This file is indexed.

/usr/include/trilinos/AnasaziEigenproblem.hpp is in libtrilinos-anasazi-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
// @HEADER
// ***********************************************************************
//
//                 Anasazi: Block Eigensolvers Package
//                 Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER

#ifndef ANASAZI_EIGENPROBLEM_H
#define ANASAZI_EIGENPROBLEM_H

/*! \file AnasaziEigenproblem.hpp
  \brief Abstract base class which defines the interface required by an eigensolver and
  status test class to compute solutions to an eigenproblem
*/

#include "AnasaziConfigDefs.hpp"
#include "AnasaziTypes.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"
#include "Teuchos_RCP.hpp"


/*! \class Anasazi::Eigenproblem
    \brief This class defines the interface required by an eigensolver and status
    test class to compute solutions to an eigenproblem.
*/

namespace Anasazi {
  
  template<class ScalarType, class MV, class OP>
  class Eigenproblem {

  public:

    //! @name Constructors/Destructor
    //@{ 
    
    //! Empty constructor 
    Eigenproblem() {};
    
    //! Destructor.
    virtual ~Eigenproblem() {};
    //@}
    
    //! @name Set Methods
    //@{ 
    
    /*! \brief Set the operator for which eigenvalues will be computed.  
     * 
     * \note This may be different from the \c A if a spectral transformation
     * is employed.  For example, this operator may apply the operation
     * \f$(A-\sigma I)^{-1}\f$ if you are looking for eigenvalues of \c A
     * around \f$\sigma\f$.  
     */
    virtual void setOperator( const Teuchos::RCP<const OP> &Op ) = 0;

    //! \brief Set the operator \c A of the eigenvalue problem \f$Ax=\lambda Mx\f$.
    virtual void setA( const Teuchos::RCP<const OP> &A ) = 0;

    //! \brief Set the operator \c M of the eigenvalue problem \f$Ax=\lambda Mx\f$.
    virtual void setM( const Teuchos::RCP<const OP> &M ) = 0;

    //! \brief Set the preconditioner for this eigenvalue problem \f$Ax=\lambda Mx\f$.
    virtual void setPrec( const Teuchos::RCP<const OP> &Prec ) = 0;

    /*! \brief Set the initial guess.  
     *
     * \note This multivector should have the same number of columns as the blocksize.
     */
    virtual void setInitVec( const Teuchos::RCP<MV> &InitVec ) = 0; 

    /*! \brief Set auxiliary vectors. 
     *
     * \note This multivector can have any number of columns, and most likely
     * will contain vectors that will be used by the eigensolver to
     * orthogonalize against.
     */
    virtual void setAuxVecs( const Teuchos::RCP<const MV> &AuxVecs ) = 0;

    //! The number of eigenvalues (NEV) that are requested.
    virtual void setNEV( int nev ) = 0;

    /*! \brief Specify the symmetry of the eigenproblem.
     *
     *  This knowledge may allow the solver to take advantage of the eigenproblems' symmetry.
     *  Some computational work may be avoided by setting this properly.
     */
    virtual void setHermitian( bool isSym ) = 0;

    /*! \brief Specify that this eigenproblem is fully defined.
     *
     * This routine serves multiple purpose:
     * <ul>
     * <li> sanity check that the eigenproblem has been fully and consistently defined
     * <li> opportunity for the eigenproblem to allocate internal storage for eigenvalues
     * and eigenvectors (to be used by eigensolvers and solver managers)
     * </ul>
     *
     * \note The user MUST call this routine before they send the eigenproblem to any solver or solver manager.
     *
     * \returns \c true signifies success, \c false signifies error.
     */
    virtual bool setProblem() = 0;

    /*! \brief Set the solution to the eigenproblem.
     *
     * This mechanism allows an Eigensolution struct to be associated with an Eigenproblem object.
     * setSolution() is usually called by a solver manager at the end of its SolverManager::solve() 
     * routine.
     */
    virtual void setSolution(const Eigensolution<ScalarType,MV> &sol) = 0;

    //@}
    
    //! @name Accessor Methods
    //@{ 

    //! Get a pointer to the operator for which eigenvalues will be computed.
    virtual Teuchos::RCP<const OP> getOperator() const = 0;

    //! Get a pointer to the operator \c A of the eigenproblem \f$AX=\lambda Mx\f$.
    virtual Teuchos::RCP<const OP> getA() const = 0;

    //! Get a pointer to the operator \c M of the eigenproblem \f$AX=\lambda Mx\f$.
    virtual Teuchos::RCP<const OP> getM() const = 0;

    //! Get a pointer to the preconditioner.
    virtual Teuchos::RCP<const OP> getPrec() const = 0;

    //! Get a pointer to the initial vector
    virtual Teuchos::RCP<const MV> getInitVec() const = 0;

    //! Get a pointer to the auxiliary vector
    virtual Teuchos::RCP<const MV> getAuxVecs() const = 0;

    //! Get the number of eigenvalues (NEV) that are required by this eigenproblem.
    virtual int getNEV() const = 0;

    //! Get the symmetry information for this eigenproblem.
    virtual bool isHermitian() const = 0;

    //! If the problem has been set, this method will return true.
    virtual bool isProblemSet() const = 0;

    /*! \brief Get the solution to the eigenproblem.
     *
     * There is no computation associated with this method. It only provides a 
     * mechanism for associating an Eigensolution with a Eigenproblem.
     */
    virtual const Eigensolution<ScalarType,MV> & getSolution() const = 0;

    //@}	
  };
   
} // end Anasazi namespace
#endif

// end AnasaziEigenproblem.hpp