This file is indexed.

/usr/include/trilinos/klu2_ext.hpp is in libtrilinos-amesos2-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
/* ========================================================================== */
/* === klu include file ===================================================== */
/* ========================================================================== */
// @HEADER
// ***********************************************************************
//
//                   KLU2: A Direct Linear Solver package
//                    Copyright 2011 Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, with Sandia Corporation, the 
// U.S. Government retains certain rights in this software.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
// 
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Mike A. Heroux (maherou@sandia.gov)
//
// KLU2 is derived work from KLU, licensed under LGPL, and copyrighted by
// University of Florida. The Authors of KLU are Timothy A. Davis and
// Eka Palamadai. See Doc/KLU_README.txt for the licensing and copyright
// information for KLU.
//
// ***********************************************************************
// @HEADER


/* Include file for user programs that call klu_* routines */

#ifndef _TKLU_H
#define _TKLU_H


#include "amesos_amd.h"
#include "amesos_colamd.h"
#include "amesos_btf_decl.h"

/* -------------------------------------------------------------------------- */
/* Symbolic object - contains the pre-ordering computed by klu_analyze */
/* -------------------------------------------------------------------------- */

/* TODO : Entry is not needed in symbolic, numeric and common. Remove TODO */
template <typename Entry, typename Int> struct klu_symbolic
{
    /* A (P,Q) is in upper block triangular form.  The kth block goes from
     * row/col index R [k] to R [k+1]-1.  The estimated number of nonzeros
     * in the L factor of the kth block is Lnz [k]. 
     */

    /* only computed if the AMD ordering is chosen: */
    double symmetry ;   /* symmetry of largest block */
    double est_flops ;  /* est. factorization flop count */
    double lnz, unz ;   /* estimated nz in L and U, including diagonals */
    double *Lnz ;       /* size n, but only Lnz [0..nblocks-1] is used */

    /* computed for all orderings: */
    Int
        n,              /* input matrix A is n-by-n */
        nz,             /* # entries in input matrix */
        *P,             /* size n */
        *Q,             /* size n */
        *R,             /* size n+1, but only R [0..nblocks] is used */
        nzoff,          /* nz in off-diagonal blocks */
        nblocks,        /* number of blocks */
        maxblock,       /* size of largest block */
        ordering,       /* ordering used (AMD, COLAMD, or GIVEN) */
        do_btf ;        /* whether or not BTF preordering was requested */

    /* only computed if BTF preordering requested */
    Int structural_rank ;   /* 0 to n-1 if the matrix is structurally rank
                        * deficient.  -1 if not computed.  n if the matrix has
                        * full structural rank */

} ;

/* -------------------------------------------------------------------------- */
/* Numeric object - contains the factors computed by klu_factor */
/* -------------------------------------------------------------------------- */
template <typename Entry, typename Int> struct klu_numeric 
{
    /* LU factors of each block, the pivot row permutation, and the
     * entries in the off-diagonal blocks */

    Int n ;             /* A is n-by-n */
    Int nblocks ;       /* number of diagonal blocks */
    Int lnz ;           /* actual nz in L, including diagonal */
    Int unz ;           /* actual nz in U, including diagonal */
    Int max_lnz_block ; /* max actual nz in L in any one block, incl. diag */
    Int max_unz_block ; /* max actual nz in U in any one block, incl. diag */
    Int *Pnum ;         /* size n. final pivot permutation */
    Int *Pinv ;         /* size n. inverse of final pivot permutation */

    /* LU factors of each block */
    Int *Lip ;          /* size n. pointers into LUbx[block] for L */
    Int *Uip ;          /* size n. pointers into LUbx[block] for U */
    Int *Llen ;         /* size n. Llen [k] = # of entries in kth column of L */
    Int *Ulen ;         /* size n. Ulen [k] = # of entries in kth column of U */
    void **LUbx ;       /* L and U indices and entries (excl. diagonal of U) */
    size_t *LUsize ;    /* size of each LUbx [block], in sizeof (Unit) */
    void *Udiag ;       /* diagonal of U */

    /* scale factors; can be NULL if no scaling */
    double *Rs ;        /* size n. Rs [i] is scale factor for row i */

    /* permanent workspace for factorization and solve */
    size_t worksize ;   /* size (in bytes) of Work */
    void *Work ;        /* workspace */
    void *Xwork ;       /* alias into Numeric->Work */
    Int *Iwork ;        /* alias into Numeric->Work */

    /* off-diagonal entries in a conventional compressed-column sparse matrix */
    Int *Offp ;         /* size n+1, column pointers */
    Int *Offi ;         /* size nzoff, row indices */
    void *Offx ;        /* size nzoff, numerical values */
    Int nzoff ;

} ;

/* -------------------------------------------------------------------------- */
/* KLU control parameters and statistics */
/* -------------------------------------------------------------------------- */

/* Common->status values */
#define KLU_OK 0
#define KLU_SINGULAR (1)            /* status > 0 is a warning, not an error */
#define KLU_OUT_OF_MEMORY (-2)
#define KLU_INVALID (-3)
#define KLU_TOO_LARGE (-4)          /* integer overflow has occured */

template <typename Entry, typename Int>  struct klu_common
{

    /* --------------------------------------------------------------------- */
    /* parameters */
    /* --------------------------------------------------------------------- */

    double tol ;            /* pivot tolerance for diagonal preference */
    double memgrow ;        /* realloc memory growth size for LU factors */
    double initmem_amd ;    /* init. memory size with AMD: c*nnz(L) + n */
    double initmem ;        /* init. memory size: c*nnz(A) + n */
    double maxwork ;        /* maxwork for BTF, <= 0 if no limit */

    Int btf ;               /* use BTF pre-ordering, or not */
    Int ordering ;          /* 0: AMD, 1: COLAMD, 2: user P and Q,
                             * 3: user function */
    Int scale ;             /* row scaling: -1: none (and no error check),
                             * 0: none, 1: sum, 2: max */

    /* memory management routines */
    void *(*malloc_memory) (size_t) ;           /* pointer to malloc */
    void *(*realloc_memory) (void *, size_t) ;  /* pointer to realloc */
    void (*free_memory) (void *) ;              /* pointer to free */
    void *(*calloc_memory) (size_t, size_t) ;   /* pointer to calloc */

    /* pointer to user ordering function */
    int (*user_order) (Int, Int *, Int *, Int *, struct klu_common<Entry, Int> *) ;

    /* pointer to user data, passed unchanged as the last parameter to the
     * user ordering function (optional, the user function need not use this
     * information). */
    void *user_data ;

    Int halt_if_singular ;      /* how to handle a singular matrix:
        * FALSE: keep going.  Return a Numeric object with a zero U(k,k).  A
        *   divide-by-zero may occur when computing L(:,k).  The Numeric object
        *   can be passed to klu_solve (a divide-by-zero will occur).  It can
        *   also be safely passed to klu_refactor.
        * TRUE: stop quickly.  klu_factor will free the partially-constructed
        *   Numeric object.  klu_refactor will not free it, but will leave the
        *   numerical values only partially defined.  This is the default. */

    /* ---------------------------------------------------------------------- */
    /* statistics */
    /* ---------------------------------------------------------------------- */

    Int status ;                /* KLU_OK if OK, < 0 if error */
    Int nrealloc ;              /* # of reallocations of L and U */

    Int structural_rank ;       /* 0 to n-1 if the matrix is structurally rank
        * deficient (as determined by maxtrans).  -1 if not computed.  n if the
        * matrix has full structural rank.  This is computed by klu_analyze
        * if a BTF preordering is requested. */

    Int numerical_rank ;        /* First k for which a zero U(k,k) was found,
        * if the matrix was singular (in the range 0 to n-1).  n if the matrix
        * has full rank. This is not a true rank-estimation.  It just reports
        * where the first zero pivot was found.  -1 if not computed.
        * Computed by klu_factor and klu_refactor. */

    Int singular_col ;          /* n if the matrix is not singular.  If in the
        * range 0 to n-1, this is the column index of the original matrix A that
        * corresponds to the column of U that contains a zero diagonal entry.
        * -1 if not computed.  Computed by klu_factor and klu_refactor. */

    Int noffdiag ;      /* # of off-diagonal pivots, -1 if not computed */

    double flops ;      /* actual factorization flop count, from klu_flops */
    double rcond ;      /* crude reciprocal condition est., from klu_rcond */
    double condest ;    /* accurate condition est., from klu_condest */
    double rgrowth ;    /* reciprocal pivot rgrowth, from klu_rgrowth */
    double work ;       /* actual work done in BTF, in klu_analyze */

    size_t memusage ;   /* current memory usage, in bytes */
    size_t mempeak ;    /* peak memory usage, in bytes */

} ;

/* -------------------------------------------------------------------------- */
/* klu_defaults: sets default control parameters */
/* -------------------------------------------------------------------------- */

template <typename Entry, typename Int>
Int klu_defaults
(
    klu_common<Entry, Int> *Common
) ;

/* -------------------------------------------------------------------------- */
/* klu_analyze:  orders and analyzes a matrix */
/* -------------------------------------------------------------------------- */

/* Order the matrix with BTF (or not), then order each block with AMD, COLAMD,
 * a natural ordering, or with a user-provided ordering function */

template <typename Entry, typename Int>
klu_symbolic<Entry, Int> *klu_analyze
(
    /* inputs, not modified */
    Int n,              /* A is n-by-n */
    Int Ap [ ],         /* size n+1, column pointers */
    Int Ai [ ],         /* size nz, row indices */
    klu_common<Entry, Int> *Common
) ;

/* -------------------------------------------------------------------------- */
/* klu_analyze_given: analyzes a matrix using given P and Q */
/* -------------------------------------------------------------------------- */

/* Order the matrix with BTF (or not), then use natural or given ordering
 * P and Q on the blocks.  P and Q are interpretted as identity
 * if NULL. */

template <typename Entry, typename Int>
klu_symbolic<Entry, Int> *klu_analyze_given
(
    /* inputs, not modified */
    Int n,              /* A is n-by-n */
    Int Ap [ ],         /* size n+1, column pointers */
    Int Ai [ ],         /* size nz, row indices */
    Int P [ ],          /* size n, user's row permutation (may be NULL) */
    Int Q [ ],          /* size n, user's column permutation (may be NULL) */
    klu_common<Entry, Int> *Common
) ;

/* -------------------------------------------------------------------------- */
/* klu_factor:  factors a matrix using the klu_analyze results */
/* -------------------------------------------------------------------------- */

template <typename Entry, typename Int>
klu_numeric<Entry, Int> *klu_factor /* returns KLU_OK if OK, < 0 if error */
(
    /* inputs, not modified */
    Int Ap [ ],         /* size n+1, column pointers */
    Int Ai [ ],         /* size nz, row indices */
    Entry Ax [ ],      /* size nz, numerical values */
    klu_symbolic<Entry, Int> *Symbolic,
    klu_common<Entry, Int> *Common
) ;

/* -------------------------------------------------------------------------- */
/* klu_solve: solves Ax=b using the Symbolic and Numeric objects */
/* -------------------------------------------------------------------------- */

template <typename Entry, typename Int>
Int klu_solve
(
    /* inputs, not modified */
    klu_symbolic<Entry, Int> *Symbolic,
    klu_numeric<Entry, Int> *Numeric,
    Int ldim,               /* leading dimension of B */
    Int nrhs,               /* number of right-hand-sides */

    /* right-hand-side on input, overwritten with solution to Ax=b on output */
    Entry B [ ],           /* size ldim*nrhs */
    klu_common<Entry, Int> *Common
) ;


/* -------------------------------------------------------------------------- */
/* klu_tsolve: solves A'x=b using the Symbolic and Numeric objects */
/* -------------------------------------------------------------------------- */

template <typename Entry, typename Int>
Int klu_tsolve
(
    /* inputs, not modified */
    klu_symbolic<Entry, Int> *Symbolic,
    klu_numeric<Entry, Int> *Numeric,
    Int ldim,               /* leading dimension of B */
    Int nrhs,               /* number of right-hand-sides */

    /* right-hand-side on input, overwritten with solution to Ax=b on output */
    Entry B [ ],           /* size ldim*nrhs */
    klu_common<Entry, Int> *Common
) ;

/* -------------------------------------------------------------------------- */
/* klu_refactor: refactorizes matrix with same ordering as klu_factor */
/* -------------------------------------------------------------------------- */

template <typename Entry, typename Int>
Int klu_refactor         /* return TRUE if successful, FALSE otherwise */
(
    /* inputs, not modified */
    Int Ap [ ],         /* size n+1, column pointers */
    Int Ai [ ],         /* size nz, row indices */
    Entry Ax [ ],      /* size nz, numerical values */
    klu_symbolic<Entry, Int> *Symbolic,
    /* input, and numerical values modified on output */
    klu_numeric<Entry, Int> *Numeric,
    klu_common<Entry, Int> *Common
) ;

/* -------------------------------------------------------------------------- */
/* klu_free_symbolic: destroys the Symbolic object */
/* -------------------------------------------------------------------------- */

template <typename Entry, typename Int>
Int klu_free_symbolic
(
    klu_symbolic<Entry, Int> **Symbolic,
    klu_common<Entry, Int> *Common
) ;

/* -------------------------------------------------------------------------- */
/* klu_free_numeric: destroys the Numeric object */
/* -------------------------------------------------------------------------- */

/* Note that klu_free_numeric and klu_z_free_numeric are identical; each can
 * free both kinds of Numeric objects (real and complex) */

template <typename Entry, typename Int>
Int klu_free_numeric
(
    klu_numeric<Entry, Int> **Numeric,
    klu_common<Entry, Int> *Common
) ;

/* -------------------------------------------------------------------------- */
/* klu_sort: sorts the columns of the LU factorization */
/* -------------------------------------------------------------------------- */

/* this is not needed except for the MATLAB interface */

template <typename Entry, typename Int>
Int klu_sort
(
    /* inputs, not modified */
    klu_symbolic<Entry, Int> *Symbolic,
    /* input/output */
    klu_numeric<Entry, Int> *Numeric,
    klu_common<Entry, Int> *Common
) ;

/* -------------------------------------------------------------------------- */
/* klu_flops: determines # of flops performed in numeric factorzation */
/* -------------------------------------------------------------------------- */

template <typename Entry, typename Int>
Int klu_flops
(
    /* inputs, not modified */
    klu_symbolic<Entry, Int> *Symbolic,
    klu_numeric<Entry, Int> *Numeric,
    /* input/output */
    klu_common<Entry, Int> *Common
) ;

/* -------------------------------------------------------------------------- */
/* klu_rgrowth : compute the reciprocal pivot growth */
/* -------------------------------------------------------------------------- */

/* Pivot growth is computed after the input matrix is permuted, scaled, and
 * off-diagonal entries pruned.  This is because the LU factorization of each
 * block takes as input the scaled diagonal blocks of the BTF form.  The
 * reciprocal pivot growth in column j of an LU factorization of a matrix C
 * is the largest entry in C divided by the largest entry in U; then the overall
 * reciprocal pivot growth is the smallest such value for all columns j.  Note
 * that the off-diagonal entries are not scaled, since they do not take part in
 * the LU factorization of the diagonal blocks.
 *
 * In MATLAB notation:
 *
 * rgrowth = min (max (abs ((R \ A(p,q)) - F)) ./ max (abs (U))) */

template <typename Entry, typename Int>
Int klu_rgrowth
(
    Int Ap [ ],
    Int Ai [ ],
    Entry Ax [ ],
    klu_symbolic<Entry, Int> *Symbolic,
    klu_numeric<Entry, Int> *Numeric,
    klu_common<Entry, Int> *Common  /* Common->rgrowth = reciprocal pivot growth */
) ;

/* -------------------------------------------------------------------------- */
/* klu_condest */
/* -------------------------------------------------------------------------- */

/* Computes a reasonably accurate estimate of the 1-norm condition number, using
 * Hager's method, as modified by Higham and Tisseur (same method as used in
 * MATLAB's condest */

template <typename Entry, typename Int>
Int klu_condest
(
    Int Ap [ ],             /* size n+1, column pointers, not modified */
    Entry Ax [ ],           /* size nz = Ap[n], numerical values, not modified*/
    klu_symbolic<Entry, Int> *Symbolic, /* symbolic analysis, not modified */
    klu_numeric<Entry, Int> *Numeric,   /* numeric factorization, not modified */
    klu_common<Entry, Int> *Common      /* result returned in Common->condest */
) ;

/* -------------------------------------------------------------------------- */
/* klu_rcond: compute min(abs(diag(U))) / max(abs(diag(U))) */
/* -------------------------------------------------------------------------- */

template <typename Entry, typename Int>
Int klu_rcond
(
    klu_symbolic<Entry, Int> *Symbolic,         /* input, not modified */
    klu_numeric<Entry, Int> *Numeric,           /* input, not modified */
    klu_common<Entry, Int> *Common              /* result in Common->rcond */
) ;

/* -------------------------------------------------------------------------- */
/* klu_scale */
/* -------------------------------------------------------------------------- */

template <typename Entry, typename Int>
Int klu_scale           /* return TRUE if successful, FALSE otherwise */
(
    /* inputs, not modified */
    Int scale,          /* <0: none, no error check; 0: none, 1: sum, 2: max */
    Int n,
    Int Ap [ ],         /* size n+1, column pointers */
    Int Ai [ ],         /* size nz, row indices */
    Entry Ax [ ],
    /* outputs, not defined on input */
    double Rs [ ],
    /* workspace, not defined on input or output */
    Int W [ ],          /* size n, can be NULL */
    klu_common<Entry, Int> *Common
) ;

/* -------------------------------------------------------------------------- */
/* klu_extract  */
/* -------------------------------------------------------------------------- */

template <typename Entry, typename Int>
Int klu_extract     /* returns TRUE if successful, FALSE otherwise */
(
    /* inputs: */
    klu_numeric<Entry, Int> *Numeric,
    klu_symbolic<Entry, Int> *Symbolic,

    /* outputs, either allocated on input, or ignored otherwise */

    /* L */
    Int *Lp,        /* size n+1 */
    Int *Li,        /* size Numeric->lnz */
    Entry *Lx,     /* size Numeric->lnz */

    /* U */
    Int *Up,        /* size n+1 */
    Int *Ui,        /* size Numeric->unz */
    Entry *Ux,     /* size Numeric->unz */

    /* F */
    Int *Fp,        /* size n+1 */
    Int *Fi,        /* size Numeric->nzoff */
    Entry *Fx,     /* size Numeric->nzoff */

    /* P, row permutation */
    Int *P,         /* size n */

    /* Q, column permutation */
    Int *Q,         /* size n */

    /* Rs, scale factors */
    Entry *Rs,     /* size n */

    /* R, block boundaries */
    Int *R,         /* size Symbolic->nblocks+1 (nblocks is at most n) */

    klu_common<Entry, Int> *Common
) ;


/* -------------------------------------------------------------------------- */
/* KLU memory management routines */
/* -------------------------------------------------------------------------- */

template <typename Entry, typename Int>
void *klu_malloc        /* returns pointer to the newly malloc'd block */
(
    /* ---- input ---- */
    size_t n,           /* number of items */
    size_t size,        /* size of each item */
    /* --------------- */
    klu_common<Entry, Int> *Common
) ;

template <typename Entry, typename Int>
void *klu_free          /* always returns NULL */
(
    /* ---- in/out --- */
    void *p,            /* block of memory to free */
    size_t n,           /* number of items */
    size_t size,        /* size of each item */
    /* --------------- */
    klu_common<Entry, Int> *Common
) ;

template <typename Entry, typename Int>
void *klu_realloc       /* returns pointer to reallocated block */
(
    /* ---- input ---- */
    size_t nnew,        /* requested # of items in reallocated block */
    size_t nold,        /* current size of block, in # of items */
    size_t size,        /* size of each item */
    /* ---- in/out --- */
    void *p,            /* block of memory to realloc */
    /* --------------- */
    klu_common<Entry, Int> *Common
) ;

/* ========================================================================== */
/* === KLU version ========================================================== */
/* ========================================================================== */

/* All versions of KLU include these definitions.
 * As an example, to test if the version you are using is 1.2 or later:
 *
 *      if (KLU_VERSION >= KLU_VERSION_CODE (1,2)) ...
 *
 * This also works during compile-time:
 *
 *      #if (KLU >= KLU_VERSION_CODE (1,2))
 *          printf ("This is version 1.2 or later\n") ;
 *      #else
 *          printf ("This is an early version\n") ;
 *      #endif
 */

#define KLU_DATE "Mar 24, 2009"
#define KLU_VERSION_CODE(main,sub) ((main) * 1000 + (sub))
#define KLU_MAIN_VERSION 1
#define KLU_SUB_VERSION 1
#define KLU_SUBSUB_VERSION 0
#define KLU_VERSION KLU_VERSION_CODE(KLU_MAIN_VERSION,KLU_SUB_VERSION)

#endif