
Teuchos::TimeMonitor redistTimer( this->timers_.vecRedistTime_ );
#endif
Util::get_1d_copy_helper<MultiVecAdapter<Vector>,
slu_type>::do_get(B, bValues(),
as<size_t>(ld_rhs),
ROOTED, this->rowIndexBase_);
}
int ierr = 0; // returned error code
magnitude_type rpg, rcond;
if ( this->root_ ) {
data_.ferr.resize(nrhs);
data_.berr.resize(nrhs);
{
#ifdef HAVE_AMESOS2_TIMERS
Teuchos::TimeMonitor mvConvTimer(this->timers_.vecConvTime_);
#endif
SLU::Dtype_t dtype = type_map::dtype;
int i_ld_rhs = as<int>(ld_rhs);
function_map::create_Dense_Matrix(&(data_.B), i_ld_rhs, as<int>(nrhs),
bValues.getRawPtr(), i_ld_rhs,
SLU::SLU_DN, dtype, SLU::SLU_GE);
function_map::create_Dense_Matrix(&(data_.X), i_ld_rhs, as<int>(nrhs),
xValues.getRawPtr(), i_ld_rhs,
SLU::SLU_DN, dtype, SLU::SLU_GE);
}
// Note: the values of B and X (after solution) are adjusted
// appropriately within gssvx for row and column scalings.
{ // Do solve!
#ifdef HAVE_AMESOS2_TIMERS
Teuchos::TimeMonitor solveTimer(this->timers_.solveTime_);
#endif
if(ILU_Flag_==false) {
function_map::gssvx(&(data_.options), &(data_.A),
data_.perm_c.getRawPtr(), data_.perm_r.getRawPtr(),
data_.etree.getRawPtr(), &(data_.equed), data_.R.getRawPtr(),
data_.C.getRawPtr(), &(data_.L), &(data_.U), NULL, 0, &(data_.B),
&(data_.X), &rpg, &rcond, data_.ferr.getRawPtr(),
data_.berr.getRawPtr(), &(data_.mem_usage), &(data_.stat), &ierr);
}
else {
function_map::gsisx(&(data_.options), &(data_.A),
data_.perm_c.getRawPtr(), data_.perm_r.getRawPtr(),
data_.etree.getRawPtr(), &(data_.equed), data_.R.getRawPtr(),
data_.C.getRawPtr(), &(data_.L), &(data_.U), NULL, 0, &(data_.B),
&(data_.X), &rpg, &rcond, &(data_.mem_usage), &(data_.stat), &ierr);
}
}
// Cleanup X and B stores
SLU::Destroy_SuperMatrix_Store( &(data_.X) );
SLU::Destroy_SuperMatrix_Store( &(data_.B) );
data_.X.Store = NULL;
data_.B.Store = NULL;
}
/* All processes should have the same error code */
Teuchos::broadcast(*(this->getComm()), 0, &ierr);
global_size_type ierr_st = as<global_size_type>(ierr);
TEUCHOS_TEST_FOR_EXCEPTION( ierr < 0,
std::invalid_argument,
"Argument " << -ierr << " to SuperLU xgssvx had illegal value" );
TEUCHOS_TEST_FOR_EXCEPTION( ierr > 0 && ierr_st <= this->globalNumCols_,
std::runtime_error,
"Factorization complete, but U is exactly singular" );
TEUCHOS_TEST_FOR_EXCEPTION( ierr > 0 && ierr_st > this->globalNumCols_ + 1,
std::runtime_error,
"SuperLU allocated " << ierr - this->globalNumCols_ << " bytes of "
"memory before allocation failure occured." );
/* Update X's global values */
{
#ifdef HAVE_AMESOS2_TIMERS
Teuchos::TimeMonitor redistTimer(this->timers_.vecRedistTime_);
#endif
Util::put_1d_data_helper<
MultiVecAdapter<Vector>,slu_type>::do_put(X, xValues(),
as<size_t>(ld_rhs),
ROOTED, this->rowIndexBase_);
}
return(ierr);
}
template <class Matrix, class Vector>
bool
Superlu<Matrix,Vector>::matrixShapeOK_impl() const
{
// The Superlu factorization routines can handle square as well as
// rectangular matrices, but Superlu can only apply the solve routines to
// square matrices, so we check the matrix for squareness.
return( this->matrixA_->getGlobalNumRows() == this->matrixA_->getGlobalNumCols() );
}
template <class Matrix, class Vector>
void
Superlu<Matrix,Vector>::setParameters_impl(const Teuchos::RCP<Teuchos::ParameterList> & parameterList )
{
using Teuchos::RCP;
using Teuchos::getIntegralValue;
using Teuchos::ParameterEntryValidator;
RCP<const Teuchos::ParameterList> valid_params = getValidParameters_impl();
ILU_Flag_ = parameterList->get<bool>("ILU_Flag",false);
if (ILU_Flag_) {
SLU::ilu_set_default_options(&(data_.options));
// Override some default options
data_.options.PrintStat = SLU::NO;
}
data_.options.Trans = this->control_.useTranspose_ ? SLU::TRANS : SLU::NOTRANS;
// The SuperLU transpose option can override the Amesos2 option
if( parameterList->isParameter("Trans") ){
RCP<const ParameterEntryValidator> trans_validator = valid_params->getEntry("Trans").validator();
parameterList->getEntry("Trans").setValidator(trans_validator);
data_.options.Trans = getIntegralValue<SLU::trans_t>(*parameterList, "Trans");
}
if( parameterList->isParameter("IterRefine") ){
RCP<const ParameterEntryValidator> refine_validator = valid_params->getEntry("IterRefine").validator();
parameterList->getEntry("IterRefine").setValidator(refine_validator);
data_.options.IterRefine = getIntegralValue<SLU::IterRefine_t>(*parameterList, "IterRefine");
}
if( parameterList->isParameter("ColPerm") ){
RCP<const ParameterEntryValidator> colperm_validator = valid_params->getEntry("ColPerm").validator();
parameterList->getEntry("ColPerm").setValidator(colperm_validator);
data_.options.ColPerm = getIntegralValue<SLU::colperm_t>(*parameterList, "ColPerm");
}
data_.options.DiagPivotThresh = parameterList->get<double>("DiagPivotThresh", 1.0);
bool equil = parameterList->get<bool>("Equil", true);
data_.options.Equil = equil ? SLU::YES : SLU::NO;
bool symmetric_mode = parameterList->get<bool>("SymmetricMode", false);
data_.options.SymmetricMode = symmetric_mode ? SLU::YES : SLU::NO;
// ILU parameters
if( parameterList->isParameter("RowPerm") ){
RCP<const ParameterEntryValidator> rowperm_validator = valid_params->getEntry("RowPerm").validator();
parameterList->getEntry("RowPerm").setValidator(rowperm_validator);
data_.options.RowPerm = getIntegralValue<SLU::rowperm_t>(*parameterList, "RowPerm");
}
/*if( parameterList->isParameter("ILU_DropRule") ) {
RCP<const ParameterEntryValidator> droprule_validator = valid_params->getEntry("ILU_DropRule").validator();
parameterList->getEntry("ILU_DropRule").setValidator(droprule_validator);
data_.options.ILU_DropRule = getIntegralValue<SLU::rule_t>(*parameterList, "ILU_DropRule");
}*/
data_.options.ILU_DropTol = parameterList->get<double>("ILU_DropTol", 0.0001);
data_.options.ILU_FillFactor = parameterList->get<double>("ILU_FillFactor", 10.0);
if( parameterList->isParameter("ILU_Norm") ) {
RCP<const ParameterEntryValidator> norm_validator = valid_params->getEntry("ILU_Norm").validator();
parameterList->getEntry("ILU_Norm").setValidator(norm_validator);
data_.options.ILU_Norm = getIntegralValue<SLU::norm_t>(*parameterList, "ILU_Norm");
}
if( parameterList->isParameter("ILU_MILU") ) {
RCP<const ParameterEntryValidator> milu_validator = valid_params->getEntry("ILU_MILU").validator();
parameterList->getEntry("ILU_MILU").setValidator(milu_validator);
data_.options.ILU_MILU = getIntegralValue<SLU::milu_t>(*parameterList, "ILU_MILU");
}
data_.options.ILU_FillTol = parameterList->get<double>("ILU_FillTol", 0.01);
}
template <class Matrix, class Vector>
Teuchos::RCP<const Teuchos::ParameterList>
Superlu<Matrix,Vector>::getValidParameters_impl() const
{
using std::string;
using Teuchos::tuple;
using Teuchos::ParameterList;
using Teuchos::EnhancedNumberValidator;
using Teuchos::setStringToIntegralParameter;
using Teuchos::stringToIntegralParameterEntryValidator;
static Teuchos::RCP<const Teuchos::ParameterList> valid_params;
if( is_null(valid_params) ){
Teuchos::RCP<Teuchos::ParameterList> pl = Teuchos::parameterList();
setStringToIntegralParameter<SLU::trans_t>("Trans", "NOTRANS",
"Solve for the transpose system or not",
tuple<string>("TRANS","NOTRANS","CONJ"),
tuple<string>("Solve with transpose",
"Do not solve with transpose",
"Solve with the conjugate transpose"),
tuple<SLU::trans_t>(SLU::TRANS,
SLU::NOTRANS,
SLU::CONJ),
pl.getRawPtr());
setStringToIntegralParameter<SLU::IterRefine_t>("IterRefine", "NOREFINE",
"Type of iterative refinement to use",
tuple<string>("NOREFINE", "SLU_SINGLE", "SLU_DOUBLE"),
tuple<string>("Do not use iterative refinement",
"Do single iterative refinement",
"Do double iterative refinement"),
tuple<SLU::IterRefine_t>(SLU::NOREFINE,
SLU::SLU_SINGLE,
SLU::SLU_DOUBLE),
pl.getRawPtr());
// Note: MY_PERMC not yet supported
setStringToIntegralParameter<SLU::colperm_t>("ColPerm", "COLAMD",
"Specifies how to permute the columns of the "
"matrix for sparsity preservation",
tuple<string>("NATURAL", "MMD_AT_PLUS_A",
"MMD_ATA", "COLAMD"),
tuple<string>("Natural ordering",
"Minimum degree ordering on A^T + A",
"Minimum degree ordering on A^T A",
"Approximate minimum degree column ordering"),
tuple<SLU::colperm_t>(SLU::NATURAL,
SLU::MMD_AT_PLUS_A,
SLU::MMD_ATA,
SLU::COLAMD),
pl.getRawPtr());
Teuchos::RCP<EnhancedNumberValidator<double> > diag_pivot_thresh_validator
= Teuchos::rcp( new EnhancedNumberValidator<double>(0.0, 1.0) );
pl->set("DiagPivotThresh", 1.0,
"Specifies the threshold used for a diagonal entry to be an acceptable pivot",
diag_pivot_thresh_validator); // partial pivoting
pl->set("Equil", true, "Whether to equilibrate the system before solve");
pl->set("SymmetricMode", false,
"Specifies whether to use the symmetric mode. "
"Gives preference to diagonal pivots and uses "
"an (A^T + A)-based column permutation.");
// ILU parameters
setStringToIntegralParameter<SLU::rowperm_t>("RowPerm", "LargeDiag",
"Type of row permutation strategy to use",
tuple<string>("NOROWPERM","LargeDiag","MY_PERMR"),
tuple<string>("Use natural ordering",
"Use weighted bipartite matching algorithm",
"Use the ordering given in perm_r input"),
tuple<SLU::rowperm_t>(SLU::NOROWPERM,
SLU::LargeDiag,
SLU::MY_PERMR),
pl.getRawPtr());
/*setStringToIntegralParameter<SLU::rule_t>("ILU_DropRule", "DROP_BASIC",
"Type of dropping strategy to use",
tuple<string>("DROP_BASIC","DROP_PROWS",
"DROP_COLUMN","DROP_AREA",
"DROP_DYNAMIC","DROP_INTERP"),
tuple<string>("ILUTP(t)","ILUTP(p,t)",
"Variant of ILUTP(p,t) for j-th column",
"Variant of ILUTP to control memory",
"Dynamically adjust threshold",
"Compute second dropping threshold by interpolation"),
tuple<SLU::rule_t>(SLU::DROP_BASIC,SLU::DROP_PROWS,SLU::DROP_COLUMN,
SLU::DROP_AREA,SLU::DROP_DYNAMIC,SLU::DROP_INTERP),
pl.getRawPtr());*/
pl->set("ILU_DropTol", 0.0001, "ILUT drop tolerance");
pl->set("ILU_FillFactor", 10.0, "ILUT fill factor");
setStringToIntegralParameter<SLU::norm_t>("ILU_Norm", "INF_NORM",
"Type of norm to use",
tuple<string>("ONE_NORM","TWO_NORM","INF_NORM"),
tuple<string>("1-norm","2-norm","inf-norm"),
tuple<SLU::norm_t>(SLU::ONE_NORM,SLU::TWO_NORM,SLU::INF_NORM),
pl.getRawPtr());
setStringToIntegralParameter<SLU::milu_t>("ILU_MILU", "SILU",
"Type of modified ILU to use",
tuple<string>("SILU","SMILU_1","SMILU_2","SMILU_3"),
tuple<string>("Regular ILU","MILU 1","MILU 2","MILU 3"),
tuple<SLU::milu_t>(SLU::SILU,SLU::SMILU_1,SLU::SMILU_2,
SLU::SMILU_3),
pl.getRawPtr());
pl->set("ILU_FillTol", 0.01, "ILUT fill tolerance");
pl->set("ILU_Flag", false, "ILU flag: if true, run ILU routines");
valid_params = pl;
}
return valid_params;
}
template <class Matrix, class Vector>
bool
Superlu<Matrix,Vector>::loadA_impl(EPhase current_phase)
{
using Teuchos::as;
#ifdef HAVE_AMESOS2_TIMERS
Teuchos::TimeMonitor convTimer(this->timers_.mtxConvTime_);
#endif
// SuperLU does not need the matrix at symbolicFactorization()
if( current_phase == SYMBFACT ) return false;
// Cleanup old store memory if it's non-NULL (should only ever be non-NULL at root_)
if( data_.A.Store != NULL ){
SLU::Destroy_SuperMatrix_Store( &(data_.A) );
data_.A.Store = NULL;
}
// Only the root image needs storage allocated
if( this->root_ ){
nzvals_.resize(this->globalNumNonZeros_);
rowind_.resize(this->globalNumNonZeros_);
colptr_.resize(this->globalNumCols_ + 1);
}
int nnz_ret = 0;
{
#ifdef HAVE_AMESOS2_TIMERS
Teuchos::TimeMonitor mtxRedistTimer( this->timers_.mtxRedistTime_ );
#endif
TEUCHOS_TEST_FOR_EXCEPTION( this->rowIndexBase_ != this->columnIndexBase_,
std::runtime_error,
"Row and column maps have different indexbase ");
Util::get_ccs_helper<
MatrixAdapter<Matrix>,slu_type,int,int>::do_get(this->matrixA_.ptr(),
nzvals_(), rowind_(),
colptr_(), nnz_ret, ROOTED,
ARBITRARY,
this->rowIndexBase_);
}
// Get the SLU data type for this type of matrix
SLU::Dtype_t dtype = type_map::dtype;
if( this->root_ ){
TEUCHOS_TEST_FOR_EXCEPTION( nnz_ret != as<int>(this->globalNumNonZeros_),
std::runtime_error,
"Did not get the expected number of non-zero vals");
function_map::create_CompCol_Matrix( &(data_.A),
this->globalNumRows_, this->globalNumCols_,
nnz_ret,
nzvals_.getRawPtr(),
rowind_.getRawPtr(),
colptr_.getRawPtr(),
SLU::SLU_NC, dtype, SLU::SLU_GE);
}
return true;
}
template<class Matrix, class Vector>
const char* Superlu<Matrix,Vector>::name = "SuperLU";
} // end namespace Amesos2
#endif // AMESOS2_SUPERLU_DEF_HPP
|