This file is indexed.

/usr/include/trilinos/klu2_kernel.hpp is in libtrilinos-amesos2-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
/* ========================================================================== */
/* === KLU_kernel =========================================================== */
/* ========================================================================== */
// @HEADER
// ***********************************************************************
//
//                   KLU2: A Direct Linear Solver package
//                    Copyright 2011 Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, with Sandia Corporation, the 
// U.S. Government retains certain rights in this software.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
// 
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
// USA
// Questions? Contact Mike A. Heroux (maherou@sandia.gov)
//
// KLU2 is derived work from KLU, licensed under LGPL, and copyrighted by
// University of Florida. The Authors of KLU are Timothy A. Davis and
// Eka Palamadai. See Doc/KLU_README.txt for the licensing and copyright
// information for KLU.
//
// ***********************************************************************
// @HEADER

/* Sparse left-looking LU factorization, with partial pivoting.  Based on
 * Gilbert & Peierl's method, with a non-recursive DFS and with Eisenstat &
 * Liu's symmetric pruning.  No user-callable routines are in this file.
 */

#ifndef KLU2_KERNEL_HPP
#define KLU2_KERNEL_HPP

#include "klu2_internal.h"
#include "klu2_memory.hpp"

/* ========================================================================== */
/* === dfs ================================================================== */
/* ========================================================================== */

/* Does a depth-first-search, starting at node j. */

template <typename Int>
static Int dfs
(
    /* input, not modified on output: */
    Int j,              /* node at which to start the DFS */
    Int k,              /* mark value, for the Flag array */
    Int Pinv [ ],       /* Pinv [i] = k if row i is kth pivot row, or EMPTY if
                         * row i is not yet pivotal.  */
    Int Llen [ ],       /* size n, Llen [k] = # nonzeros in column k of L */
    Int Lip [ ],        /* size n, Lip [k] is position in LU of column k of L */

    /* workspace, not defined on input or output */
    Int Stack [ ],      /* size n */

    /* input/output: */
    Int Flag [ ],       /* Flag [i] == k means i is marked */
    Int Lpend [ ],      /* for symmetric pruning */
    Int top,            /* top of stack on input*/
    Unit LU [],
    Int *Lik,           /* Li row index array of the kth column */
    Int *plength,

    /* other, not defined on input or output */
    Int Ap_pos [ ]      /* keeps track of position in adj list during DFS */
)
{
    Int i, pos, jnew, head, l_length ;
    Int *Li ;

    l_length = *plength ;

    head = 0 ;
    Stack [0] = j ;
    ASSERT (Flag [j] != k) ;

    while (head >= 0)
    {
        j = Stack [head] ;
        jnew = Pinv [j] ;
        ASSERT (jnew >= 0 && jnew < k) ;        /* j is pivotal */

        if (Flag [j] != k)          /* a node is not yet visited */
        {
            /* first time that j has been visited */
            Flag [j] = k ;
            PRINTF (("[ start dfs at %d : new %d\n", j, jnew)) ;
            /* set Ap_pos [head] to one past the last entry in col j to scan */
            Ap_pos [head] =
                (Lpend [jnew] == EMPTY) ?  Llen [jnew] : Lpend [jnew] ;
        }

        /* add the adjacent nodes to the recursive stack by iterating through
         * until finding another non-visited pivotal node */
        Li = (Int *) (LU + Lip [jnew]) ;
        for (pos = --Ap_pos [head] ; pos >= 0 ; --pos)
        {
            i = Li [pos] ;
            if (Flag [i] != k)
            {
                /* node i is not yet visited */
                if (Pinv [i] >= 0)
                {
                    /* keep track of where we left off in the scan of the
                     * adjacency list of node j so we can restart j where we
                     * left off. */
                    Ap_pos [head] = pos ;

                    /* node i is pivotal; push it onto the recursive stack
                     * and immediately break so we can recurse on node i. */
                    Stack [++head] = i ;
                    break ;
                }
                else
                {
                    /* node i is not pivotal (no outgoing edges). */
                    /* Flag as visited and store directly into L,
                     * and continue with current node j. */
                    Flag [i] = k ;
                    Lik [l_length] = i ;
                    l_length++ ;
                }
            }
        }

        if (pos == -1)
        {
            /* if all adjacent nodes of j are already visited, pop j from
             * recursive stack and push j onto output stack */
            head-- ;
            Stack[--top] = j ;
            PRINTF (("  end   dfs at %d ] head : %d\n", j, head)) ;
        }
    }

    *plength = l_length ;
    return (top) ;
}


/* ========================================================================== */
/* === lsolve_symbolic ====================================================== */
/* ========================================================================== */

/* Finds the pattern of x, for the solution of Lx=b */

template <typename Int>
static Int lsolve_symbolic
(
    /* input, not modified on output: */
    Int n,              /* L is n-by-n, where n >= 0 */
    Int k,              /* also used as the mark value, for the Flag array */
    Int Ap [ ],
    Int Ai [ ],
    Int Q [ ],
    Int Pinv [ ],       /* Pinv [i] = k if i is kth pivot row, or EMPTY if row i
                         * is not yet pivotal.  */

    /* workspace, not defined on input or output */
    Int Stack [ ],      /* size n */

    /* workspace, defined on input and output */
    Int Flag [ ],       /* size n.  Initially, all of Flag [0..n-1] < k.  After
                         * lsolve_symbolic is done, Flag [i] == k if i is in
                         * the pattern of the output, and Flag [0..n-1] <= k. */

    /* other */
    Int Lpend [ ],      /* for symmetric pruning */
    Int Ap_pos [ ],     /* workspace used in dfs */

    Unit LU [ ],        /* LU factors (pattern and values) */
    Int lup,            /* pointer to free space in LU */
    Int Llen [ ],       /* size n, Llen [k] = # nonzeros in column k of L */
    Int Lip [ ],        /* size n, Lip [k] is position in LU of column k of L */

    /* ---- the following are only used in the BTF case --- */

    Int k1,             /* the block of A is from k1 to k2-1 */
    Int PSinv [ ]       /* inverse of P from symbolic factorization */
)
{
    Int *Lik ;
    Int i, p, pend, oldcol, kglobal, top, l_length ;

    top = n ;
    l_length = 0 ;
    Lik = (Int *) (LU + lup);

    /* ---------------------------------------------------------------------- */
    /* BTF factorization of A (k1:k2-1, k1:k2-1) */
    /* ---------------------------------------------------------------------- */

    kglobal = k + k1 ;  /* column k of the block is col kglobal of A */
    oldcol = Q [kglobal] ;      /* Q must be present for BTF case */
    pend = Ap [oldcol+1] ;
    for (p = Ap [oldcol] ; p < pend ; p++)
    {
        i = PSinv [Ai [p]] - k1 ;
        if (i < 0) continue ;   /* skip entry outside the block */

        /* (i,k) is an entry in the block.  start a DFS at node i */
        PRINTF (("\n ===== DFS at node %d in b, inew: %d\n", i, Pinv [i])) ;
        if (Flag [i] != k)
        {
            if (Pinv [i] >= 0)
            {
                top = dfs (i, k, Pinv, Llen, Lip, Stack, Flag,
                           Lpend, top, LU, Lik, &l_length, Ap_pos) ;
            }
            else
            {
                /* i is not pivotal, and not flagged. Flag and put in L */
                Flag [i] = k ;
                Lik [l_length] = i ;
                l_length++;
            }
        }
    }

    /* If Llen [k] is zero, the matrix is structurally singular */
    Llen [k] = l_length ;
    return (top) ;
}


/* ========================================================================== */
/* === construct_column ===================================================== */
/* ========================================================================== */

/* Construct the kth column of A, and the off-diagonal part, if requested.
 * Scatter the numerical values into the workspace X, and construct the
 * corresponding column of the off-diagonal matrix. */

template <typename Entry, typename Int>
static void construct_column
(
    /* inputs, not modified on output */
    Int k,          /* the column of A (or the column of the block) to get */
    Int Ap [ ],
    Int Ai [ ],
    Entry Ax [ ],
    Int Q [ ],      /* column pre-ordering */

    /* zero on input, modified on output */
    Entry X [ ],

    /* ---- the following are only used in the BTF case --- */

    /* inputs, not modified on output */
    Int k1,         /* the block of A is from k1 to k2-1 */
    Int PSinv [ ],  /* inverse of P from symbolic factorization */
    double Rs [ ],  /* scale factors for A */
    Int scale,      /* 0: no scaling, nonzero: scale the rows with Rs */

    /* inputs, modified on output */
    Int Offp [ ],   /* off-diagonal matrix (modified by this routine) */
    Int Offi [ ],
    Entry Offx [ ]
)
{
    Entry aik ;
    Int i, p, pend, oldcol, kglobal, poff, oldrow ;

    /* ---------------------------------------------------------------------- */
    /* Scale and scatter the column into X. */
    /* ---------------------------------------------------------------------- */

    kglobal = k + k1 ;          /* column k of the block is col kglobal of A */
    poff = Offp [kglobal] ;     /* start of off-diagonal column */
    oldcol = Q [kglobal] ;
    pend = Ap [oldcol+1] ;

    if (scale <= 0)
    {
        /* no scaling */
        for (p = Ap [oldcol] ; p < pend ; p++)
        {
            oldrow = Ai [p] ;
            i = PSinv [oldrow] - k1 ;
            aik = Ax [p] ;
            if (i < 0)
            {
                /* this is an entry in the off-diagonal part */
                Offi [poff] = oldrow ;
                Offx [poff] = aik ;
                poff++ ;
            }
            else
            {
                /* (i,k) is an entry in the block.  scatter into X */
                X [i] = aik ;
            }
        }
    }
    else
    {
        /* row scaling */
        for (p = Ap [oldcol] ; p < pend ; p++)
        {
            oldrow = Ai [p] ;
            i = PSinv [oldrow] - k1 ;
            aik = Ax [p] ;
            SCALE_DIV (aik, Rs [oldrow]) ;
            if (i < 0)
            {
                /* this is an entry in the off-diagonal part */
                Offi [poff] = oldrow ;
                Offx [poff] = aik ;
                poff++ ;
            }
            else
            {
                /* (i,k) is an entry in the block.  scatter into X */
                X [i] = aik ;
            }
        }
    }

    Offp [kglobal+1] = poff ;   /* start of the next col of off-diag part */
}


/* ========================================================================== */
/* === lsolve_numeric ======================================================= */
/* ========================================================================== */

/* Computes the numerical values of x, for the solution of Lx=b.  Note that x
 * may include explicit zeros if numerical cancelation occurs.  L is assumed
 * to be unit-diagonal, with possibly unsorted columns (but the first entry in
 * the column must always be the diagonal entry). */

template <typename Entry, typename Int>
static void lsolve_numeric
(
    /* input, not modified on output: */
    Int Pinv [ ],       /* Pinv [i] = k if i is kth pivot row, or EMPTY if row i
                         * is not yet pivotal.  */
    Unit *LU,           /* LU factors (pattern and values) */
    Int Stack [ ],      /* stack for dfs */
    Int Lip [ ],        /* size n, Lip [k] is position in LU of column k of L */
    Int top,            /* top of stack on input */
    Int n,              /* A is n-by-n */
    Int Llen [ ],       /* size n, Llen [k] = # nonzeros in column k of L */

    /* output, must be zero on input: */
    Entry X [ ] /* size n, initially zero.  On output,
                 * X [Ui [up1..up-1]] and X [Li [lp1..lp-1]]
                 * contains the solution. */

)
{
    Entry xj ;
    Entry *Lx ;
    Int *Li ;
    Int p, s, j, jnew, len ;

    /* solve Lx=b */
    for (s = top ; s < n ; s++)
    {
        /* forward solve with column j of L */
        j = Stack [s] ;
        jnew = Pinv [j] ;
        ASSERT (jnew >= 0) ;
        xj = X [j] ;
        GET_POINTER (LU, Lip, Llen, Li, Lx, jnew, len) ;
        ASSERT (Lip [jnew] <= Lip [jnew+1]) ;
        for (p = 0 ; p < len ; p++)
        {
            /*X [Li [p]] -= Lx [p] * xj ; */
            MULT_SUB (X [Li [p]], Lx [p], xj) ;
        }
    }
}


/* ========================================================================== */
/* === lpivot =============================================================== */
/* ========================================================================== */

/* Find a pivot via partial pivoting, and scale the column of L. */

template <typename Entry, typename Int>
static Int lpivot
(
    Int diagrow,
    Int *p_pivrow,
    Entry *p_pivot,
    double *p_abs_pivot,
    double tol,
    Entry X [ ],
    Unit *LU,           /* LU factors (pattern and values) */
    Int Lip [ ],
    Int Llen [ ],
    Int k,
    Int n,

    Int Pinv [ ],       /* Pinv [i] = k if row i is kth pivot row, or EMPTY if
                         * row i is not yet pivotal.  */

    Int *p_firstrow,
    KLU_common<Entry, Int> *Common
)
{
    Entry x, pivot, *Lx ;
    double abs_pivot, xabs ;
    Int p, i, ppivrow, pdiag, pivrow, *Li, last_row_index, firstrow, len ;

    pivrow = EMPTY ;
    if (Llen [k] == 0)
    {
        /* matrix is structurally singular */
        if (Common->halt_if_singular)
        {
            return (FALSE) ;
        }
        for (firstrow = *p_firstrow ; firstrow < n ; firstrow++)
        {
            PRINTF (("check %d\n", firstrow)) ;
            if (Pinv [firstrow] < 0)
            {
                /* found the lowest-numbered non-pivotal row.  Pick it. */
                pivrow = firstrow ;
                PRINTF (("Got pivotal row: %d\n", pivrow)) ;
                break ;
            }
        }
        ASSERT (pivrow >= 0 && pivrow < n) ;
        CLEAR (pivot) ;
        *p_pivrow = pivrow ;
        *p_pivot = pivot ;
        *p_abs_pivot = 0 ;
        *p_firstrow = firstrow ;
        return (FALSE) ;
    }

    pdiag = EMPTY ;
    ppivrow = EMPTY ;
    abs_pivot = EMPTY ;
    i = Llen [k] - 1 ;
    GET_POINTER (LU, Lip, Llen, Li, Lx, k, len) ;
    last_row_index = Li [i] ;

    /* decrement the length by 1 */
    Llen [k] = i ;
    GET_POINTER (LU, Lip, Llen, Li, Lx, k, len) ;

    /* look in Li [0 ..Llen [k] - 1 ] for a pivot row */
    for (p = 0 ; p < len ; p++)
    {
        /* gather the entry from X and store in L */
        i = Li [p] ;
        x = X [i] ;
        CLEAR (X [i]) ;

        Lx [p] = x ;
        /* xabs = ABS (x) ; */
        KLU2_ABS (xabs, x) ;

        /* find the diagonal */
        if (i == diagrow)
        {
            pdiag = p ;
        }

        /* find the partial-pivoting choice */
        if (xabs > abs_pivot)
        {
            abs_pivot = xabs ;
            ppivrow = p ;
        }
    }

    /* xabs = ABS (X [last_row_index]) ;*/
    KLU2_ABS (xabs, X [last_row_index]) ;
    if (xabs > abs_pivot)
    {
        abs_pivot = xabs ;
        ppivrow = EMPTY ;
    }

    /* compare the diagonal with the largest entry */
    if (last_row_index == diagrow)
    {
        if (xabs >= tol * abs_pivot)
        {
            abs_pivot = xabs ;
            ppivrow = EMPTY ;
        }
    }
    else if (pdiag != EMPTY)
    {
        /* xabs = ABS (Lx [pdiag]) ;*/
        KLU2_ABS (xabs, Lx [pdiag]) ;
        if (xabs >= tol * abs_pivot)
        {
            /* the diagonal is large enough */
            abs_pivot = xabs ;
            ppivrow = pdiag ;
        }
    }

    if (ppivrow != EMPTY)
    {
        pivrow = Li [ppivrow] ;
        pivot  = Lx [ppivrow] ;
        /* overwrite the ppivrow values with last index values */
        Li [ppivrow] = last_row_index ;
        Lx [ppivrow] = X [last_row_index] ;
    }
    else
    {
        pivrow = last_row_index ;
        pivot = X [last_row_index] ;
    }
    CLEAR (X [last_row_index]) ;

    *p_pivrow = pivrow ;
    *p_pivot = pivot ;
    *p_abs_pivot = abs_pivot ;
    ASSERT (pivrow >= 0 && pivrow < n) ;

    if (IS_ZERO (pivot) && Common->halt_if_singular)
    {
        /* numerically singular case */
        return (FALSE) ;
    }

    /* divide L by the pivot value */
    for (p = 0 ; p < Llen [k] ; p++)
    {
        /* Lx [p] /= pivot ; */
        DIV (Lx [p], Lx [p], pivot) ;
    }

    return (TRUE) ;
}


/* ========================================================================== */
/* === prune ================================================================ */
/* ========================================================================== */

/* Prune the columns of L to reduce work in subsequent depth-first searches */
template <typename Entry, typename Int>
static void prune
(
    /* input/output: */
    Int Lpend [ ],      /* Lpend [j] marks symmetric pruning point for L(:,j) */

    /* input: */
    Int Pinv [ ],       /* Pinv [i] = k if row i is kth pivot row, or EMPTY if
                         * row i is not yet pivotal.  */
    Int k,              /* prune using column k of U */
    Int pivrow,         /* current pivot row */

    /* input/output: */
    Unit *LU,           /* LU factors (pattern and values) */

    /* input */
    Int Uip [ ],        /* size n, column pointers for U */
    Int Lip [ ],        /* size n, column pointers for L */
    Int Ulen [ ],       /* size n, column length of U */
    Int Llen [ ]        /* size n, column length of L */
)
{
    Entry x ;
    Entry *Lx, *Ux ;
    Int *Li, *Ui ;
    Int p, i, j, p2, phead, ptail, llen, ulen ;

    /* check to see if any column of L can be pruned */
    GET_POINTER (LU, Uip, Ulen, Ui, Ux, k, ulen) ;

    // Try not to warn about Ux never being used
    (void) Ux;
    for (p = 0 ; p < ulen ; p++)
    {
        j = Ui [p] ;
        ASSERT (j < k) ;
        PRINTF (("%d is pruned: %d. Lpend[j] %d Lip[j+1] %d\n",
            j, Lpend [j] != EMPTY, Lpend [j], Lip [j+1])) ;
        if (Lpend [j] == EMPTY)
        {
            /* scan column j of L for the pivot row */
            GET_POINTER (LU, Lip, Llen, Li, Lx, j, llen) ;
            for (p2 = 0 ; p2 < llen ; p2++)
            {
                if (pivrow == Li [p2])
                {
                    /* found it!  This column can be pruned */
#ifndef NDEBUG
                    PRINTF (("==== PRUNE: col j %d of L\n", j)) ;
                    {
                        Int p3 ;
                        for (p3 = 0 ; p3 < Llen [j] ; p3++)
                        {
                            PRINTF (("before: %i  pivotal: %d\n", Li [p3],
                                        Pinv [Li [p3]] >= 0)) ;
                        }
                    }
#endif

                    /* partition column j of L.  The unit diagonal of L
                     * is not stored in the column of L. */
                    phead = 0 ;
                    ptail = Llen [j] ;
                    while (phead < ptail)
                    {
                        i = Li [phead] ;
                        if (Pinv [i] >= 0)
                        {
                            /* leave at the head */
                            phead++ ;
                        }
                        else
                        {
                            /* swap with the tail */
                            ptail-- ;
                            Li [phead] = Li [ptail] ;
                            Li [ptail] = i ;
                            x = Lx [phead] ;
                            Lx [phead] = Lx [ptail] ;
                            Lx [ptail] = x ;
                        }
                    }

                    /* set Lpend to one past the last entry in the
                     * first part of the column of L.  Entries in
                     * Li [0 ... Lpend [j]-1] are the only part of
                     * column j of L that needs to be scanned in the DFS.
                     * Lpend [j] was EMPTY; setting it >= 0 also flags
                     * column j as pruned. */
                    Lpend [j] = ptail ;

#ifndef NDEBUG
                    {
                        Int p3 ;
                        for (p3 = 0 ; p3 < Llen [j] ; p3++)
                        {
                            if (p3 == Lpend [j]) PRINTF (("----\n")) ;
                            PRINTF (("after: %i  pivotal: %d\n", Li [p3],
                                        Pinv [Li [p3]] >= 0)) ;
                        }
                    }
#endif

                    break ;
                }
            }
        }
    }
}


/* ========================================================================== */
/* === KLU_kernel =========================================================== */
/* ========================================================================== */

template <typename Entry, typename Int>
size_t KLU_kernel   /* final size of LU on output */
(
    /* input, not modified */
    Int n,          /* A is n-by-n */
    Int Ap [ ],     /* size n+1, column pointers for A */
    Int Ai [ ],     /* size nz = Ap [n], row indices for A */
    Entry Ax [ ],   /* size nz, values of A */
    Int Q [ ],      /* size n, optional input permutation */
    size_t lusize,  /* initial size of LU on input */

    /* output, not defined on input */
    Int Pinv [ ],   /* size n, inverse row permutation, where Pinv [i] = k if
                     * row i is the kth pivot row */
    Int P [ ],      /* size n, row permutation, where P [k] = i if row i is the
                     * kth pivot row. */
    Unit **p_LU,        /* LU array, size lusize on input */
    Entry Udiag [ ],    /* size n, diagonal of U */
    Int Llen [ ],       /* size n, column length of L */
    Int Ulen [ ],       /* size n, column length of U */
    Int Lip [ ],        /* size n, column pointers for L */
    Int Uip [ ],        /* size n, column pointers for U */
    Int *lnz,           /* size of L*/
    Int *unz,           /* size of U*/
    /* workspace, not defined on input */
    Entry X [ ],    /* size n, undefined on input, zero on output */

    /* workspace, not defined on input or output */
    Int Stack [ ],  /* size n */
    Int Flag [ ],   /* size n */
    Int Ap_pos [ ],     /* size n */

    /* other workspace: */
    Int Lpend [ ],                  /* size n workspace, for pruning only */

    /* inputs, not modified on output */
    Int k1,             /* the block of A is from k1 to k2-1 */
    Int PSinv [ ],      /* inverse of P from symbolic factorization */
    double Rs [ ],      /* scale factors for A */

    /* inputs, modified on output */
    Int Offp [ ],   /* off-diagonal matrix (modified by this routine) */
    Int Offi [ ],
    Entry Offx [ ],
    /* --------------- */
    KLU_common<Entry, Int> *Common
)
{
    Entry pivot ;
    double abs_pivot, xsize, nunits, tol, memgrow ;
    Entry *Ux ;
    Int *Li, *Ui ;
    Unit *LU ;          /* LU factors (pattern and values) */
    Int k, p, i, j, pivrow = 0, kbar, diagrow, firstrow, lup, top, scale, len ;
    size_t newlusize ;

#ifndef NDEBUG
    Entry *Lx ;
#endif

    ASSERT (Common != NULL) ;
    scale = Common->scale ;
    tol = Common->tol ;
    memgrow = Common->memgrow ;
    *lnz = 0 ;
    *unz = 0 ;
    CLEAR (pivot) ;

    /* ---------------------------------------------------------------------- */
    /* get initial Li, Lx, Ui, and Ux */
    /* ---------------------------------------------------------------------- */

    PRINTF (("input: lusize %d \n", lusize)) ;
    ASSERT (lusize > 0) ;
    LU = *p_LU ;

    /* ---------------------------------------------------------------------- */
    /* initializations */
    /* ---------------------------------------------------------------------- */

    firstrow = 0 ;
    lup = 0 ;

    for (k = 0 ; k < n ; k++)
    {
        /* X [k] = 0 ; */
        CLEAR (X [k]) ;
        Flag [k] = EMPTY ;
        Lpend [k] = EMPTY ;     /* flag k as not pruned */
    }

    /* ---------------------------------------------------------------------- */
    /* mark all rows as non-pivotal and determine initial diagonal mapping */
    /* ---------------------------------------------------------------------- */

    /* PSinv does the symmetric permutation, so don't do it here */
    for (k = 0 ; k < n ; k++)
    {
        P [k] = k ;
        Pinv [k] = FLIP (k) ;   /* mark all rows as non-pivotal */
    }
    /* initialize the construction of the off-diagonal matrix */
    Offp [0] = 0 ;

    /* P [k] = row means that UNFLIP (Pinv [row]) = k, and visa versa.
     * If row is pivotal, then Pinv [row] >= 0.  A row is initially "flipped"
     * (Pinv [k] < EMPTY), and then marked "unflipped" when it becomes
     * pivotal. */

#ifndef NDEBUG
    for (k = 0 ; k < n ; k++)
    {
        PRINTF (("Initial P [%d] = %d\n", k, P [k])) ;
    }
#endif

    /* ---------------------------------------------------------------------- */
    /* factorize */
    /* ---------------------------------------------------------------------- */

    for (k = 0 ; k < n ; k++)
    {

        PRINTF (("\n\n==================================== k: %d\n", k)) ;

        /* ------------------------------------------------------------------ */
        /* determine if LU factors have grown too big */
        /* ------------------------------------------------------------------ */

        /* (n - k) entries for L and k entries for U */
        nunits = DUNITS (Int, n - k) + DUNITS (Int, k) +
                 DUNITS (Entry, n - k) + DUNITS (Entry, k) ;

        /* LU can grow by at most 'nunits' entries if the column is dense */
        PRINTF (("lup %d lusize %g lup+nunits: %g\n", lup, (double) lusize,
            lup+nunits));
        xsize = ((double) lup) + nunits ;
        if (xsize > (double) lusize)
        {
            /* check here how much to grow */
            xsize = (memgrow * ((double) lusize) + 4*n + 1) ;
            if (INT_OVERFLOW (xsize))
            {
                PRINTF (("Matrix is too large (Int overflow)\n")) ;
                Common->status = KLU_TOO_LARGE ;
                return (lusize) ;
            }
            newlusize = (size_t) (memgrow * lusize + 2*n + 1) ;
            /* Future work: retry mechanism in case of malloc failure */
            LU = (Unit *) KLU_realloc (newlusize, lusize, sizeof (Unit), LU, Common) ;
            Common->nrealloc++ ;
            *p_LU = LU ;
            if (Common->status == KLU_OUT_OF_MEMORY)
            {
                PRINTF (("Matrix is too large (LU)\n")) ;
                return (lusize) ;
            }
            lusize = newlusize ;
            PRINTF (("inc LU to %d done\n", lusize)) ;
        }

        /* ------------------------------------------------------------------ */
        /* start the kth column of L and U */
        /* ------------------------------------------------------------------ */

        Lip [k] = lup ;

        /* ------------------------------------------------------------------ */
        /* compute the nonzero pattern of the kth column of L and U */
        /* ------------------------------------------------------------------ */

#ifndef NDEBUG
        for (i = 0 ; i < n ; i++)
        {
            ASSERT (Flag [i] < k) ;
            /* ASSERT (X [i] == 0) ; */
            ASSERT (IS_ZERO (X [i])) ;
        }
#endif

        top = lsolve_symbolic (n, k, Ap, Ai, Q, Pinv, Stack, Flag,
                    Lpend, Ap_pos, LU, lup, Llen, Lip, k1, PSinv) ;

#ifndef NDEBUG
        PRINTF (("--- in U:\n")) ;
        for (p = top ; p < n ; p++)
        {
            PRINTF (("pattern of X for U: %d : %d pivot row: %d\n",
                p, Stack [p], Pinv [Stack [p]])) ;
            ASSERT (Flag [Stack [p]] == k) ;
        }
        PRINTF (("--- in L:\n")) ;
        Li = (Int *) (LU + Lip [k]);
        for (p = 0 ; p < Llen [k] ; p++)
        {
            PRINTF (("pattern of X in L: %d : %d pivot row: %d\n",
                p, Li [p], Pinv [Li [p]])) ;
            ASSERT (Flag [Li [p]] == k) ;
        }
        p = 0 ;
        for (i = 0 ; i < n ; i++)
        {
            ASSERT (Flag [i] <= k) ;
            if (Flag [i] == k) p++ ;
        }
#endif

        /* ------------------------------------------------------------------ */
        /* get the column of the matrix to factorize and scatter into X */
        /* ------------------------------------------------------------------ */

        construct_column <Entry> (k, Ap, Ai, Ax, Q, X,
            k1, PSinv, Rs, scale, Offp, Offi, Offx) ;

        /* ------------------------------------------------------------------ */
        /* compute the numerical values of the kth column (s = L \ A (:,k)) */
        /* ------------------------------------------------------------------ */

        lsolve_numeric <Entry> (Pinv, LU, Stack, Lip, top, n, Llen, X) ;

#ifndef NDEBUG
        for (p = top ; p < n ; p++)
        {
            PRINTF (("X for U %d : ",  Stack [p])) ;
            PRINT_ENTRY (X [Stack [p]]) ;
        }
        Li = (Int *) (LU + Lip [k]) ;
        for (p = 0 ; p < Llen [k] ; p++)
        {
            PRINTF (("X for L %d : ", Li [p])) ;
            PRINT_ENTRY (X [Li [p]]) ;
        }
#endif

        /* ------------------------------------------------------------------ */
        /* partial pivoting with diagonal preference */
        /* ------------------------------------------------------------------ */

        /* determine what the "diagonal" is */
        diagrow = P [k] ;   /* might already be pivotal */
        PRINTF (("k %d, diagrow = %d, UNFLIP (diagrow) = %d\n",
            k, diagrow, UNFLIP (diagrow))) ;

        /* find a pivot and scale the pivot column */
        if (!lpivot <Entry> (diagrow, &pivrow, &pivot, &abs_pivot, tol, X, LU, Lip,
                    Llen, k, n, Pinv, &firstrow, Common))
        {
            /* matrix is structurally or numerically singular */
            Common->status = KLU_SINGULAR ;
            if (Common->numerical_rank == EMPTY)
            {
                Common->numerical_rank = k+k1 ;
                Common->singular_col = Q [k+k1] ;
            }
            if (Common->halt_if_singular)
            {
                /* do not continue the factorization */
                return (lusize) ;
            }
        }

        /* we now have a valid pivot row, even if the column has NaN's or
         * has no entries on or below the diagonal at all. */
        PRINTF (("\nk %d : Pivot row %d : ", k, pivrow)) ;
        PRINT_ENTRY (pivot) ;
        ASSERT (pivrow >= 0 && pivrow < n) ;
        ASSERT (Pinv [pivrow] < 0) ;

        /* set the Uip pointer */
        Uip [k] = Lip [k] + UNITS (Int, Llen [k]) + UNITS (Entry, Llen [k]) ;

        /* move the lup pointer to the position where indices of U
         * should be stored */
        lup += UNITS (Int, Llen [k]) + UNITS (Entry, Llen [k]) ;

        Ulen [k] = n - top ;

        /* extract Stack [top..n-1] to Ui and the values to Ux and clear X */
        GET_POINTER (LU, Uip, Ulen, Ui, Ux, k, len) ;
        for (p = top, i = 0 ; p < n ; p++, i++)
        {
            j = Stack [p] ;
            Ui [i] = Pinv [j] ;
            Ux [i] = X [j] ;
            CLEAR (X [j]) ;
        }

        /* position the lu index at the starting point for next column */
        lup += UNITS (Int, Ulen [k]) + UNITS (Entry, Ulen [k]) ;

        /* U(k,k) = pivot */
        Udiag [k] = pivot ;

        /* ------------------------------------------------------------------ */
        /* log the pivot permutation */
        /* ------------------------------------------------------------------ */

        ASSERT (UNFLIP (Pinv [diagrow]) < n) ;
        ASSERT (P [UNFLIP (Pinv [diagrow])] == diagrow) ;

        if (pivrow != diagrow)
        {
            /* an off-diagonal pivot has been chosen */
            Common->noffdiag++ ;
            PRINTF ((">>>>>>>>>>>>>>>>> pivrow %d k %d off-diagonal\n",
                        pivrow, k)) ;
            if (Pinv [diagrow] < 0)
            {
                /* the former diagonal row index, diagrow, has not yet been
                 * chosen as a pivot row.  Log this diagrow as the "diagonal"
                 * entry in the column kbar for which the chosen pivot row,
                 * pivrow, was originally logged as the "diagonal" */
                kbar = FLIP (Pinv [pivrow]) ;
                P [kbar] = diagrow ;
                Pinv [diagrow] = FLIP (kbar) ;
            }
        }
        P [k] = pivrow ;
        Pinv [pivrow] = k ;

#ifndef NDEBUG
        for (i = 0 ; i < n ; i++) { ASSERT (IS_ZERO (X [i])) ;}
        GET_POINTER (LU, Uip, Ulen, Ui, Ux, k, len) ;
        for (p = 0 ; p < len ; p++)
        {
            PRINTF (("Column %d of U: %d : ", k, Ui [p])) ;
            PRINT_ENTRY (Ux [p]) ;
        }
        GET_POINTER (LU, Lip, Llen, Li, Lx, k, len) ;
        for (p = 0 ; p < len ; p++)
        {
            PRINTF (("Column %d of L: %d : ", k, Li [p])) ;
            PRINT_ENTRY (Lx [p]) ;
        }
#endif

        /* ------------------------------------------------------------------ */
        /* symmetric pruning */
        /* ------------------------------------------------------------------ */

        prune<Entry> (Lpend, Pinv, k, pivrow, LU, Uip, Lip, Ulen, Llen) ;

        *lnz += Llen [k] + 1 ; /* 1 added to lnz for diagonal */
        *unz += Ulen [k] + 1 ; /* 1 added to unz for diagonal */
    }

    /* ---------------------------------------------------------------------- */
    /* finalize column pointers for L and U, and put L in the pivotal order */
    /* ---------------------------------------------------------------------- */

    for (p = 0 ; p < n ; p++)
    {
        Li = (Int *) (LU + Lip [p]) ;
        for (i = 0 ; i < Llen [p] ; i++)
        {
            Li [i] = Pinv [Li [i]] ;
        }
    }

#ifndef NDEBUG
    for (i = 0 ; i < n ; i++)
    {
        PRINTF (("P [%d] = %d   Pinv [%d] = %d\n", i, P [i], i, Pinv [i])) ;
    }
    for (i = 0 ; i < n ; i++)
    {
        ASSERT (Pinv [i] >= 0 && Pinv [i] < n) ;
        ASSERT (P [i] >= 0 && P [i] < n) ;
        ASSERT (P [Pinv [i]] == i) ;
        ASSERT (IS_ZERO (X [i])) ;
    }
#endif

    /* ---------------------------------------------------------------------- */
    /* shrink the LU factors to just the required size */
    /* ---------------------------------------------------------------------- */

    newlusize = lup ;
    ASSERT ((size_t) newlusize <= lusize) ;

    /* this cannot fail, since the block is descreasing in size */
    LU = (Unit *) KLU_realloc (newlusize, lusize, sizeof (Unit), LU, Common) ;
    *p_LU = LU ;
    return (newlusize) ;
}

#endif