/usr/include/trilinos/klu2_scalartraits.h is in libtrilinos-amesos2-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 | // @HEADER
// ***********************************************************************
//
// KLU2: A Direct Linear Solver package
// Copyright 2011 Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, with Sandia Corporation, the
// U.S. Government retains certain rights in this software.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Mike A. Heroux (maherou@sandia.gov)
//
// KLU2 is derived work from KLU, licensed under LGPL, and copyrighted by
// University of Florida. The Authors of KLU are Timothy A. Davis and
// Eka Palamadai. See Doc/KLU_README.txt for the licensing and copyright
// information for KLU.
//
// ***********************************************************************
// @HEADER
#ifndef KLU2_SCALARTRAITS_H
#define KLU2_SCALARTRAITS_H
template <typename T>
struct KLU_ScalarTraits
{
typedef T magnitudeType ;
static inline double reciprocal (double c) {return 0;}
static inline double divide (double a, double b) {return 0.0;}
static inline double divideConjugate (double a, double b) {return 0.0;}
static inline magnitudeType approxABS (double a)
{
}
static inline magnitudeType abs (double a)
{
}
};
template <>
struct KLU_ScalarTraits<double>
{
typedef double magnitudeType ;
static inline double reciprocal (double c) { return 1.0/c ; }
static inline double divide (double a, double b) { return a/b ; }
static inline double divideConjugate (double a, double b) { return a/b ; }
static inline magnitudeType approxABS (double a)
{
return (SCALAR_ABS (a));
}
static inline magnitudeType abs (double a)
{
return (SCALAR_ABS (a));
}
};
template <>
struct KLU_ScalarTraits<float>
{
typedef float magnitudeType ;
static inline float reciprocal (float c) { return 1.0/c ; }
static inline float divide (float a, float b) { return a/b ; }
static inline float divideConjugate (float a, float b) { return a/b ; }
static inline magnitudeType approxABS (float a)
{
return (SCALAR_ABS (a));
}
static inline magnitudeType abs (float a)
{
return (SCALAR_ABS (a));
}
};
// mfh 13 Sep 2012: The Teuchos::ScalarTraits<std::complex<T> >
// specialization doesn't exist unless Teuchos was built with complex
// arithmetic support. To enable complex arithmetic support in
// Teuchos, set the CMake Boolean option Teuchos_ENABLE_COMPLEX to ON
// at configure time.
#ifdef HAVE_TEUCHOS_COMPLEX
template <typename T>
struct KLU_ScalarTraits<
std::complex<T>
>
{
typedef std::complex<T> ComplexT ;
typedef typename KLU_ScalarTraits<T>::magnitudeType magnitudeType ;
static inline ComplexT reciprocal (ComplexT c)
{
T r, den, cr, ci ;
ComplexT ret ;
cr = (Teuchos::ScalarTraits<ComplexT>::real(c)) ;
ci = (Teuchos::ScalarTraits<ComplexT>::imag(c)) ;
if (SCALAR_ABS (cr) >= SCALAR_ABS (ci))
{
r = ci / cr ;
den = cr + r * ci ;
ret = std::complex<T>(1.0 / den, -r / den) ;
}
else
{
r = cr / ci ;
den = r * cr + ci ;
ret = std::complex<T>(r / den, -1.0 / den) ;
}
return ret;
}
static inline ComplexT divide (ComplexT a, ComplexT b)
{
T r, den, ar, ai, br, bi ;
ComplexT ret;
br = (Teuchos::ScalarTraits<ComplexT>::real(b)) ;
bi = (Teuchos::ScalarTraits<ComplexT>::imag(b)) ;
ar = (Teuchos::ScalarTraits<ComplexT>::real(a)) ;
ai = (Teuchos::ScalarTraits<ComplexT>::imag(a)) ;
if (SCALAR_ABS (br) >= SCALAR_ABS (bi))
{
r = bi / br ;
den = br + r * bi ;
ret = std::complex<T>((ar + ai * r) / den, (ai - ar * r) / den) ;
}
else
{
r = br / bi ;
den = r * br + bi ;
ret = std::complex<T>((ar * r + ai) / den, (ai * r - ar) / den) ;
}
return ret;
}
static inline ComplexT divideConjugate (ComplexT a, ComplexT b)
{
T r, den, ar, ai, br, bi ;
ComplexT ret;
br = (Teuchos::ScalarTraits<ComplexT>::real(b)) ;
bi = (Teuchos::ScalarTraits<ComplexT>::imag(b)) ;
ar = (Teuchos::ScalarTraits<ComplexT>::real(a)) ;
ai = (Teuchos::ScalarTraits<ComplexT>::imag(a)) ;
if (SCALAR_ABS (br) >= SCALAR_ABS (bi))
{
r = (-bi) / br ;
den = br - r * bi ;
ret = std::complex<T>((ar + ai * r) / den, (ai - ar * r) / den) ;
}
else
{
r = br / (-bi) ;
den = r * br - bi;
ret = std::complex<T>((ar * r + ai) / den, (ai * r - ar) / den) ;
}
return ret;
}
static inline magnitudeType approxABS (ComplexT a)
{
return ( SCALAR_ABS (Teuchos::ScalarTraits<ComplexT>::real(a)) +
SCALAR_ABS (Teuchos::ScalarTraits<ComplexT>::imag(a)) ) ;
}
static inline magnitudeType abs (ComplexT a)
{
T r, ar, ai ;
magnitudeType s;
ar = SCALAR_ABS (Teuchos::ScalarTraits<ComplexT>::real(a)) ;
ai = SCALAR_ABS (Teuchos::ScalarTraits<ComplexT>::imag(a)) ;
if (ar >= ai)
{
if (ar + ai == ar)
{
(s) = ar ;
}
else
{
r = ai / ar ;
(s) = ar * sqrt (1.0 + r*r) ;
}
}
else
{
if (ai + ar == ai)
{
(s) = ai ;
}
else
{
r = ar / ai ;
(s) = ai * sqrt (1.0 + r*r) ;
}
}
return s;
}
};
#endif // HAVE_TEUCHOS_COMPLEX
#endif
|