/usr/include/trilinos/AnasaziGeneralizedDavidson.hpp is in libtrilinos-anasazi-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 | // @HEADER
// ***********************************************************************
//
// Anasazi: Block Eigensolvers Package
// Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
#ifndef ANASAZI_GENERALIZED_DAVIDSON_HPP
#define ANASAZI_GENERALIZED_DAVIDSON_HPP
/*! \file AnasaziGeneralizedDavidson.hpp
\brief Implementation of a block Generalized Davidson eigensolver.
\author Steven Hamilton
*/
#include "Teuchos_RCPDecl.hpp"
#include "Teuchos_ParameterList.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"
#include "Teuchos_SerialDenseVector.hpp"
#include "Teuchos_Array.hpp"
#include "Teuchos_BLAS.hpp"
#include "Teuchos_LAPACK.hpp"
#include "AnasaziConfigDefs.hpp"
#include "AnasaziTypes.hpp"
#include "AnasaziEigenproblem.hpp"
#include "AnasaziEigensolver.hpp"
#include "AnasaziOrthoManager.hpp"
#include "AnasaziOutputManager.hpp"
#include "AnasaziSortManager.hpp"
#include "AnasaziStatusTest.hpp"
using Teuchos::RCP;
namespace Anasazi {
/*!
* \brief Structure to contain pointers to GeneralizedDavidson state variables.
*/
template <class ScalarType, class MV>
struct GeneralizedDavidsonState {
/*! \brief The current subspace dimension. */
int curDim;
/*! \brief Orthonormal basis for search subspace. */
RCP<MV> V;
/*! \brief Image of V under A. */
RCP<MV> AV;
/*! \brief Image of V under B. */
RCP<MV> BV;
/*! \brief Projection of A onto V. */
RCP< Teuchos::SerialDenseMatrix<int,ScalarType> > VAV;
/*! \brief Projection of B onto V. */
RCP< Teuchos::SerialDenseMatrix<int,ScalarType> > VBV;
/*! \brief Left quasi upper triangular matrix from QZ decomposition of (VAV,VBV) */
RCP< Teuchos::SerialDenseMatrix<int,ScalarType> > S;
/*! \brief Right quasi upper triangular matrix from QZ decomposition of (VAV,VBV) */
RCP< Teuchos::SerialDenseMatrix<int,ScalarType> > T;
/*! \brief Left generalized Schur vectors from QZ decomposition of (VAV,VBV) */
RCP< Teuchos::SerialDenseMatrix<int,ScalarType> > Q;
/*! \brief Right generalized Schur vectors from QZ decomposition of (VAV,VBV) */
RCP< Teuchos::SerialDenseMatrix<int,ScalarType> > Z;
/*! \brief Vector of generalized eigenvalues */
std::vector< Value<ScalarType> > eVals;
GeneralizedDavidsonState() : curDim(0), V(Teuchos::null), AV(Teuchos::null),
BV(Teuchos::null), VAV(Teuchos::null),
VBV(Teuchos::null), S(Teuchos::null),
T(Teuchos::null), Q(Teuchos::null),
Z(Teuchos::null), eVals(0) {}
};
/*!
* \class GeneralizedDavidson
* \brief Solves eigenvalue problem using generalized Davidson method
*
* This class searches for a few eigenvalues and corresponding eigenvectors
* for either a standard eigenvalue problem \f$Ax=\lambda x\f$
* or a generalized eigenvalue problem \f$Ax=\lambda B x\f$
* Note that unlike some other solvers, the generalized Davidson method places
* no restrictions on either matrix in a generalized eigenvalue problem.
*
* Tips for preconditioning: A good preconditioner usually approximates
* \f$(A-\sigma I)^{-1}\f$ or \f$(A-\sigma B)^{-1}\f$, where \f$\sigma\f$
* is close to the target eigenvalue. When searching for largest magnitude
* eigenvalues, selecting a preconditioner \f$P^{-1} \approx B^{-1}\f$
* usually works well and when searching for smallest magnitude eigenvalues
* selecting \f$P^{-1} \approx A^{-1}\f$ is usually appropriate.
*
* This class is currently only implemented for real scalar types
* (i.e. float, double).
*/
template <class ScalarType, class MV, class OP>
class GeneralizedDavidson : public Eigensolver<ScalarType,MV,OP>
{
private:
// Convenience Typedefs
typedef MultiVecTraits<ScalarType,MV> MVT;
typedef OperatorTraits<ScalarType,MV,OP> OPT;
typedef Teuchos::ScalarTraits<ScalarType> ST;
typedef typename ST::magnitudeType MagnitudeType;
typedef Teuchos::ScalarTraits<MagnitudeType> MT;
public:
/*!
* \brief Constructor.
*
* GeneralizedDavidson constructor with eigenproblem, parameters, and
* solver utilities.
*
* Behavior of the solver is controlled by the following ParameterList
* entries:
* - "Block Size" -- block size used by algorithm. Default: 1.
* - "Maximum Subspace Dimension" -- maximum number of basis vectors for subspace. Two
* for standard eigenvalue problem) or three (for generalized eigenvalue problem) sets of basis
* vectors of this size will be required. Default: 3*problem->getNEV()*"Block Size"
* - "Initial Guess" -- how should initial vector be selected: "Random" or "User".
* If "User," the value in problem->getInitVec() will be used. Default: "Random".
* - "Print Number of Ritz Values" -- an int specifying how many Ritz values should be printed
* at each iteration. Default: "NEV".
* - "Relative Convergence Tolerance" -- should residual be scaled by corresponding Ritz value
* to measure convergence. Default: "false"
*
*/
GeneralizedDavidson(const RCP<Eigenproblem<ScalarType,MV,OP> > &problem,
const RCP<SortManager<MagnitudeType> > &sortman,
const RCP<OutputManager<ScalarType> > &outputman,
const RCP<StatusTest<ScalarType,MV,OP> > &tester,
const RCP<OrthoManager<ScalarType,MV> > &orthoman,
Teuchos::ParameterList &pl);
/*!
* \brief Solves the eigenvalue problem.
*/
void iterate();
/*!
* \brief Initialize the eigenvalue problem
*
* Anything on the state that is not null is assumed to be valid.
* Anything not present on the state will be generated.
* Very limited error checking can be performed to ensure the validity of
* state components (e.g. we cannot verify that <tt> state.AV </tt>actually corresponds
* to <tt>A*state.V</tt>), so this function should be used carefully.
*/
void initialize();
/*!
* \brief Initialize solver from state
*/
void initialize( GeneralizedDavidsonState<ScalarType,MV>& state );
/*!
* \brief Get number of iterations
*/
int getNumIters() const { return d_iteration; }
/*!
* \brief Reset the number of iterations
*/
void resetNumIters() { d_iteration=0; d_opApplies=0; }
/*!
* \brief Get the current Ritz vectors
*/
RCP<const MV> getRitzVectors()
{
if( !d_ritzVectorsValid )
computeRitzVectors();
return d_ritzVecs;
}
/*!
* \brief Get the current Ritz values
*/
std::vector< Value<ScalarType> > getRitzValues();
/*!
* \brief Get the current Ritz index vector
*/
std::vector<int> getRitzIndex()
{
if( !d_ritzIndexValid )
computeRitzIndex();
return d_ritzIndex;
}
/*!
* \brief Get indices of current block
*
* Number of entries is equal to getBlockSize()
*/
std::vector<int> getBlockIndex() const
{
return d_expansionIndices;
}
/*!
* \brief Get the current residual norms (w.r.t. norm defined by OrthoManager)
*/
std::vector<MagnitudeType> getResNorms();
/*!
* \brief Get the current residual norms (w.r.t. norm defined by OrthoManager)
*/
std::vector<MagnitudeType> getResNorms(int numWanted);
/*!
* \brief Get the current residual norms (2-norm)
*/
std::vector<MagnitudeType> getRes2Norms() { return d_resNorms; }
/*!
* \brief Get the current Ritz residual norms (2-norm)
*
* GeneralizedDavidson doesn't compute Ritz residual norms
* so this is equivalent to calling getRes2Norms()
*/
std::vector<MagnitudeType> getRitzRes2Norms() { return d_resNorms; }
/*!
* \brief Get current subspace dimension
*/
int getCurSubspaceDim() const { return d_curDim; }
/*!
* \brief Get maximum subspace dimension
*/
int getMaxSubspaceDim() const { return d_maxSubspaceDim; }
/*!
* \brief Set status test
*/
void setStatusTest( RCP<StatusTest<ScalarType,MV,OP> > tester) { d_tester = tester; }
/*!
* \brief Get status test
*/
RCP<StatusTest<ScalarType,MV,OP> > getStatusTest() const { return d_tester; }
/*!
* \brief Get eigenproblem
*/
const Eigenproblem<ScalarType,MV,OP> & getProblem() const { return *d_problem; }
/*!
* \brief Get block size
*/
int getBlockSize() const { return d_expansionSize; }
/*!
* \brief Set block size
*/
void setBlockSize(int blockSize);
/*!
* \brief Set problem size.
*/
void setSize(int blockSize, int maxSubDim);
/*!
* \brief Get the auxilliary vectors
*/
Teuchos::Array< RCP<const MV> > getAuxVecs() const { return d_auxVecs; }
/*!
* \brief Set auxilliary vectors
*
* Manually setting the auxilliary vectors invalidates the current state
* of the solver. Reuse of any components of the solver requires extracting
* the state, orthogonalizing V against the aux vecs and reinitializing.
*/
void setAuxVecs( const Teuchos::Array< RCP<const MV> > &auxVecs );
/*!
* \brief Query if the solver is in an initialized state
*/
bool isInitialized() const { return d_initialized; }
/*!
* \brief Print current status of solver
*/
void currentStatus( std::ostream &myout );
/*!
* \brief Get the current state of the eigensolver.
*/
GeneralizedDavidsonState<ScalarType,MV> getState();
/*!
* Reorder Schur form, bringing wanted values to front
*/
void sortProblem( int numWanted );
private:
// Expand subspace
void expandSearchSpace();
// Apply Operators
void applyOperators();
// Update projections
void updateProjections();
// Solve projected eigenproblem
void solveProjectedEigenproblem();
// Compute eigenvectors of matrix pair
void computeProjectedEigenvectors( Teuchos::SerialDenseMatrix<int,ScalarType> &X );
// Scale projected eigenvectors by alpha/beta
void scaleEigenvectors( const Teuchos::SerialDenseMatrix<int,ScalarType> &X,
Teuchos::SerialDenseMatrix<int,ScalarType> &X_alpha,
Teuchos::SerialDenseMatrix<int,ScalarType> &X_beta );
// Sort vectors of pairs
void sortValues( std::vector<MagnitudeType> &realParts,
std::vector<MagnitudeType> &imagParts,
std::vector<int> &permVec,
int N);
// Compute Residual
void computeResidual();
// Update the current Ritz index vector
void computeRitzIndex();
// Compute the current Ritz vectors
void computeRitzVectors();
// Operators
RCP<Eigenproblem<ScalarType,MV,OP> > d_problem;
Teuchos::ParameterList d_pl;
RCP<const OP> d_A;
RCP<const OP> d_B;
RCP<const OP> d_P;
bool d_haveB;
bool d_haveP;
// Parameters
int d_blockSize;
int d_maxSubspaceDim;
int d_NEV;
int d_numToPrint;
std::string d_initType;
int d_verbosity;
bool d_relativeConvergence;
// Managers
RCP<OutputManager<ScalarType> > d_outputMan;
RCP<OrthoManager<ScalarType,MV> > d_orthoMan;
RCP<SortManager<MagnitudeType> > d_sortMan;
RCP<StatusTest<ScalarType,MV,OP> > d_tester;
// Eigenvalues
std::vector< Value<ScalarType> > d_eigenvalues;
// Residual Vector
RCP<MV> d_R;
std::vector<MagnitudeType> d_resNorms;
// Subspace Vectors
RCP<MV> d_V;
RCP<MV> d_AV;
RCP<MV> d_BV;
RCP<MV> d_ritzVecSpace;
RCP<MV> d_ritzVecs;
Teuchos::Array< RCP<const MV> > d_auxVecs;
// Serial Matrices
RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > d_VAV;
RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > d_VBV;
RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > d_S;
RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > d_T;
RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > d_Q;
RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > d_Z;
// Arrays for holding Ritz values
std::vector<MagnitudeType> d_alphar;
std::vector<MagnitudeType> d_alphai;
std::vector<MagnitudeType> d_betar;
std::vector<int> d_ritzIndex;
std::vector<int> d_convergedIndices;
std::vector<int> d_expansionIndices;
// Current subspace dimension
int d_curDim;
// How many vectors are to be added to the subspace
int d_expansionSize;
// Should subspace expansion use leading vectors
// (if false, will use leading unconverged vectors)
bool d_useLeading;
// What should be used for test subspace (V, AV, or BV)
std::string d_testSpace;
// How many residual vectors are valid
int d_residualSize;
int d_iteration;
int d_opApplies;
bool d_initialized;
bool d_ritzIndexValid;
bool d_ritzVectorsValid;
};
//---------------------------------------------------------------------------//
// Prevent instantiation on complex scalar type
//---------------------------------------------------------------------------//
template <class MagnitudeType, class MV, class OP>
class GeneralizedDavidson<std::complex<MagnitudeType>,MV,OP>
{
public:
typedef std::complex<MagnitudeType> ScalarType;
GeneralizedDavidson(
const RCP<Eigenproblem<ScalarType,MV,OP> > &problem,
const RCP<SortManager<MagnitudeType> > &sortman,
const RCP<OutputManager<ScalarType> > &outputman,
const RCP<StatusTest<ScalarType,MV,OP> > &tester,
const RCP<OrthoManager<ScalarType,MV> > &orthoman,
Teuchos::ParameterList &pl)
{
// Provide a compile error when attempting to instantiate on complex type
MagnitudeType::this_class_is_missing_a_specialization();
}
};
//---------------------------------------------------------------------------//
// PUBLIC METHODS
//---------------------------------------------------------------------------//
//---------------------------------------------------------------------------//
// Constructor
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
GeneralizedDavidson<ScalarType,MV,OP>::GeneralizedDavidson(
const RCP<Eigenproblem<ScalarType,MV,OP> > &problem,
const RCP<SortManager<MagnitudeType> > &sortman,
const RCP<OutputManager<ScalarType> > &outputman,
const RCP<StatusTest<ScalarType,MV,OP> > &tester,
const RCP<OrthoManager<ScalarType,MV> > &orthoman,
Teuchos::ParameterList &pl )
{
TEUCHOS_TEST_FOR_EXCEPTION( problem == Teuchos::null, std::invalid_argument, "No Eigenproblem given to solver." );
TEUCHOS_TEST_FOR_EXCEPTION( outputman == Teuchos::null, std::invalid_argument, "No OutputManager given to solver." );
TEUCHOS_TEST_FOR_EXCEPTION( orthoman == Teuchos::null, std::invalid_argument, "No OrthoManager given to solver." );
TEUCHOS_TEST_FOR_EXCEPTION( sortman == Teuchos::null, std::invalid_argument, "No SortManager given to solver." );
TEUCHOS_TEST_FOR_EXCEPTION( tester == Teuchos::null, std::invalid_argument, "No StatusTest given to solver." );
TEUCHOS_TEST_FOR_EXCEPTION( !problem->isProblemSet(), std::invalid_argument, "Problem has not been set." );
d_problem = problem;
d_pl = pl;
TEUCHOS_TEST_FOR_EXCEPTION( problem->getA()==Teuchos::null && problem->getOperator()==Teuchos::null,
std::invalid_argument, "Either A or Operator must be non-null on Eigenproblem");
d_A = problem->getA()!=Teuchos::null ? problem->getA() : problem->getOperator();
d_B = problem->getM();
d_P = problem->getPrec();
d_sortMan = sortman;
d_outputMan = outputman;
d_tester = tester;
d_orthoMan = orthoman;
// Pull entries from the ParameterList and Eigenproblem
d_NEV = d_problem->getNEV();
d_initType = d_pl.get<std::string>("Initial Guess","Random");
d_numToPrint = d_pl.get<int>("Print Number of Ritz Values",-1);
d_useLeading = d_pl.get<bool>("Use Leading Vectors",false);
if( d_B != Teuchos::null )
d_haveB = true;
else
d_haveB = false;
if( d_P != Teuchos::null )
d_haveP = true;
else
d_haveP = false;
d_testSpace = d_pl.get<std::string>("Test Space","V");
TEUCHOS_TEST_FOR_EXCEPTION( d_testSpace!="V" && d_testSpace!="AV" && d_testSpace!="BV", std::invalid_argument,
"Anasazi::GeneralizedDavidson: Test Space must be V, AV, or BV" );
TEUCHOS_TEST_FOR_EXCEPTION( d_testSpace=="V" ? false : !d_haveB, std::invalid_argument,
"Anasazi::GeneralizedDavidson: Test Space must be V for standard eigenvalue problem" );
// Allocate space for subspace vectors, projected matrices
int blockSize = d_pl.get<int>("Block Size",1);
int maxSubDim = d_pl.get<int>("Maximum Subspace Dimension",3*d_NEV*blockSize);
d_blockSize = -1;
d_maxSubspaceDim = -1;
setSize( blockSize, maxSubDim );
d_relativeConvergence = d_pl.get<bool>("Relative Convergence Tolerance",false);
// Make sure subspace size is consistent with requested eigenvalues
TEUCHOS_TEST_FOR_EXCEPTION( d_blockSize <= 0, std::invalid_argument, "Block size must be positive");
TEUCHOS_TEST_FOR_EXCEPTION( d_maxSubspaceDim <= 0, std::invalid_argument, "Maximum Subspace Dimension must be positive" );
TEUCHOS_TEST_FOR_EXCEPTION( d_problem->getNEV()+2 > pl.get<int>("Maximum Subspace Dimension"),
std::invalid_argument, "Maximum Subspace Dimension must be strictly greater than NEV");
TEUCHOS_TEST_FOR_EXCEPTION( d_maxSubspaceDim > MVT::GetGlobalLength(*problem->getInitVec()),
std::invalid_argument, "Maximum Subspace Dimension cannot exceed problem size");
d_curDim = 0;
d_iteration = 0;
d_opApplies = 0;
d_ritzIndexValid = false;
d_ritzVectorsValid = false;
}
//---------------------------------------------------------------------------//
// Iterate
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidson<ScalarType,MV,OP>::iterate()
{
// Initialize Problem
if( !d_initialized )
{
d_outputMan->stream(Warnings) << "WARNING: GeneralizedDavidson::iterate called without first calling initialize" << std::endl;
d_outputMan->stream(Warnings) << " Default initialization will be performed" << std::endl;
initialize();
}
// Print current status
if( d_outputMan->isVerbosity(Debug) )
{
currentStatus( d_outputMan->stream(Debug) );
}
else if( d_outputMan->isVerbosity(IterationDetails) )
{
currentStatus( d_outputMan->stream(IterationDetails) );
}
while( d_tester->getStatus() != Passed && d_curDim+d_expansionSize <= d_maxSubspaceDim )
{
d_iteration++;
expandSearchSpace();
applyOperators();
updateProjections();
solveProjectedEigenproblem();
// Make sure the most significant Ritz values are in front
// We want the greater of the block size and the number of
// requested values, but can't exceed the current dimension
int numToSort = std::max(d_blockSize,d_NEV);
numToSort = std::min(numToSort,d_curDim);
sortProblem( numToSort );
computeResidual();
// Print current status
if( d_outputMan->isVerbosity(Debug) )
{
currentStatus( d_outputMan->stream(Debug) );
}
else if( d_outputMan->isVerbosity(IterationDetails) )
{
currentStatus( d_outputMan->stream(IterationDetails) );
}
}
}
//---------------------------------------------------------------------------//
// Return the current state struct
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
GeneralizedDavidsonState<ScalarType,MV> GeneralizedDavidson<ScalarType,MV,OP>::getState()
{
GeneralizedDavidsonState<ScalarType,MV> state;
state.curDim = d_curDim;
state.V = d_V;
state.AV = d_AV;
state.BV = d_BV;
state.VAV = d_VAV;
state.VBV = d_VBV;
state.S = d_S;
state.T = d_T;
state.Q = d_Q;
state.Z = d_Z;
state.eVals = getRitzValues();
return state;
}
//---------------------------------------------------------------------------//
// Set block size
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidson<ScalarType,MV,OP>::setBlockSize(int blockSize)
{
setSize(blockSize,d_maxSubspaceDim);
}
//---------------------------------------------------------------------------//
// Set block size and maximum subspace dimension.
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidson<ScalarType,MV,OP>::setSize(int blockSize, int maxSubDim )
{
if( blockSize != d_blockSize || maxSubDim != d_maxSubspaceDim )
{
d_blockSize = blockSize;
d_maxSubspaceDim = maxSubDim;
d_initialized = false;
d_outputMan->stream(Debug) << " >> Anasazi::GeneralizedDavidson: Allocating eigenproblem"
<< " state with block size of " << d_blockSize
<< " and maximum subspace dimension of " << d_maxSubspaceDim << std::endl;
// Resize arrays for Ritz values
d_alphar.resize(d_maxSubspaceDim);
d_alphai.resize(d_maxSubspaceDim);
d_betar.resize(d_maxSubspaceDim);
// Shorten for convenience here
int msd = d_maxSubspaceDim;
// Temporarily save initialization vector to clone needed vectors
RCP<const MV> initVec = d_problem->getInitVec();
// Allocate subspace vectors
d_V = MVT::Clone(*initVec, msd);
d_AV = MVT::Clone(*initVec, msd);
// Allocate serial matrices
d_VAV = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(msd,msd) );
d_S = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(msd,msd) );
d_Q = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(msd,msd) );
d_Z = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(msd,msd) );
// If this is generalized eigenproblem, allocate B components
if( d_haveB )
{
d_BV = MVT::Clone(*initVec, msd);
d_VBV = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(msd,msd) );
d_T = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(msd,msd) );
}
/* Allocate space for residual and Ritz vectors
* The residual serves two purposes in the Davidson algorithm --
* subspace expansion (via the preconditioner) and convergence checking.
* We need "Block Size" vectors for subspace expantion and NEV vectors
* for convergence checking. Allocate space for max of these, one
* extra to avoid splitting conjugate pairs
* Allocate one more than "Block Size" to avoid splitting a conjugate pair
*/
d_R = MVT::Clone(*initVec,std::max(d_blockSize,d_NEV)+1);
d_ritzVecSpace = MVT::Clone(*initVec,std::max(d_blockSize,d_NEV)+1);
}
}
//---------------------------------------------------------------------------//
/*
* Initialize the eigenvalue problem
*
* Anything on the state that is not null is assumed to be valid.
* Anything not present on the state will be generated
* Very limited error checking can be performed to ensure the validity of
* state components (e.g. we cannot verify that state.AV actually corresponds
* to A*state.V), so this function should be used carefully.
*/
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidson<ScalarType,MV,OP>::initialize( GeneralizedDavidsonState<ScalarType,MV>& state )
{
// If state has nonzero dimension, we initialize from that, otherwise
// we'll pick d_blockSize vectors to start with
d_curDim = (state.curDim > 0 ? state.curDim : d_blockSize );
d_outputMan->stream(Debug) << " >> Anasazi::GeneralizedDavidson: Initializing state"
<< " with subspace dimension " << d_curDim << std::endl;
// Index for 1st block_size vectors
std::vector<int> initInds(d_curDim);
for( int i=0; i<d_curDim; ++i )
initInds[i] = i;
// View of vectors that need to be initialized
RCP<MV> V1 = MVT::CloneViewNonConst(*d_V,initInds);
// If state's dimension is large enough, use state.V to initialize
bool reset_V = false;;
if( state.curDim > 0 && state.V != Teuchos::null && MVT::GetNumberVecs(*state.V) >= d_curDim )
{
if( state.V != d_V )
MVT::SetBlock(*state.V,initInds,*V1);
}
// If there aren't enough vectors in problem->getInitVec() or the user specifically
// wants to use random data, set V to random
else if( MVT::GetNumberVecs(*d_problem->getInitVec()) < d_blockSize || d_initType == "Random" )
{
MVT::MvRandom(*V1);
reset_V = true;
}
// Use vectors in problem->getInitVec()
else
{
RCP<const MV> initVec = MVT::CloneView(*d_problem->getInitVec(),initInds);
MVT::SetBlock(*initVec,initInds,*V1);
reset_V = true;
}
// If we reset V, it needs to be orthonormalized
if( reset_V )
{
int rank = d_orthoMan->projectAndNormalize( *V1, d_auxVecs );
TEUCHOS_TEST_FOR_EXCEPTION( rank < d_blockSize, std::logic_error,
"Anasazi::GeneralizedDavidson::initialize(): Error generating initial orthonormal basis" );
}
if( d_outputMan->isVerbosity(Debug) )
{
d_outputMan->stream(Debug) << " >> Anasazi::GeneralizedDavidson: Error in V^T V == I: "
<< d_orthoMan->orthonormError( *V1 ) << std::endl;
}
// Now process AV
RCP<MV> AV1 = MVT::CloneViewNonConst(*d_AV,initInds);
// If AV in the state is valid and of appropriate size, use it
// We have no way to check that AV is actually A*V
if( !reset_V && state.AV != Teuchos::null && MVT::GetNumberVecs(*state.AV) >= d_curDim )
{
if( state.AV != d_AV )
MVT::SetBlock(*state.AV,initInds,*AV1);
}
// Otherwise apply A to V
else
{
OPT::Apply( *d_A, *V1, *AV1 );
d_opApplies += MVT::GetNumberVecs( *V1 );
}
// Views of matrix to be updated
Teuchos::SerialDenseMatrix<int,ScalarType> VAV1( Teuchos::View, *d_VAV, d_curDim, d_curDim );
// If the state has a valid VAV, use it
if( !reset_V && state.VAV != Teuchos::null && state.VAV->numRows() >= d_curDim && state.VAV->numCols() >= d_curDim )
{
if( state.VAV != d_VAV )
{
Teuchos::SerialDenseMatrix<int,ScalarType> state_VAV( Teuchos::View, *state.VAV, d_curDim, d_curDim );
VAV1.assign( state_VAV );
}
}
// Otherwise compute VAV from V,AV
else
{
if( d_testSpace == "V" )
{
MVT::MvTransMv( ST::one(), *V1, *AV1, VAV1 );
}
else if( d_testSpace == "AV" )
{
MVT::MvTransMv( ST::one(), *AV1, *AV1, VAV1 );
}
else if( d_testSpace == "BV" )
{
RCP<MV> BV1 = MVT::CloneViewNonConst(*d_BV,initInds);
MVT::MvTransMv( ST::one(), *BV1, *AV1, VAV1 );
}
}
// Process BV if we have it
if( d_haveB )
{
RCP<MV> BV1 = MVT::CloneViewNonConst(*d_BV,initInds);
// If BV in the state is valid and of appropriate size, use it
// We have no way to check that BV is actually B*V
if( !reset_V && state.BV != Teuchos::null && MVT::GetNumberVecs(*state.BV) >= d_curDim )
{
if( state.BV != d_BV )
MVT::SetBlock(*state.BV,initInds,*BV1);
}
// Otherwise apply B to V
else
{
OPT::Apply( *d_B, *V1, *BV1 );
}
// Views of matrix to be updated
Teuchos::SerialDenseMatrix<int,ScalarType> VBV1( Teuchos::View, *d_VBV, d_curDim, d_curDim );
// If the state has a valid VBV, use it
if( !reset_V && state.VBV != Teuchos::null && state.VBV->numRows() >= d_curDim && state.VBV->numCols() >= d_curDim )
{
if( state.VBV != d_VBV )
{
Teuchos::SerialDenseMatrix<int,ScalarType> state_VBV( Teuchos::View, *state.VBV, d_curDim, d_curDim );
VBV1.assign( state_VBV );
}
}
// Otherwise compute VBV from V,BV
else
{
if( d_testSpace == "V" )
{
MVT::MvTransMv( ST::one(), *V1, *BV1, VBV1 );
}
else if( d_testSpace == "AV" )
{
MVT::MvTransMv( ST::one(), *AV1, *BV1, VBV1 );
}
else if( d_testSpace == "BV" )
{
MVT::MvTransMv( ST::one(), *BV1, *BV1, VBV1 );
}
}
}
// Update Ritz values
solveProjectedEigenproblem();
// Sort
int numToSort = std::max(d_blockSize,d_NEV);
numToSort = std::min(numToSort,d_curDim);
sortProblem( numToSort );
// Get valid residual
computeResidual();
// Set solver to initialized
d_initialized = true;
}
//---------------------------------------------------------------------------//
// Initialize the eigenvalue problem with empty state
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidson<ScalarType,MV,OP>::initialize()
{
GeneralizedDavidsonState<ScalarType,MV> empty;
initialize( empty );
}
//---------------------------------------------------------------------------//
// Get current residual norms
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType>
GeneralizedDavidson<ScalarType,MV,OP>::getResNorms()
{
return getResNorms(d_residualSize);
}
//---------------------------------------------------------------------------//
// Get current residual norms
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType>
GeneralizedDavidson<ScalarType,MV,OP>::getResNorms(int numWanted)
{
std::vector<int> resIndices(numWanted);
for( int i=0; i<numWanted; ++i )
resIndices[i]=i;
RCP<const MV> R_checked = MVT::CloneView( *d_R, resIndices );
std::vector<MagnitudeType> resNorms;
d_orthoMan->norm( *R_checked, resNorms );
return resNorms;
}
//---------------------------------------------------------------------------//
// Get current Ritz values
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
std::vector< Value<ScalarType> > GeneralizedDavidson<ScalarType,MV,OP>::getRitzValues()
{
std::vector< Value<ScalarType> > ritzValues;
for( int ival=0; ival<d_curDim; ++ival )
{
Value<ScalarType> thisVal;
thisVal.realpart = d_alphar[ival] / d_betar[ival];
if( d_betar[ival] != MT::zero() )
thisVal.imagpart = d_alphai[ival] / d_betar[ival];
else
thisVal.imagpart = MT::zero();
ritzValues.push_back( thisVal );
}
return ritzValues;
}
//---------------------------------------------------------------------------//
/*
* Set auxilliary vectors
*
* Manually setting the auxilliary vectors invalidates the current state
* of the solver. Reuse of any components of the solver requires extracting
* the state, orthogonalizing V against the aux vecs and reinitializing.
*/
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidson<ScalarType,MV,OP>::setAuxVecs(
const Teuchos::Array< RCP<const MV> > &auxVecs )
{
d_auxVecs = auxVecs;
// Set state to uninitialized if any vectors were set here
typename Teuchos::Array< RCP<const MV> >::const_iterator arrItr;
int numAuxVecs=0;
for( arrItr=auxVecs.begin(); arrItr!=auxVecs.end(); ++arrItr )
{
numAuxVecs += MVT::GetNumberVecs( *(*arrItr) );
}
if( numAuxVecs > 0 )
d_initialized = false;
}
//---------------------------------------------------------------------------//
// Reorder Schur form, bringing wanted values to front
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidson<ScalarType,MV,OP>::sortProblem( int numWanted )
{
// Get permutation vector
std::vector<MagnitudeType> realRitz(d_curDim), imagRitz(d_curDim);
std::vector< Value<ScalarType> > ritzVals = getRitzValues();
for( int i=0; i<d_curDim; ++i )
{
realRitz[i] = ritzVals[i].realpart;
imagRitz[i] = ritzVals[i].imagpart;
}
std::vector<int> permVec;
sortValues( realRitz, imagRitz, permVec, d_curDim );
std::vector<int> sel(d_curDim,0);
for( int ii=0; ii<numWanted; ++ii )
sel[ permVec[ii] ]=1;
if( d_haveB )
{
int ijob = 0; // reorder only, no condition number estimates
int wantq = 1; // keep left Schur vectors
int wantz = 1; // keep right Schur vectors
int work_size=10*d_maxSubspaceDim+16;
std::vector<ScalarType> work(work_size);
int sdim = 0;
int iwork_size = 1;
int iwork;
int info = 0;
Teuchos::LAPACK<int,ScalarType> lapack;
lapack.TGSEN( ijob, wantq, wantz, &sel[0], d_curDim, d_S->values(), d_S->stride(), d_T->values(), d_T->stride(),
&d_alphar[0], &d_alphai[0], &d_betar[0], d_Q->values(), d_Q->stride(), d_Z->values(), d_Z->stride(),
&sdim, 0, 0, 0, &work[0], work_size, &iwork, iwork_size, &info );
d_ritzIndexValid = false;
d_ritzVectorsValid = false;
std::stringstream ss;
ss << "Anasazi::GeneralizedDavidson: TGSEN returned error code " << info << std::endl;
TEUCHOS_TEST_FOR_EXCEPTION( info<0, std::runtime_error, ss.str() );
if( info > 0 )
{
// Only issue a warning for positive error code, this usually indicates
// that the system has not been fully reordered, presumably due to ill-conditioning.
// This is usually not detrimental to the calculation.
d_outputMan->stream(Warnings) << "WARNING: " << ss.str() << std::endl;
d_outputMan->stream(Warnings) << " Problem may not be correctly sorted" << std::endl;
}
}
else {
char getCondNum = 'N'; // no condition number estimates
char getQ = 'V'; // keep Schur vectors
int subDim = 0;
int work_size = d_curDim;
std::vector<ScalarType> work(work_size);
int iwork_size = 1;
int iwork = 0;
int info = 0;
Teuchos::LAPACK<int,ScalarType> lapack;
lapack.TRSEN (getCondNum, getQ, &sel[0], d_curDim, d_S->values (),
d_S->stride (), d_Z->values (), d_Z->stride (),
&d_alphar[0], &d_alphai[0], &subDim, 0, 0, &work[0],
work_size, &iwork, iwork_size, &info );
std::fill( d_betar.begin(), d_betar.end(), ST::one() );
d_ritzIndexValid = false;
d_ritzVectorsValid = false;
TEUCHOS_TEST_FOR_EXCEPTION(
info < 0, std::runtime_error, "Anasazi::GeneralizedDavidson::"
"sortProblem: LAPACK routine TRSEN returned error code INFO = "
<< info << " < 0. This indicates that argument " << -info
<< " (counting starts with one) of TRSEN had an illegal value.");
// LAPACK's documentation suggests that this should only happen
// in the real-arithmetic case, because I only see INFO == 1
// possible for DTRSEN, not for ZTRSEN. Nevertheless, it's
// harmless to check regardless.
TEUCHOS_TEST_FOR_EXCEPTION(
info == 1, std::runtime_error, "Anasazi::GeneralizedDavidson::"
"sortProblem: LAPACK routine TRSEN returned error code INFO = 1. "
"This indicates that the reordering failed because some eigenvalues "
"are too close to separate (the problem is very ill-conditioned).");
TEUCHOS_TEST_FOR_EXCEPTION(
info > 1, std::logic_error, "Anasazi::GeneralizedDavidson::"
"sortProblem: LAPACK routine TRSEN returned error code INFO = "
<< info << " > 1. This should not be possible. It may indicate an "
"error either in LAPACK itself, or in Teuchos' LAPACK wrapper.");
}
}
//---------------------------------------------------------------------------//
// PRIVATE IMPLEMENTATION
//---------------------------------------------------------------------------//
//---------------------------------------------------------------------------//
// Expand subspace using preconditioner and orthogonalize
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidson<ScalarType,MV,OP>::expandSearchSpace()
{
// Get indices into relevant portion of residual and
// location to be added to search space
std::vector<int> newIndices(d_expansionSize);
for( int i=0; i<d_expansionSize; ++i )
{
newIndices[i] = d_curDim+i;
}
// Get indices into pre-existing search space
std::vector<int> curIndices(d_curDim);
for( int i=0; i<d_curDim; ++i )
curIndices[i] = i;
// Get View of vectors
RCP<MV> V_new = MVT::CloneViewNonConst( *d_V, newIndices);
RCP<const MV> V_cur = MVT::CloneView( *d_V, curIndices);
RCP<const MV> R_active = MVT::CloneView( *d_R, d_expansionIndices);
if( d_haveP )
{
// Apply Preconditioner to Residual
OPT::Apply( *d_P, *R_active, *V_new );
}
else
{
// Just copy the residual
MVT::SetBlock( *R_active, newIndices, *d_V );
}
// Normalize new vector against existing vectors in V plus auxVecs
Teuchos::Array< RCP<const MV> > against = d_auxVecs;
against.push_back( V_cur );
int rank = d_orthoMan->projectAndNormalize(*V_new,against);
if( d_outputMan->isVerbosity(Debug) )
{
std::vector<int> allIndices(d_curDim+d_expansionSize);
for( int i=0; i<d_curDim+d_expansionSize; ++i )
allIndices[i]=i;
RCP<const MV> V_all = MVT::CloneView( *d_V, allIndices );
d_outputMan->stream(Debug) << " >> Anasazi::GeneralizedDavidson: Error in V^T V == I: "
<< d_orthoMan->orthonormError( *V_all ) << std::endl;
}
TEUCHOS_TEST_FOR_EXCEPTION( rank != d_expansionSize, std::runtime_error,
"Anasazi::GeneralizedDavidson::ExpandSearchSpace(): Orthonormalization of new vectors failed" );
}
//---------------------------------------------------------------------------//
// Apply operators
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidson<ScalarType,MV,OP>::applyOperators()
{
// Get indices for different components
std::vector<int> newIndices(d_expansionSize);
for( int i=0; i<d_expansionSize; ++i )
newIndices[i] = d_curDim+i;
// Get Views
RCP<const MV> V_new = MVT::CloneView( *d_V, newIndices );
RCP<MV> AV_new = MVT::CloneViewNonConst( *d_AV, newIndices );
// Multiply by A
OPT::Apply( *d_A, *V_new, *AV_new );
d_opApplies += MVT::GetNumberVecs( *V_new );
// Multiply by B
if( d_haveB )
{
RCP<MV> BV_new = MVT::CloneViewNonConst( *d_BV, newIndices );
OPT::Apply( *d_B, *V_new, *BV_new );
}
}
//---------------------------------------------------------------------------//
// Update projected matrices.
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidson<ScalarType,MV,OP>::updateProjections()
{
// Get indices for different components
std::vector<int> newIndices(d_expansionSize);
for( int i=0; i<d_expansionSize; ++i )
newIndices[i] = d_curDim+i;
std::vector<int> curIndices(d_curDim);
for( int i=0; i<d_curDim; ++i )
curIndices[i] = i;
std::vector<int> allIndices(d_curDim+d_expansionSize);
for( int i=0; i<d_curDim+d_expansionSize; ++i )
allIndices[i] = i;
// Test subspace can be V, AV, or BV
RCP<const MV> W_new, W_all;
if( d_testSpace == "V" )
{
W_new = MVT::CloneView(*d_V, newIndices );
W_all = MVT::CloneView(*d_V, allIndices );
}
else if( d_testSpace == "AV" )
{
W_new = MVT::CloneView(*d_AV, newIndices );
W_all = MVT::CloneView(*d_AV, allIndices );
}
else if( d_testSpace == "BV" )
{
W_new = MVT::CloneView(*d_BV, newIndices );
W_all = MVT::CloneView(*d_BV, allIndices );
}
// Get views of AV
RCP<const MV> AV_new = MVT::CloneView(*d_AV, newIndices);
RCP<const MV> AV_current = MVT::CloneView(*d_AV, curIndices);
// Last block_size rows of VAV (minus final entry)
Teuchos::SerialDenseMatrix<int,ScalarType> VAV_lastrow( Teuchos::View, *d_VAV, d_expansionSize, d_curDim, d_curDim, 0 );
MVT::MvTransMv( ST::one(), *W_new, *AV_current, VAV_lastrow );
// Last block_size columns of VAV
Teuchos::SerialDenseMatrix<int,ScalarType> VAV_lastcol( Teuchos::View, *d_VAV, d_curDim+d_expansionSize, d_expansionSize, 0, d_curDim );
MVT::MvTransMv( ST::one(), *W_all, *AV_new, VAV_lastcol );
if( d_haveB )
{
// Get views of BV
RCP<const MV> BV_new = MVT::CloneView(*d_BV, newIndices);
RCP<const MV> BV_current = MVT::CloneView(*d_BV, curIndices);
// Last block_size rows of VBV (minus final entry)
Teuchos::SerialDenseMatrix<int,ScalarType> VBV_lastrow( Teuchos::View, *d_VBV, d_expansionSize, d_curDim, d_curDim, 0 );
MVT::MvTransMv( ST::one(), *W_new, *BV_current, VBV_lastrow );
// Last block_size columns of VBV
Teuchos::SerialDenseMatrix<int,ScalarType> VBV_lastcol( Teuchos::View, *d_VBV, d_curDim+d_expansionSize, d_expansionSize, 0, d_curDim );
MVT::MvTransMv( ST::one(), *W_all, *BV_new, VBV_lastcol );
}
// All bases are expanded, increase current subspace dimension
d_curDim += d_expansionSize;
d_ritzIndexValid = false;
d_ritzVectorsValid = false;
}
//---------------------------------------------------------------------------//
// Solve low dimensional eigenproblem using LAPACK
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidson<ScalarType,MV,OP>::solveProjectedEigenproblem()
{
if( d_haveB )
{
// VAV and VBV need to stay unchanged, GGES will overwrite
// S and T with the triangular matrices from the generalized
// Schur form
d_S->assign(*d_VAV);
d_T->assign(*d_VBV);
// Get QZ Decomposition of Projected Problem
char leftVecs = 'V'; // compute left vectors
char rightVecs = 'V'; // compute right vectors
char sortVals = 'N'; // don't sort
int sdim;
// int work_size = 10*d_curDim+16;
Teuchos::LAPACK<int,ScalarType> lapack;
int info;
// workspace query
int work_size = -1;
std::vector<ScalarType> work(1);
lapack.GGES( leftVecs, rightVecs, sortVals, NULL, d_curDim, d_S->values(), d_S->stride(),
d_T->values(), d_T->stride(), &sdim, &d_alphar[0], &d_alphai[0], &d_betar[0],
d_Q->values(), d_Q->stride(), d_Z->values(), d_Z->stride(), &work[0], work_size, 0, &info );
// actual call
work_size = work[0];
work.resize(work_size);
lapack.GGES( leftVecs, rightVecs, sortVals, NULL, d_curDim, d_S->values(), d_S->stride(),
d_T->values(), d_T->stride(), &sdim, &d_alphar[0], &d_alphai[0], &d_betar[0],
d_Q->values(), d_Q->stride(), d_Z->values(), d_Z->stride(), &work[0], work_size, 0, &info );
d_ritzIndexValid = false;
d_ritzVectorsValid = false;
std::stringstream ss;
ss << "Anasazi::GeneralizedDavidson: GGES returned error code " << info << std::endl;
TEUCHOS_TEST_FOR_EXCEPTION( info!=0, std::runtime_error, ss.str() );
}
else
{
// VAV needs to stay unchanged, GGES will overwrite
// S with the triangular matrix from the Schur form
d_S->assign(*d_VAV);
// Get QR Decomposition of Projected Problem
char vecs = 'V'; // compute Schur vectors
int sdim;
int work_size = 3*d_curDim;
std::vector<ScalarType> work(work_size);
int info;
Teuchos::LAPACK<int,ScalarType> lapack;
lapack.GEES( vecs, d_curDim, d_S->values(), d_S->stride(), &sdim, &d_alphar[0], &d_alphai[0],
d_Z->values(), d_Z->stride(), &work[0], work_size, 0, 0, &info);
std::fill( d_betar.begin(), d_betar.end(), ST::one() );
d_ritzIndexValid = false;
d_ritzVectorsValid = false;
std::stringstream ss;
ss << "Anasazi::GeneralizedDavidson: GEES returned error code " << info << std::endl;
TEUCHOS_TEST_FOR_EXCEPTION( info!=0, std::runtime_error, ss.str() );
}
}
//---------------------------------------------------------------------------//
/*
* Get index vector into current Ritz values/vectors
*
* The current ordering of d_alphar, d_alphai, d_betar will be used.
* Reordering those vectors will invalidate the vector returned here.
*/
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidson<ScalarType,MV,OP>::computeRitzIndex()
{
if( d_ritzIndexValid )
return;
d_ritzIndex.resize( d_curDim );
int i=0;
while( i < d_curDim )
{
if( d_alphai[i] == ST::zero() )
{
d_ritzIndex[i] = 0;
i++;
}
else
{
d_ritzIndex[i] = 1;
d_ritzIndex[i+1] = -1;
i+=2;
}
}
d_ritzIndexValid = true;
}
//---------------------------------------------------------------------------//
/*
* Compute current Ritz vectors
*
* The current ordering of d_alphar, d_alphai, d_betar will be used.
* Reordering those vectors will invalidate the vector returned here.
*/
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidson<ScalarType,MV,OP>::computeRitzVectors()
{
if( d_ritzVectorsValid )
return;
// Make Ritz indices current
computeRitzIndex();
// Get indices of converged vector
std::vector<int> checkedIndices(d_residualSize);
for( int ii=0; ii<d_residualSize; ++ii )
checkedIndices[ii] = ii;
// Get eigenvectors of projected system
Teuchos::SerialDenseMatrix<int,ScalarType> X(Teuchos::Copy,*d_Z,d_curDim,d_curDim);
computeProjectedEigenvectors( X );
// Get view of wanted vectors
Teuchos::SerialDenseMatrix<int,ScalarType> X_wanted(Teuchos::View,X,d_curDim,d_residualSize);
// Get views of relevant portion of V, evecs
d_ritzVecs = MVT::CloneViewNonConst( *d_ritzVecSpace, checkedIndices );
std::vector<int> curIndices(d_curDim);
for( int i=0; i<d_curDim; ++i )
curIndices[i] = i;
RCP<const MV> V_current = MVT::CloneView( *d_V, curIndices );
// Now form Ritz vector
MVT::MvTimesMatAddMv(ST::one(),*V_current,X_wanted,ST::zero(),*d_ritzVecs);
// Normalize vectors, conjugate pairs get normalized together
std::vector<MagnitudeType> scale(d_residualSize);
MVT::MvNorm( *d_ritzVecs, scale );
Teuchos::LAPACK<int,ScalarType> lapack;
for( int i=0; i<d_residualSize; ++i )
{
if( d_ritzIndex[i] == 0 )
{
scale[i] = 1.0/scale[i];
}
else if( d_ritzIndex[i] == 1 )
{
MagnitudeType nrm = lapack.LAPY2(scale[i],scale[i+1]);
scale[i] = 1.0/nrm;
scale[i+1] = 1.0/nrm;
}
}
MVT::MvScale( *d_ritzVecs, scale );
d_ritzVectorsValid = true;
}
//---------------------------------------------------------------------------//
// Use sort manager to sort generalized eigenvalues
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidson<ScalarType,MV,OP>::sortValues( std::vector<MagnitudeType> &realParts,
std::vector<MagnitudeType> &imagParts,
std::vector<int> &permVec,
int N)
{
permVec.resize(N);
TEUCHOS_TEST_FOR_EXCEPTION( (int) realParts.size()<N, std::runtime_error,
"Anasazi::GeneralizedDavidson::SortValues: Number of requested sorted values greater than vector length." );
TEUCHOS_TEST_FOR_EXCEPTION( (int) imagParts.size()<N, std::runtime_error,
"Anasazi::GeneralizedDavidson::SortValues: Number of requested sorted values greater than vector length." );
RCP< std::vector<int> > rcpPermVec = Teuchos::rcpFromRef(permVec);
d_sortMan->sort( realParts, imagParts, rcpPermVec, N );
d_ritzIndexValid = false;
d_ritzVectorsValid = false;
}
//---------------------------------------------------------------------------//
/*
* Compute (right) scaled eigenvectors of a pair of dense matrices
*
* This routine computes the eigenvectors for the generalized eigenvalue
* problem \f$ \beta A x = \alpha B x \f$. The input matrices are the upper
* quasi-triangular matrices S and T from a real QZ decomposition,
* the routine dtgevc will back-calculate the eigenvectors of the original
* pencil (A,B) using the orthogonal matrices Q and Z.
*/
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidson<ScalarType,MV,OP>::computeProjectedEigenvectors(
Teuchos::SerialDenseMatrix<int,ScalarType> &X )
{
int N = X.numRows();
if( d_haveB )
{
Teuchos::SerialDenseMatrix<int,ScalarType> S(Teuchos::Copy, *d_S, N, N);
Teuchos::SerialDenseMatrix<int,ScalarType> T(Teuchos::Copy, *d_T, N, N);
Teuchos::SerialDenseMatrix<int,ScalarType> VL(Teuchos::Copy, *d_Q, N, N);
char whichVecs = 'R'; // only need right eigenvectors
char howMany = 'B'; // back-compute eigenvectors of original A,B (we have Schur decomposition here)
int work_size = 6*d_maxSubspaceDim;
std::vector<ScalarType> work(work_size,ST::zero());
int info;
int M;
Teuchos::LAPACK<int,ScalarType> lapack;
lapack.TGEVC( whichVecs, howMany, 0, N, S.values(), S.stride(), T.values(), T.stride(),
VL.values(), VL.stride(), X.values(), X.stride(), N, &M, &work[0], &info );
std::stringstream ss;
ss << "Anasazi::GeneralizedDavidson: TGEVC returned error code " << info << std::endl;
TEUCHOS_TEST_FOR_EXCEPTION( info!=0, std::runtime_error, ss.str() );
}
else
{
Teuchos::SerialDenseMatrix<int,ScalarType> S(Teuchos::Copy, *d_S, N, N);
Teuchos::SerialDenseMatrix<int,ScalarType> VL(Teuchos::Copy, *d_Z, N, N);
char whichVecs = 'R'; // only need right eigenvectors
char howMany = 'B'; // back-compute eigenvectors of original A (we have Schur decomposition here)
int sel = 0;
std::vector<ScalarType> work(3*N);
int m;
int info;
Teuchos::LAPACK<int,ScalarType> lapack;
lapack.TREVC( whichVecs, howMany, &sel, N, S.values(), S.stride(), VL.values(), VL.stride(),
X.values(), X.stride(), N, &m, &work[0], &info );
std::stringstream ss;
ss << "Anasazi::GeneralizedDavidson: TREVC returned error code " << info << std::endl;
TEUCHOS_TEST_FOR_EXCEPTION( info!=0, std::runtime_error, ss.str() );
}
}
//---------------------------------------------------------------------------//
// Scale eigenvectors by quasi-diagonal matrices alpha and beta
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidson<ScalarType,MV,OP>::scaleEigenvectors(
const Teuchos::SerialDenseMatrix<int,ScalarType> &X,
Teuchos::SerialDenseMatrix<int,ScalarType> &X_alpha,
Teuchos::SerialDenseMatrix<int,ScalarType> &X_beta )
{
int Nr = X.numRows();
int Nc = X.numCols();
TEUCHOS_TEST_FOR_EXCEPTION( Nr>d_curDim, std::logic_error,
"Anasazi::GeneralizedDavidson::ScaleEigenvectors: Matrix size exceeds current dimension");
TEUCHOS_TEST_FOR_EXCEPTION( Nc>d_curDim, std::logic_error,
"Anasazi::GeneralizedDavidson::ScaleEigenvectors: Matrix size exceeds current dimension");
TEUCHOS_TEST_FOR_EXCEPTION( X_alpha.numRows()!=Nr, std::logic_error,
"Anasazi::GeneralizedDavidson::ScaleEigenvectors: number of rows in Xalpha does not match X");
TEUCHOS_TEST_FOR_EXCEPTION( X_alpha.numCols()!=Nc, std::logic_error,
"Anasazi::GeneralizedDavidson::ScaleEigenvectors: number of cols in Xalpha does not match X");
TEUCHOS_TEST_FOR_EXCEPTION( X_beta.numRows()!=Nr, std::logic_error,
"Anasazi::GeneralizedDavidson::ScaleEigenvectors: number of rows in Xbeta does not match X");
TEUCHOS_TEST_FOR_EXCEPTION( X_beta.numCols()!=Nc, std::logic_error,
"Anasazi::GeneralizedDavidson::ScaleEigenvectors: number of cols in Xbeta does not match X");
// Now form quasi-diagonal matrices
// containing alpha and beta
Teuchos::SerialDenseMatrix<int,ScalarType> Alpha(Nc,Nc,true);
Teuchos::SerialDenseMatrix<int,ScalarType> Beta(Nc,Nc,true);
computeRitzIndex();
for( int i=0; i<Nc; ++i )
{
if( d_ritzIndex[i] == 0 )
{
Alpha(i,i) = d_alphar[i];
Beta(i,i) = d_betar[i];
}
else if( d_ritzIndex[i] == 1 )
{
Alpha(i,i) = d_alphar[i];
Alpha(i,i+1) = d_alphai[i];
Beta(i,i) = d_betar[i];
}
else
{
Alpha(i,i-1) = d_alphai[i];
Alpha(i,i) = d_alphar[i];
Beta(i,i) = d_betar[i];
}
}
int err;
// Multiply the eigenvectors by alpha
err = X_alpha.multiply( Teuchos::NO_TRANS, Teuchos::NO_TRANS, ST::one(), X, Alpha, ST::zero() );
std::stringstream astream;
astream << "GeneralizedDavidson::ScaleEigenvectors: multiply returned error code " << err;
TEUCHOS_TEST_FOR_EXCEPTION( err!=0, std::runtime_error, astream.str() );
// Multiply the eigenvectors by beta
err = X_beta.multiply( Teuchos::NO_TRANS, Teuchos::NO_TRANS, ST::one(), X, Beta, ST::zero() );
std::stringstream bstream;
bstream << "GeneralizedDavidson::ScaleEigenvectors: multiply returned error code " << err;
TEUCHOS_TEST_FOR_EXCEPTION( err!=0, std::runtime_error, bstream.str() );
}
//---------------------------------------------------------------------------//
// Compute residual
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidson<ScalarType,MV,OP>::computeResidual()
{
computeRitzIndex();
// Determine how many residual vectors need to be computed
d_residualSize = std::max( d_blockSize, d_NEV );
if( d_curDim < d_residualSize )
{
d_residualSize = d_curDim;
}
else if( d_ritzIndex[d_residualSize-1] == 1 )
{
d_residualSize++;
}
// Get indices of all valid residual vectors
std::vector<int> residualIndices(d_residualSize);
for( int i=0; i<d_residualSize; ++i )
residualIndices[i] = i;
// X will store (right) eigenvectors of projected system
Teuchos::SerialDenseMatrix<int,ScalarType> X(Teuchos::Copy,*d_Z,d_curDim,d_curDim);
// Get eigenvectors of projected problem -- computed from previous Schur decomposition
computeProjectedEigenvectors( X );
// X_alpha and X_beta will be eigenvectors right-multiplied by alpha, beta (which are quasi-diagonal portions of S,T)
Teuchos::SerialDenseMatrix<int,ScalarType> X_alpha(d_curDim,d_residualSize);
Teuchos::SerialDenseMatrix<int,ScalarType> X_beta(d_curDim,d_residualSize);
// X_wanted is the wanted portion of X
Teuchos::SerialDenseMatrix<int,ScalarType> X_wanted(Teuchos::View, X, d_curDim, d_residualSize);
// Scale Eigenvectors by alpha or beta
scaleEigenvectors( X_wanted, X_alpha, X_beta );
// Get view of residual vector(s)
RCP<MV> R_active = MVT::CloneViewNonConst( *d_R, residualIndices );
// View of active portion of AV,BV
std::vector<int> activeIndices(d_curDim);
for( int i=0; i<d_curDim; ++i )
activeIndices[i]=i;
// Compute residual
RCP<const MV> AV_active = MVT::CloneView( *d_AV, activeIndices );
MVT::MvTimesMatAddMv(ST::one(),*AV_active, X_beta, ST::zero(),*R_active);
if( d_haveB )
{
RCP<const MV> BV_active = MVT::CloneView( *d_BV, activeIndices );
MVT::MvTimesMatAddMv(ST::one(),*BV_active, X_alpha,-ST::one(), *R_active);
}
else
{
RCP<const MV> V_active = MVT::CloneView( *d_V, activeIndices );
MVT::MvTimesMatAddMv(ST::one(),*V_active, X_alpha,-ST::one(), *R_active);
}
/* Apply a scaling to the residual
* For generalized eigenvalue problems, LAPACK scales eigenvectors
* to have unit length in the infinity norm, we want them to have unit
* length in the 2-norm. For conjugate pairs, the scaling is such that
* |xr|^2 + |xi|^2 = 1
* Additionally, the residual is currently computed as r=beta*A*x-alpha*B*x
* but the "standard" residual is r=A*x-(alpha/beta)*B*x, or if we want
* to scale the residual by the Ritz value then it is r=(beta/alpha)*A*x-B*x
* Performing the scaling this way allows us to avoid the possibility of
* diving by infinity or zero if the StatusTest were allowed to handle the
* scaling.
*/
Teuchos::LAPACK<int,ScalarType> lapack;
Teuchos::BLAS<int,ScalarType> blas;
std::vector<MagnitudeType> resScaling(d_residualSize);
for( int icol=0; icol<d_residualSize; ++icol )
{
if( d_ritzIndex[icol] == 0 )
{
MagnitudeType Xnrm = blas.NRM2( d_curDim, X_wanted[icol], 1);
MagnitudeType ABscaling = d_relativeConvergence ? d_alphar[icol] : d_betar[icol];
resScaling[icol] = MT::one() / (Xnrm * ABscaling);
}
else if( d_ritzIndex[icol] == 1 )
{
MagnitudeType Xnrm1 = blas.NRM2( d_curDim, X_wanted[icol], 1 );
MagnitudeType Xnrm2 = blas.NRM2( d_curDim, X_wanted[icol+1], 1 );
MagnitudeType Xnrm = lapack.LAPY2(Xnrm1,Xnrm2);
MagnitudeType ABscaling = d_relativeConvergence ? lapack.LAPY2(d_alphar[icol],d_alphai[icol])
: d_betar[icol];
resScaling[icol] = MT::one() / (Xnrm * ABscaling);
resScaling[icol+1] = MT::one() / (Xnrm * ABscaling);
}
}
MVT::MvScale( *R_active, resScaling );
// Compute residual norms
d_resNorms.resize(d_residualSize);
MVT::MvNorm(*R_active,d_resNorms);
// If Ritz value i is real, then the corresponding residual vector
// is the true residual
// If Ritz values i and i+1 form a conjugate pair, then the
// corresponding residual vectors are the real and imaginary components
// of the residual. Adjust the residual norms appropriately...
for( int i=0; i<d_residualSize; ++i )
{
if( d_ritzIndex[i] == 1 )
{
MagnitudeType nrm = lapack.LAPY2(d_resNorms[i],d_resNorms[i+1]);
d_resNorms[i] = nrm;
d_resNorms[i+1] = nrm;
}
}
// Evaluate with status test
d_tester->checkStatus(this);
// Determine which residual vectors should be used for subspace expansion
if( d_useLeading || d_blockSize >= d_NEV )
{
d_expansionSize=d_blockSize;
if( d_ritzIndex[d_blockSize-1]==1 )
d_expansionSize++;
d_expansionIndices.resize(d_expansionSize);
for( int i=0; i<d_expansionSize; ++i )
d_expansionIndices[i] = i;
}
else
{
std::vector<int> convergedVectors = d_tester->whichVecs();
// Get index of first unconverged vector
int startVec;
for( startVec=0; startVec<d_residualSize; ++startVec )
{
if( std::find(convergedVectors.begin(),convergedVectors.end(),startVec)==convergedVectors.end() )
break;
}
// Now get a contiguous block of indices starting at startVec
// If this crosses the end of our residual vectors, take the final d_blockSize vectors
int endVec = startVec + d_blockSize - 1;
if( endVec > (d_residualSize-1) )
{
endVec = d_residualSize-1;
startVec = d_residualSize-d_blockSize;
}
// Don't split conjugate pairs on either end of the range
if( d_ritzIndex[startVec]==-1 )
{
startVec--;
endVec--;
}
if( d_ritzIndex[endVec]==1 )
endVec++;
d_expansionSize = 1+endVec-startVec;
d_expansionIndices.resize(d_expansionSize);
for( int i=0; i<d_expansionSize; ++i )
d_expansionIndices[i] = startVec+i;
}
}
//---------------------------------------------------------------------------//
// Print current status.
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidson<ScalarType,MV,OP>::currentStatus( std::ostream &myout )
{
using std::endl;
myout.setf(std::ios::scientific, std::ios::floatfield);
myout.precision(6);
myout <<endl;
myout <<"================================================================================" << endl;
myout << endl;
myout <<" GeneralizedDavidson Solver Solver Status" << endl;
myout << endl;
myout <<"The solver is "<<(d_initialized ? "initialized." : "not initialized.") << endl;
myout <<"The number of iterations performed is " << d_iteration << endl;
myout <<"The number of operator applies performed is " << d_opApplies << endl;
myout <<"The block size is " << d_expansionSize << endl;
myout <<"The current basis size is " << d_curDim << endl;
myout <<"The number of requested eigenvalues is " << d_NEV << endl;
myout <<"The number of converged values is " << d_tester->howMany() << endl;
myout << endl;
myout.setf(std::ios_base::right, std::ios_base::adjustfield);
if( d_initialized )
{
myout << "CURRENT RITZ VALUES" << endl;
myout << std::setw(24) << "Ritz Value"
<< std::setw(30) << "Residual Norm" << endl;
myout << "--------------------------------------------------------------------------------" << endl;
if( d_residualSize > 0 )
{
std::vector<MagnitudeType> realRitz(d_curDim), imagRitz(d_curDim);
std::vector< Value<ScalarType> > ritzVals = getRitzValues();
for( int i=0; i<d_curDim; ++i )
{
realRitz[i] = ritzVals[i].realpart;
imagRitz[i] = ritzVals[i].imagpart;
}
std::vector<int> permvec;
sortValues( realRitz, imagRitz, permvec, d_curDim );
int numToPrint = std::max( d_numToPrint, d_NEV );
numToPrint = std::min( d_curDim, numToPrint );
// Because the sort manager does not use a stable sort, occasionally
// the portion of a conjugate pair with negative imaginary part will be placed
// first...in that case the following will not give the usual expected behavior
// and an extra value will be printed. This is only an issue with the output
// format because the actually sorting of Schur forms is guaranteed to be stable.
if( d_ritzIndex[permvec[numToPrint-1]] != 0 )
numToPrint++;
int i=0;
while( i<numToPrint )
{
if( imagRitz[i] == ST::zero() )
{
myout << std::setw(15) << realRitz[i];
myout << " + i" << std::setw(15) << ST::magnitude( imagRitz[i] );
if( i < d_residualSize )
myout << std::setw(20) << d_resNorms[permvec[i]] << endl;
else
myout << " Not Computed" << endl;
i++;
}
else
{
// Positive imaginary part
myout << std::setw(15) << realRitz[i];
myout << " + i" << std::setw(15) << ST::magnitude( imagRitz[i] );
if( i < d_residualSize )
myout << std::setw(20) << d_resNorms[permvec[i]] << endl;
else
myout << " Not Computed" << endl;
// Negative imaginary part
myout << std::setw(15) << realRitz[i];
myout << " - i" << std::setw(15) << ST::magnitude( imagRitz[i] );
if( i < d_residualSize )
myout << std::setw(20) << d_resNorms[permvec[i]] << endl;
else
myout << " Not Computed" << endl;
i+=2;
}
}
}
else
{
myout << std::setw(20) << "[ NONE COMPUTED ]" << endl;
}
}
myout << endl;
myout << "================================================================================" << endl;
myout << endl;
}
} // namespace Anasazi
#endif // ANASAZI_GENERALIZED_DAVIDSON_HPP
|