This file is indexed.

/usr/include/trilinos/AnasaziGeneralizedDavidson.hpp is in libtrilinos-anasazi-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
// @HEADER
// ***********************************************************************
//
//                 Anasazi: Block Eigensolvers Package
//                 Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER

#ifndef ANASAZI_GENERALIZED_DAVIDSON_HPP
#define ANASAZI_GENERALIZED_DAVIDSON_HPP

/*! \file AnasaziGeneralizedDavidson.hpp
    \brief Implementation of a block Generalized Davidson eigensolver.

    \author Steven Hamilton
*/

#include "Teuchos_RCPDecl.hpp"
#include "Teuchos_ParameterList.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"
#include "Teuchos_SerialDenseVector.hpp"
#include "Teuchos_Array.hpp"
#include "Teuchos_BLAS.hpp"
#include "Teuchos_LAPACK.hpp"

#include "AnasaziConfigDefs.hpp"
#include "AnasaziTypes.hpp"
#include "AnasaziEigenproblem.hpp"
#include "AnasaziEigensolver.hpp"
#include "AnasaziOrthoManager.hpp"
#include "AnasaziOutputManager.hpp"
#include "AnasaziSortManager.hpp"
#include "AnasaziStatusTest.hpp"

using Teuchos::RCP;

namespace Anasazi {

/*!
 * \brief Structure to contain pointers to GeneralizedDavidson state variables.
 */
template <class ScalarType, class MV>
struct GeneralizedDavidsonState {
    /*! \brief The current subspace dimension. */
    int curDim;

    /*! \brief Orthonormal basis for search subspace. */
    RCP<MV> V;

    /*! \brief Image of V under A. */
    RCP<MV> AV;

    /*! \brief Image of V under B. */
    RCP<MV> BV;

    /*! \brief Projection of A onto V. */
    RCP< Teuchos::SerialDenseMatrix<int,ScalarType> > VAV;

    /*! \brief Projection of B onto V. */
    RCP< Teuchos::SerialDenseMatrix<int,ScalarType> > VBV;

    /*! \brief Left quasi upper triangular matrix from QZ decomposition of (VAV,VBV) */
    RCP< Teuchos::SerialDenseMatrix<int,ScalarType> > S;

    /*! \brief Right quasi upper triangular matrix from QZ decomposition of (VAV,VBV) */
    RCP< Teuchos::SerialDenseMatrix<int,ScalarType> > T;

    /*! \brief Left generalized Schur vectors from QZ decomposition of (VAV,VBV) */
    RCP< Teuchos::SerialDenseMatrix<int,ScalarType> > Q;

    /*! \brief Right generalized Schur vectors from QZ decomposition of (VAV,VBV) */
    RCP< Teuchos::SerialDenseMatrix<int,ScalarType> > Z;

    /*! \brief Vector of generalized eigenvalues */
    std::vector< Value<ScalarType> > eVals;

    GeneralizedDavidsonState() : curDim(0), V(Teuchos::null), AV(Teuchos::null),
                                 BV(Teuchos::null), VAV(Teuchos::null),
                                 VBV(Teuchos::null), S(Teuchos::null),
                                 T(Teuchos::null), Q(Teuchos::null),
                                 Z(Teuchos::null), eVals(0) {}

};


/*!
 * \class GeneralizedDavidson
 * \brief Solves eigenvalue problem using generalized Davidson method
 *
 * This class searches for a few eigenvalues and corresponding eigenvectors
 * for either a standard eigenvalue problem \f$Ax=\lambda x\f$
 * or a generalized eigenvalue problem \f$Ax=\lambda B x\f$
 * Note that unlike some other solvers, the generalized Davidson method places
 * no restrictions on either matrix in a generalized eigenvalue problem.
 *
 * Tips for preconditioning:  A good preconditioner usually approximates
 * \f$(A-\sigma I)^{-1}\f$ or \f$(A-\sigma B)^{-1}\f$, where \f$\sigma\f$
 * is close to the target eigenvalue.  When searching for largest magnitude
 * eigenvalues, selecting a preconditioner \f$P^{-1} \approx B^{-1}\f$
 * usually works well and when searching for smallest magnitude eigenvalues
 * selecting \f$P^{-1} \approx A^{-1}\f$ is usually appropriate.
 *
 * This class is currently only implemented for real scalar types
 * (i.e. float, double).
 */
template <class ScalarType, class MV, class OP>
class GeneralizedDavidson : public Eigensolver<ScalarType,MV,OP>
{
  private:
    // Convenience Typedefs
    typedef MultiVecTraits<ScalarType,MV>            MVT;
    typedef OperatorTraits<ScalarType,MV,OP>         OPT;
    typedef Teuchos::ScalarTraits<ScalarType>        ST;
    typedef typename ST::magnitudeType               MagnitudeType;
    typedef Teuchos::ScalarTraits<MagnitudeType>     MT;

  public:

    /*!
     *  \brief Constructor.
     *
     * GeneralizedDavidson constructor with eigenproblem, parameters, and
     * solver utilities.
     *
     * Behavior of the solver is controlled by the following ParameterList
     * entries:
     * - "Block Size" -- block size used by algorithm.  Default: 1.
     * - "Maximum Subspace Dimension" -- maximum number of basis vectors for subspace.  Two
     *  for standard eigenvalue problem) or three (for generalized eigenvalue problem) sets of basis
     *  vectors of this size will be required. Default: 3*problem->getNEV()*"Block Size"
     * - "Initial Guess" -- how should initial vector be selected: "Random" or "User".
     *   If "User," the value in problem->getInitVec() will be used.  Default: "Random".
     * - "Print Number of Ritz Values" -- an int specifying how many Ritz values should be printed
     *   at each iteration.  Default: "NEV".
     * - "Relative Convergence Tolerance" -- should residual be scaled by corresponding Ritz value
     *   to measure convergence.  Default: "false"
     *
     */
    GeneralizedDavidson(const RCP<Eigenproblem<ScalarType,MV,OP> >  &problem,
                        const RCP<SortManager<MagnitudeType> >      &sortman,
                        const RCP<OutputManager<ScalarType> >       &outputman,
                        const RCP<StatusTest<ScalarType,MV,OP> >    &tester,
                        const RCP<OrthoManager<ScalarType,MV> >     &orthoman,
                        Teuchos::ParameterList                      &pl);

    /*!
     * \brief Solves the eigenvalue problem.
     */
    void iterate();

    /*!
     * \brief Initialize the eigenvalue problem
     *
     * Anything on the state that is not null is assumed to be valid.
     * Anything not present on the state will be generated.
     * Very limited error checking can be performed to ensure the validity of
     * state components (e.g. we cannot verify that <tt> state.AV </tt>actually corresponds
     * to <tt>A*state.V</tt>), so this function should be used carefully.
     */
    void initialize();

    /*!
     * \brief Initialize solver from state
     */
    void initialize( GeneralizedDavidsonState<ScalarType,MV>& state );

    /*!
     * \brief Get number of iterations
     */
    int getNumIters() const { return d_iteration; }

    /*!
     * \brief Reset the number of iterations
     */
    void resetNumIters() { d_iteration=0; d_opApplies=0; }

    /*!
     * \brief Get the current Ritz vectors
     */
    RCP<const MV> getRitzVectors()
    {
        if( !d_ritzVectorsValid )
            computeRitzVectors();
        return d_ritzVecs;
    }

    /*!
     * \brief Get the current Ritz values
     */
    std::vector< Value<ScalarType> > getRitzValues();

    /*!
     * \brief Get the current Ritz index vector
     */
    std::vector<int> getRitzIndex()
    {
        if( !d_ritzIndexValid )
            computeRitzIndex();
        return d_ritzIndex;
    }

    /*!
     * \brief Get indices of current block
     *
     * Number of entries is equal to getBlockSize()
     */
    std::vector<int> getBlockIndex() const
    {
        return d_expansionIndices;
    }

    /*!
     * \brief Get the current residual norms (w.r.t. norm defined by OrthoManager)
     */
    std::vector<MagnitudeType> getResNorms();

    /*!
     * \brief Get the current residual norms (w.r.t. norm defined by OrthoManager)
     */
    std::vector<MagnitudeType> getResNorms(int numWanted);

    /*!
     * \brief Get the current residual norms (2-norm)
     */
    std::vector<MagnitudeType> getRes2Norms() { return d_resNorms; }

    /*!
     * \brief Get the current Ritz residual norms (2-norm)
     *
     * GeneralizedDavidson doesn't compute Ritz residual norms
     * so this is equivalent to calling getRes2Norms()
     */
    std::vector<MagnitudeType> getRitzRes2Norms() { return d_resNorms; }

    /*!
     * \brief Get current subspace dimension
     */
    int getCurSubspaceDim() const { return d_curDim; }

    /*!
     * \brief Get maximum subspace dimension
     */
    int getMaxSubspaceDim() const { return d_maxSubspaceDim; }

    /*!
     * \brief Set status test
     */
    void setStatusTest( RCP<StatusTest<ScalarType,MV,OP> > tester) { d_tester = tester; }

    /*!
     * \brief Get status test
     */
    RCP<StatusTest<ScalarType,MV,OP> > getStatusTest() const { return d_tester; }

    /*!
     * \brief Get eigenproblem
     */
    const Eigenproblem<ScalarType,MV,OP> & getProblem() const { return *d_problem; }

    /*!
     * \brief Get block size
     */
    int getBlockSize() const { return d_expansionSize; }

    /*!
     * \brief Set block size
     */
    void setBlockSize(int blockSize);

    /*!
     * \brief Set problem size.
     */
    void setSize(int blockSize, int maxSubDim);

    /*!
     * \brief Get the auxilliary vectors
     */
    Teuchos::Array< RCP<const MV> > getAuxVecs() const { return d_auxVecs; }

    /*!
     * \brief Set auxilliary vectors
     *
     * Manually setting the auxilliary vectors invalidates the current state
     * of the solver.  Reuse of any components of the solver requires extracting
     * the state, orthogonalizing V against the aux vecs and reinitializing.
     */
    void setAuxVecs( const Teuchos::Array< RCP<const MV> > &auxVecs );

    /*!
     * \brief Query if the solver is in an initialized state
     */
    bool isInitialized() const { return d_initialized; }

    /*!
     * \brief Print current status of solver
     */
    void currentStatus( std::ostream &myout );

    /*!
     * \brief Get the current state of the eigensolver.
     */
    GeneralizedDavidsonState<ScalarType,MV> getState();

    /*!
     * Reorder Schur form, bringing wanted values to front
     */
    void sortProblem( int numWanted );

  private:

    // Expand subspace
    void expandSearchSpace();

    // Apply Operators
    void applyOperators();

    // Update projections
    void updateProjections();

    // Solve projected eigenproblem
    void solveProjectedEigenproblem();

    // Compute eigenvectors of matrix pair
    void computeProjectedEigenvectors( Teuchos::SerialDenseMatrix<int,ScalarType> &X );

    // Scale projected eigenvectors by alpha/beta
    void scaleEigenvectors( const Teuchos::SerialDenseMatrix<int,ScalarType> &X,
                                  Teuchos::SerialDenseMatrix<int,ScalarType> &X_alpha,
                                  Teuchos::SerialDenseMatrix<int,ScalarType> &X_beta );

    // Sort vectors of pairs
    void sortValues( std::vector<MagnitudeType> &realParts,
                     std::vector<MagnitudeType> &imagParts,
                     std::vector<int>    &permVec,
                     int N);

    // Compute Residual
    void computeResidual();

    // Update the current Ritz index vector
    void computeRitzIndex();

    // Compute the current Ritz vectors
    void computeRitzVectors();

    // Operators
    RCP<Eigenproblem<ScalarType,MV,OP> > d_problem;
    Teuchos::ParameterList d_pl;
    RCP<const OP> d_A;
    RCP<const OP> d_B;
    RCP<const OP> d_P;
    bool d_haveB;
    bool d_haveP;

    // Parameters
    int d_blockSize;
    int d_maxSubspaceDim;
    int d_NEV;
    int d_numToPrint;
    std::string d_initType;
    int d_verbosity;
    bool d_relativeConvergence;

    // Managers
    RCP<OutputManager<ScalarType> >     d_outputMan;
    RCP<OrthoManager<ScalarType,MV> >   d_orthoMan;
    RCP<SortManager<MagnitudeType> >    d_sortMan;
    RCP<StatusTest<ScalarType,MV,OP> >  d_tester;

    // Eigenvalues
    std::vector< Value<ScalarType> > d_eigenvalues;

    // Residual Vector
    RCP<MV> d_R;
    std::vector<MagnitudeType> d_resNorms;

    // Subspace Vectors
    RCP<MV> d_V;
    RCP<MV> d_AV;
    RCP<MV> d_BV;
    RCP<MV> d_ritzVecSpace;
    RCP<MV> d_ritzVecs;
    Teuchos::Array< RCP<const MV> > d_auxVecs;

    // Serial Matrices
    RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > d_VAV;
    RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > d_VBV;
    RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > d_S;
    RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > d_T;
    RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > d_Q;
    RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > d_Z;

    // Arrays for holding Ritz values
    std::vector<MagnitudeType> d_alphar;
    std::vector<MagnitudeType> d_alphai;
    std::vector<MagnitudeType> d_betar;
    std::vector<int>    d_ritzIndex;
    std::vector<int>    d_convergedIndices;
    std::vector<int>    d_expansionIndices;

    // Current subspace dimension
    int d_curDim;

    // How many vectors are to be added to the subspace
    int d_expansionSize;

    // Should subspace expansion use leading vectors
    //  (if false, will use leading unconverged vectors)
    bool d_useLeading;

    // What should be used for test subspace (V, AV, or BV)
    std::string d_testSpace;

    // How many residual vectors are valid
    int d_residualSize;

    int  d_iteration;
    int  d_opApplies;
    bool d_initialized;
    bool d_ritzIndexValid;
    bool d_ritzVectorsValid;

};

//---------------------------------------------------------------------------//
// Prevent instantiation on complex scalar type
//---------------------------------------------------------------------------//
template <class MagnitudeType, class MV, class OP>
class GeneralizedDavidson<std::complex<MagnitudeType>,MV,OP>
{
  public:

    typedef std::complex<MagnitudeType> ScalarType;
    GeneralizedDavidson(
        const RCP<Eigenproblem<ScalarType,MV,OP> > &problem,
        const RCP<SortManager<MagnitudeType> >     &sortman,
        const RCP<OutputManager<ScalarType> >      &outputman,
        const RCP<StatusTest<ScalarType,MV,OP> >   &tester,
        const RCP<OrthoManager<ScalarType,MV> >    &orthoman,
        Teuchos::ParameterList                     &pl)
    {
        // Provide a compile error when attempting to instantiate on complex type
        MagnitudeType::this_class_is_missing_a_specialization();
    }
};

//---------------------------------------------------------------------------//
// PUBLIC METHODS
//---------------------------------------------------------------------------//

//---------------------------------------------------------------------------//
// Constructor
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
GeneralizedDavidson<ScalarType,MV,OP>::GeneralizedDavidson(
        const RCP<Eigenproblem<ScalarType,MV,OP> > &problem,
        const RCP<SortManager<MagnitudeType> >     &sortman,
        const RCP<OutputManager<ScalarType> >      &outputman,
        const RCP<StatusTest<ScalarType,MV,OP> >   &tester,
        const RCP<OrthoManager<ScalarType,MV> >    &orthoman,
        Teuchos::ParameterList                     &pl )
{
    TEUCHOS_TEST_FOR_EXCEPTION(   problem == Teuchos::null, std::invalid_argument, "No Eigenproblem given to solver." );
    TEUCHOS_TEST_FOR_EXCEPTION( outputman == Teuchos::null, std::invalid_argument, "No OutputManager given to solver." );
    TEUCHOS_TEST_FOR_EXCEPTION(  orthoman == Teuchos::null, std::invalid_argument, "No OrthoManager given to solver." );
    TEUCHOS_TEST_FOR_EXCEPTION(   sortman == Teuchos::null, std::invalid_argument, "No SortManager given to solver." );
    TEUCHOS_TEST_FOR_EXCEPTION(    tester == Teuchos::null, std::invalid_argument, "No StatusTest given to solver." );
    TEUCHOS_TEST_FOR_EXCEPTION(   !problem->isProblemSet(), std::invalid_argument, "Problem has not been set." );

    d_problem = problem;
    d_pl = pl;
    TEUCHOS_TEST_FOR_EXCEPTION( problem->getA()==Teuchos::null && problem->getOperator()==Teuchos::null,
                                std::invalid_argument, "Either A or Operator must be non-null on Eigenproblem");
    d_A = problem->getA()!=Teuchos::null ? problem->getA() : problem->getOperator();
    d_B = problem->getM();
    d_P = problem->getPrec();
    d_sortMan = sortman;
    d_outputMan = outputman;
    d_tester = tester;
    d_orthoMan = orthoman;

    // Pull entries from the ParameterList and Eigenproblem
    d_NEV        = d_problem->getNEV();
    d_initType   = d_pl.get<std::string>("Initial Guess","Random");
    d_numToPrint = d_pl.get<int>("Print Number of Ritz Values",-1);
    d_useLeading = d_pl.get<bool>("Use Leading Vectors",false);

    if( d_B != Teuchos::null )
        d_haveB = true;
    else
        d_haveB = false;

    if( d_P != Teuchos::null )
        d_haveP = true;
    else
        d_haveP = false;

    d_testSpace = d_pl.get<std::string>("Test Space","V");
    TEUCHOS_TEST_FOR_EXCEPTION( d_testSpace!="V" && d_testSpace!="AV" && d_testSpace!="BV", std::invalid_argument,
        "Anasazi::GeneralizedDavidson: Test Space must be V, AV, or BV" );
    TEUCHOS_TEST_FOR_EXCEPTION( d_testSpace=="V" ? false : !d_haveB, std::invalid_argument,
        "Anasazi::GeneralizedDavidson: Test Space must be V for standard eigenvalue problem" );

    // Allocate space for subspace vectors, projected matrices
    int blockSize  = d_pl.get<int>("Block Size",1);
    int maxSubDim  = d_pl.get<int>("Maximum Subspace Dimension",3*d_NEV*blockSize);
    d_blockSize      = -1;
    d_maxSubspaceDim = -1;
    setSize( blockSize, maxSubDim );
    d_relativeConvergence = d_pl.get<bool>("Relative Convergence Tolerance",false);

    // Make sure subspace size is consistent with requested eigenvalues
    TEUCHOS_TEST_FOR_EXCEPTION( d_blockSize <= 0, std::invalid_argument, "Block size must be positive");
    TEUCHOS_TEST_FOR_EXCEPTION( d_maxSubspaceDim <= 0, std::invalid_argument, "Maximum Subspace Dimension must be positive" );
    TEUCHOS_TEST_FOR_EXCEPTION( d_problem->getNEV()+2 > pl.get<int>("Maximum Subspace Dimension"),
                                std::invalid_argument, "Maximum Subspace Dimension must be strictly greater than NEV");
    TEUCHOS_TEST_FOR_EXCEPTION( d_maxSubspaceDim > MVT::GetGlobalLength(*problem->getInitVec()),
                                std::invalid_argument, "Maximum Subspace Dimension cannot exceed problem size");


    d_curDim = 0;
    d_iteration = 0;
    d_opApplies = 0;
    d_ritzIndexValid = false;
    d_ritzVectorsValid = false;
}


//---------------------------------------------------------------------------//
// Iterate
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidson<ScalarType,MV,OP>::iterate()
{
    // Initialize Problem
    if( !d_initialized )
    {
        d_outputMan->stream(Warnings) << "WARNING: GeneralizedDavidson::iterate called without first calling initialize" << std::endl;
        d_outputMan->stream(Warnings) << "         Default initialization will be performed" << std::endl;
        initialize();
    }

    // Print current status
    if( d_outputMan->isVerbosity(Debug) )
    {
        currentStatus( d_outputMan->stream(Debug) );
    }
    else if( d_outputMan->isVerbosity(IterationDetails) )
    {
        currentStatus( d_outputMan->stream(IterationDetails) );
    }

    while( d_tester->getStatus() != Passed && d_curDim+d_expansionSize <= d_maxSubspaceDim )
    {
        d_iteration++;

        expandSearchSpace();

        applyOperators();

        updateProjections();

        solveProjectedEigenproblem();

        // Make sure the most significant Ritz values are in front
        // We want the greater of the block size and the number of
        //  requested values, but can't exceed the current dimension
        int numToSort = std::max(d_blockSize,d_NEV);
        numToSort = std::min(numToSort,d_curDim);
        sortProblem( numToSort );

        computeResidual();

        // Print current status
        if( d_outputMan->isVerbosity(Debug) )
        {
            currentStatus( d_outputMan->stream(Debug) );
        }
        else if( d_outputMan->isVerbosity(IterationDetails) )
        {
            currentStatus( d_outputMan->stream(IterationDetails) );
        }
    }
}

//---------------------------------------------------------------------------//
// Return the current state struct
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
GeneralizedDavidsonState<ScalarType,MV> GeneralizedDavidson<ScalarType,MV,OP>::getState()
{
    GeneralizedDavidsonState<ScalarType,MV> state;
    state.curDim = d_curDim;
    state.V      = d_V;
    state.AV     = d_AV;
    state.BV     = d_BV;
    state.VAV    = d_VAV;
    state.VBV    = d_VBV;
    state.S      = d_S;
    state.T      = d_T;
    state.Q      = d_Q;
    state.Z      = d_Z;
    state.eVals  = getRitzValues();
    return state;
}

//---------------------------------------------------------------------------//
// Set block size
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidson<ScalarType,MV,OP>::setBlockSize(int blockSize)
{
    setSize(blockSize,d_maxSubspaceDim);
}

//---------------------------------------------------------------------------//
// Set block size and maximum subspace dimension.
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidson<ScalarType,MV,OP>::setSize(int blockSize, int maxSubDim )
{
    if( blockSize != d_blockSize || maxSubDim != d_maxSubspaceDim )
    {
        d_blockSize = blockSize;
        d_maxSubspaceDim = maxSubDim;
        d_initialized = false;

        d_outputMan->stream(Debug) << " >> Anasazi::GeneralizedDavidson: Allocating eigenproblem"
            << " state with block size of " << d_blockSize
            << " and maximum subspace dimension of " << d_maxSubspaceDim << std::endl;

        // Resize arrays for Ritz values
        d_alphar.resize(d_maxSubspaceDim);
        d_alphai.resize(d_maxSubspaceDim);
        d_betar.resize(d_maxSubspaceDim);

        // Shorten for convenience here
        int msd = d_maxSubspaceDim;

        // Temporarily save initialization vector to clone needed vectors
        RCP<const MV> initVec = d_problem->getInitVec();

        // Allocate subspace vectors
        d_V            = MVT::Clone(*initVec, msd);
        d_AV           = MVT::Clone(*initVec, msd);

        // Allocate serial matrices
        d_VAV = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(msd,msd) );
        d_S   = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(msd,msd) );
        d_Q   = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(msd,msd) );
        d_Z   = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(msd,msd) );

        // If this is generalized eigenproblem, allocate B components
        if( d_haveB )
        {
            d_BV  = MVT::Clone(*initVec, msd);
            d_VBV = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(msd,msd) );
            d_T   = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(msd,msd) );
        }

        /* Allocate space for residual and Ritz vectors
         * The residual serves two purposes in the Davidson algorithm --
         *  subspace expansion (via the preconditioner) and convergence checking.
         * We need "Block Size" vectors for subspace expantion and NEV vectors
         *  for convergence checking.  Allocate space for max of these, one
         *  extra to avoid splitting conjugate pairs
         * Allocate one more than "Block Size" to avoid splitting a conjugate pair
         */
        d_R = MVT::Clone(*initVec,std::max(d_blockSize,d_NEV)+1);
        d_ritzVecSpace = MVT::Clone(*initVec,std::max(d_blockSize,d_NEV)+1);
    }
}

//---------------------------------------------------------------------------//
/*
 * Initialize the eigenvalue problem
 *
 * Anything on the state that is not null is assumed to be valid.
 * Anything not present on the state will be generated
 * Very limited error checking can be performed to ensure the validity of
 * state components (e.g. we cannot verify that state.AV actually corresponds
 * to A*state.V), so this function should be used carefully.
 */
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidson<ScalarType,MV,OP>::initialize( GeneralizedDavidsonState<ScalarType,MV>& state )
{
    // If state has nonzero dimension, we initialize from that, otherwise
    //  we'll pick d_blockSize vectors to start with
    d_curDim = (state.curDim > 0 ? state.curDim : d_blockSize );

    d_outputMan->stream(Debug) << " >> Anasazi::GeneralizedDavidson: Initializing state"
        << " with subspace dimension " << d_curDim << std::endl;

    // Index for 1st block_size vectors
    std::vector<int> initInds(d_curDim);
    for( int i=0; i<d_curDim; ++i )
        initInds[i] = i;

    // View of vectors that need to be initialized
    RCP<MV>  V1 = MVT::CloneViewNonConst(*d_V,initInds);

    // If state's dimension is large enough, use state.V to initialize
    bool reset_V = false;;
    if( state.curDim > 0 && state.V != Teuchos::null && MVT::GetNumberVecs(*state.V) >= d_curDim )
    {
        if( state.V != d_V )
            MVT::SetBlock(*state.V,initInds,*V1);
    }
    // If there aren't enough vectors in problem->getInitVec() or the user specifically
    //  wants to use random data, set V to random
    else if( MVT::GetNumberVecs(*d_problem->getInitVec()) < d_blockSize || d_initType == "Random" )
    {
        MVT::MvRandom(*V1);
        reset_V = true;
    }
    // Use vectors in problem->getInitVec()
    else
    {
        RCP<const MV> initVec = MVT::CloneView(*d_problem->getInitVec(),initInds);
        MVT::SetBlock(*initVec,initInds,*V1);
        reset_V = true;
    }

    // If we reset V, it needs to be orthonormalized
    if( reset_V )
    {
        int rank = d_orthoMan->projectAndNormalize( *V1, d_auxVecs );
        TEUCHOS_TEST_FOR_EXCEPTION( rank < d_blockSize, std::logic_error,
            "Anasazi::GeneralizedDavidson::initialize(): Error generating initial orthonormal basis" );
    }

    if( d_outputMan->isVerbosity(Debug) )
    {
        d_outputMan->stream(Debug) << " >> Anasazi::GeneralizedDavidson: Error in V^T V == I: "
            << d_orthoMan->orthonormError( *V1 ) << std::endl;
    }

    // Now process AV
    RCP<MV> AV1 = MVT::CloneViewNonConst(*d_AV,initInds);

    // If AV in the state is valid and of appropriate size, use it
    // We have no way to check that AV is actually A*V
    if( !reset_V && state.AV != Teuchos::null && MVT::GetNumberVecs(*state.AV) >= d_curDim )
    {
        if( state.AV != d_AV )
            MVT::SetBlock(*state.AV,initInds,*AV1);
    }
    // Otherwise apply A to V
    else
    {
        OPT::Apply( *d_A, *V1, *AV1 );
        d_opApplies += MVT::GetNumberVecs( *V1 );
    }

    // Views of matrix to be updated
    Teuchos::SerialDenseMatrix<int,ScalarType> VAV1( Teuchos::View, *d_VAV, d_curDim, d_curDim );

    // If the state has a valid VAV, use it
    if( !reset_V && state.VAV != Teuchos::null && state.VAV->numRows() >= d_curDim && state.VAV->numCols() >= d_curDim )
    {
        if( state.VAV != d_VAV )
        {
            Teuchos::SerialDenseMatrix<int,ScalarType> state_VAV( Teuchos::View, *state.VAV, d_curDim, d_curDim );
            VAV1.assign( state_VAV );
        }
    }
    // Otherwise compute VAV from V,AV
    else
    {
        if( d_testSpace == "V" )
        {
            MVT::MvTransMv( ST::one(),  *V1, *AV1, VAV1 );
        }
        else if( d_testSpace == "AV" )
        {
            MVT::MvTransMv( ST::one(), *AV1, *AV1, VAV1 );
        }
        else if( d_testSpace == "BV" )
        {
            RCP<MV> BV1 = MVT::CloneViewNonConst(*d_BV,initInds);
            MVT::MvTransMv( ST::one(), *BV1, *AV1, VAV1 );
        }
    }

    // Process BV if we have it
    if( d_haveB )
    {
        RCP<MV> BV1 = MVT::CloneViewNonConst(*d_BV,initInds);

        // If BV in the state is valid and of appropriate size, use it
        // We have no way to check that BV is actually B*V
        if( !reset_V && state.BV != Teuchos::null && MVT::GetNumberVecs(*state.BV) >= d_curDim )
        {
            if( state.BV != d_BV )
                MVT::SetBlock(*state.BV,initInds,*BV1);
        }
        // Otherwise apply B to V
        else
        {
            OPT::Apply( *d_B, *V1, *BV1 );
        }

        // Views of matrix to be updated
        Teuchos::SerialDenseMatrix<int,ScalarType> VBV1( Teuchos::View, *d_VBV, d_curDim, d_curDim );

        // If the state has a valid VBV, use it
        if( !reset_V && state.VBV != Teuchos::null && state.VBV->numRows() >= d_curDim && state.VBV->numCols() >= d_curDim )
        {
            if( state.VBV != d_VBV )
            {
                Teuchos::SerialDenseMatrix<int,ScalarType> state_VBV( Teuchos::View, *state.VBV, d_curDim, d_curDim );
                VBV1.assign( state_VBV );
            }
        }
        // Otherwise compute VBV from V,BV
        else
        {
            if( d_testSpace == "V" )
            {
                MVT::MvTransMv( ST::one(),  *V1, *BV1, VBV1 );
            }
            else if( d_testSpace == "AV" )
            {
                MVT::MvTransMv( ST::one(), *AV1, *BV1, VBV1 );
            }
            else if( d_testSpace == "BV" )
            {
                MVT::MvTransMv( ST::one(), *BV1, *BV1, VBV1 );
            }
        }
    }

    // Update Ritz values
    solveProjectedEigenproblem();

    // Sort
    int numToSort = std::max(d_blockSize,d_NEV);
    numToSort = std::min(numToSort,d_curDim);
    sortProblem( numToSort );

    // Get valid residual
    computeResidual();

    // Set solver to initialized
    d_initialized = true;
}

//---------------------------------------------------------------------------//
// Initialize the eigenvalue problem with empty state
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidson<ScalarType,MV,OP>::initialize()
{
    GeneralizedDavidsonState<ScalarType,MV> empty;
    initialize( empty );
}

//---------------------------------------------------------------------------//
// Get current residual norms
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType>
    GeneralizedDavidson<ScalarType,MV,OP>::getResNorms()
{
    return getResNorms(d_residualSize);
}

//---------------------------------------------------------------------------//
// Get current residual norms
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType>
    GeneralizedDavidson<ScalarType,MV,OP>::getResNorms(int numWanted)
{
    std::vector<int> resIndices(numWanted);
    for( int i=0; i<numWanted; ++i )
        resIndices[i]=i;

    RCP<const MV> R_checked = MVT::CloneView( *d_R, resIndices );

    std::vector<MagnitudeType> resNorms;
    d_orthoMan->norm( *R_checked, resNorms );

    return resNorms;
}

//---------------------------------------------------------------------------//
// Get current Ritz values
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
std::vector< Value<ScalarType> > GeneralizedDavidson<ScalarType,MV,OP>::getRitzValues()
{
    std::vector< Value<ScalarType> > ritzValues;
    for( int ival=0; ival<d_curDim; ++ival )
    {
        Value<ScalarType> thisVal;
        thisVal.realpart = d_alphar[ival] / d_betar[ival];
        if( d_betar[ival] != MT::zero() )
            thisVal.imagpart = d_alphai[ival] / d_betar[ival];
        else
            thisVal.imagpart = MT::zero();

        ritzValues.push_back( thisVal );
    }

    return ritzValues;
}

//---------------------------------------------------------------------------//
/*
 * Set auxilliary vectors
 *
 * Manually setting the auxilliary vectors invalidates the current state
 * of the solver.  Reuse of any components of the solver requires extracting
 * the state, orthogonalizing V against the aux vecs and reinitializing.
 */
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidson<ScalarType,MV,OP>::setAuxVecs(
        const Teuchos::Array< RCP<const MV> > &auxVecs )
{
    d_auxVecs = auxVecs;

    // Set state to uninitialized if any vectors were set here
    typename Teuchos::Array< RCP<const MV> >::const_iterator arrItr;
    int numAuxVecs=0;
    for( arrItr=auxVecs.begin(); arrItr!=auxVecs.end(); ++arrItr )
    {
        numAuxVecs += MVT::GetNumberVecs( *(*arrItr) );
    }
    if( numAuxVecs > 0 )
        d_initialized = false;
}

//---------------------------------------------------------------------------//
// Reorder Schur form, bringing wanted values to front
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidson<ScalarType,MV,OP>::sortProblem( int numWanted )
{
    // Get permutation vector
    std::vector<MagnitudeType> realRitz(d_curDim), imagRitz(d_curDim);
    std::vector< Value<ScalarType> > ritzVals = getRitzValues();
    for( int i=0; i<d_curDim; ++i )
    {
        realRitz[i] = ritzVals[i].realpart;
        imagRitz[i] = ritzVals[i].imagpart;
    }

    std::vector<int> permVec;
    sortValues( realRitz, imagRitz, permVec, d_curDim );

    std::vector<int> sel(d_curDim,0);
    for( int ii=0; ii<numWanted; ++ii )
        sel[ permVec[ii] ]=1;

    if( d_haveB )
    {
        int ijob  = 0; // reorder only, no condition number estimates
        int wantq = 1; // keep left Schur vectors
        int wantz = 1; // keep right Schur vectors
        int work_size=10*d_maxSubspaceDim+16;
        std::vector<ScalarType> work(work_size);
        int sdim   = 0;
        int iwork_size = 1;
        int iwork;
        int info   = 0;

        Teuchos::LAPACK<int,ScalarType> lapack;
        lapack.TGSEN( ijob, wantq, wantz, &sel[0], d_curDim, d_S->values(), d_S->stride(), d_T->values(), d_T->stride(),
                      &d_alphar[0], &d_alphai[0], &d_betar[0], d_Q->values(), d_Q->stride(), d_Z->values(), d_Z->stride(),
                      &sdim, 0, 0, 0, &work[0], work_size, &iwork, iwork_size, &info );

        d_ritzIndexValid   = false;
        d_ritzVectorsValid = false;

        std::stringstream ss;
        ss << "Anasazi::GeneralizedDavidson: TGSEN returned error code " << info << std::endl;
        TEUCHOS_TEST_FOR_EXCEPTION( info<0, std::runtime_error, ss.str() );
        if( info > 0 )
        {
            // Only issue a warning for positive error code, this usually indicates
            //  that the system has not been fully reordered, presumably due to ill-conditioning.
            // This is usually not detrimental to the calculation.
            d_outputMan->stream(Warnings) << "WARNING: " << ss.str() << std::endl;
            d_outputMan->stream(Warnings) << "  Problem may not be correctly sorted" << std::endl;
        }
    }
    else {
      char getCondNum = 'N'; // no condition number estimates
      char getQ = 'V';       // keep Schur vectors
      int subDim = 0;
      int work_size = d_curDim;
      std::vector<ScalarType> work(work_size);
      int iwork_size = 1;
      int iwork = 0;
      int info = 0;

      Teuchos::LAPACK<int,ScalarType> lapack;
      lapack.TRSEN (getCondNum, getQ, &sel[0], d_curDim, d_S->values (),
                    d_S->stride (), d_Z->values (), d_Z->stride (),
                    &d_alphar[0], &d_alphai[0], &subDim, 0, 0, &work[0],
                    work_size, &iwork, iwork_size, &info );

      std::fill( d_betar.begin(), d_betar.end(), ST::one() );

      d_ritzIndexValid = false;
      d_ritzVectorsValid = false;

      TEUCHOS_TEST_FOR_EXCEPTION(
        info < 0, std::runtime_error, "Anasazi::GeneralizedDavidson::"
        "sortProblem: LAPACK routine TRSEN returned error code INFO = "
        << info << " < 0.  This indicates that argument " << -info
        << " (counting starts with one) of TRSEN had an illegal value.");

      // LAPACK's documentation suggests that this should only happen
      // in the real-arithmetic case, because I only see INFO == 1
      // possible for DTRSEN, not for ZTRSEN.  Nevertheless, it's
      // harmless to check regardless.
      TEUCHOS_TEST_FOR_EXCEPTION(
        info == 1, std::runtime_error, "Anasazi::GeneralizedDavidson::"
        "sortProblem: LAPACK routine TRSEN returned error code INFO = 1.  "
        "This indicates that the reordering failed because some eigenvalues "
        "are too close to separate (the problem is very ill-conditioned).");

      TEUCHOS_TEST_FOR_EXCEPTION(
        info > 1, std::logic_error, "Anasazi::GeneralizedDavidson::"
        "sortProblem: LAPACK routine TRSEN returned error code INFO = "
        << info << " > 1.  This should not be possible.  It may indicate an "
        "error either in LAPACK itself, or in Teuchos' LAPACK wrapper.");
    }
}


//---------------------------------------------------------------------------//
// PRIVATE IMPLEMENTATION
//---------------------------------------------------------------------------//

//---------------------------------------------------------------------------//
// Expand subspace using preconditioner and orthogonalize
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidson<ScalarType,MV,OP>::expandSearchSpace()
{
    // Get indices into relevant portion of residual and
    //  location to be added to search space
    std::vector<int> newIndices(d_expansionSize);
    for( int i=0; i<d_expansionSize; ++i )
    {
        newIndices[i] = d_curDim+i;
    }

    // Get indices into pre-existing search space
    std::vector<int> curIndices(d_curDim);
    for( int i=0; i<d_curDim; ++i )
        curIndices[i] = i;

    // Get View of vectors
    RCP<MV>       V_new    = MVT::CloneViewNonConst( *d_V, newIndices);
    RCP<const MV> V_cur    = MVT::CloneView(         *d_V, curIndices);
    RCP<const MV> R_active = MVT::CloneView(         *d_R, d_expansionIndices);

    if( d_haveP )
    {
        // Apply Preconditioner to Residual
        OPT::Apply( *d_P, *R_active, *V_new );
    }
    else
    {
        // Just copy the residual
        MVT::SetBlock( *R_active, newIndices, *d_V );
    }

    // Normalize new vector against existing vectors in V plus auxVecs
    Teuchos::Array< RCP<const MV> > against = d_auxVecs;
    against.push_back( V_cur );
    int rank = d_orthoMan->projectAndNormalize(*V_new,against);

    if( d_outputMan->isVerbosity(Debug) )
    {
        std::vector<int> allIndices(d_curDim+d_expansionSize);
        for( int i=0; i<d_curDim+d_expansionSize; ++i )
            allIndices[i]=i;

        RCP<const MV> V_all = MVT::CloneView( *d_V, allIndices );

        d_outputMan->stream(Debug) << " >> Anasazi::GeneralizedDavidson: Error in V^T V == I: "
            << d_orthoMan->orthonormError( *V_all ) << std::endl;
    }

    TEUCHOS_TEST_FOR_EXCEPTION( rank != d_expansionSize, std::runtime_error,
        "Anasazi::GeneralizedDavidson::ExpandSearchSpace(): Orthonormalization of new vectors failed" );

}

//---------------------------------------------------------------------------//
// Apply operators
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidson<ScalarType,MV,OP>::applyOperators()
{
    // Get indices for different components
    std::vector<int> newIndices(d_expansionSize);
    for( int i=0; i<d_expansionSize; ++i )
        newIndices[i] = d_curDim+i;

    // Get Views
    RCP<const MV>  V_new = MVT::CloneView(         *d_V,  newIndices );
    RCP<MV>       AV_new = MVT::CloneViewNonConst( *d_AV, newIndices );

    // Multiply by A
    OPT::Apply( *d_A, *V_new, *AV_new );
    d_opApplies += MVT::GetNumberVecs( *V_new );

    // Multiply by B
    if( d_haveB )
    {
        RCP<MV>       BV_new = MVT::CloneViewNonConst( *d_BV, newIndices );
        OPT::Apply( *d_B, *V_new, *BV_new );
    }
}

//---------------------------------------------------------------------------//
// Update projected matrices.
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidson<ScalarType,MV,OP>::updateProjections()
{
    // Get indices for different components
    std::vector<int> newIndices(d_expansionSize);
    for( int i=0; i<d_expansionSize; ++i )
        newIndices[i] = d_curDim+i;

    std::vector<int> curIndices(d_curDim);
    for( int i=0; i<d_curDim; ++i )
        curIndices[i] = i;

    std::vector<int> allIndices(d_curDim+d_expansionSize);
    for( int i=0; i<d_curDim+d_expansionSize; ++i )
        allIndices[i] = i;

    // Test subspace can be V, AV, or BV
    RCP<const MV> W_new, W_all;
    if( d_testSpace == "V" )
    {
        W_new = MVT::CloneView(*d_V, newIndices );
        W_all = MVT::CloneView(*d_V, allIndices );
    }
    else if( d_testSpace == "AV" )
    {
        W_new = MVT::CloneView(*d_AV, newIndices );
        W_all = MVT::CloneView(*d_AV, allIndices );
    }
    else if( d_testSpace == "BV" )
    {
        W_new = MVT::CloneView(*d_BV, newIndices );
        W_all = MVT::CloneView(*d_BV, allIndices );
    }

    // Get views of AV
    RCP<const MV>     AV_new = MVT::CloneView(*d_AV, newIndices);
    RCP<const MV> AV_current = MVT::CloneView(*d_AV, curIndices);

    // Last block_size rows of VAV (minus final entry)
    Teuchos::SerialDenseMatrix<int,ScalarType> VAV_lastrow( Teuchos::View, *d_VAV, d_expansionSize, d_curDim, d_curDim, 0 );
    MVT::MvTransMv( ST::one(), *W_new, *AV_current, VAV_lastrow );

    // Last block_size columns of VAV
    Teuchos::SerialDenseMatrix<int,ScalarType> VAV_lastcol( Teuchos::View, *d_VAV, d_curDim+d_expansionSize, d_expansionSize, 0, d_curDim );
    MVT::MvTransMv( ST::one(), *W_all, *AV_new, VAV_lastcol );

    if( d_haveB )
    {
        // Get views of BV
        RCP<const MV>     BV_new = MVT::CloneView(*d_BV, newIndices);
        RCP<const MV> BV_current = MVT::CloneView(*d_BV, curIndices);

        // Last block_size rows of VBV (minus final entry)
        Teuchos::SerialDenseMatrix<int,ScalarType> VBV_lastrow( Teuchos::View, *d_VBV, d_expansionSize, d_curDim, d_curDim, 0 );
        MVT::MvTransMv( ST::one(), *W_new, *BV_current, VBV_lastrow );

        // Last block_size columns of VBV
        Teuchos::SerialDenseMatrix<int,ScalarType> VBV_lastcol( Teuchos::View, *d_VBV, d_curDim+d_expansionSize, d_expansionSize, 0, d_curDim );
        MVT::MvTransMv( ST::one(), *W_all, *BV_new, VBV_lastcol );
    }

    // All bases are expanded, increase current subspace dimension
    d_curDim += d_expansionSize;

    d_ritzIndexValid   = false;
    d_ritzVectorsValid = false;
}

//---------------------------------------------------------------------------//
// Solve low dimensional eigenproblem using LAPACK
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidson<ScalarType,MV,OP>::solveProjectedEigenproblem()
{
    if( d_haveB )
    {
        // VAV and VBV need to stay unchanged, GGES will overwrite
        //  S and T with the triangular matrices from the generalized
        //  Schur form
        d_S->assign(*d_VAV);
        d_T->assign(*d_VBV);

        // Get QZ Decomposition of Projected Problem
        char leftVecs  = 'V'; // compute left vectors
        char rightVecs = 'V'; // compute right vectors
        char sortVals  = 'N'; // don't sort
        int sdim;
        // int work_size = 10*d_curDim+16;
        Teuchos::LAPACK<int,ScalarType> lapack;
        int info;
        // workspace query
        int work_size = -1;
        std::vector<ScalarType> work(1);
        lapack.GGES( leftVecs, rightVecs, sortVals, NULL, d_curDim, d_S->values(), d_S->stride(),
                     d_T->values(), d_T->stride(), &sdim, &d_alphar[0], &d_alphai[0], &d_betar[0],
                     d_Q->values(), d_Q->stride(), d_Z->values(), d_Z->stride(), &work[0], work_size, 0, &info );
        // actual call
        work_size = work[0];
        work.resize(work_size);
        lapack.GGES( leftVecs, rightVecs, sortVals, NULL, d_curDim, d_S->values(), d_S->stride(),
                     d_T->values(), d_T->stride(), &sdim, &d_alphar[0], &d_alphai[0], &d_betar[0],
                     d_Q->values(), d_Q->stride(), d_Z->values(), d_Z->stride(), &work[0], work_size, 0, &info );

        d_ritzIndexValid   = false;
        d_ritzVectorsValid = false;

        std::stringstream ss;
        ss << "Anasazi::GeneralizedDavidson: GGES returned error code " << info << std::endl;
        TEUCHOS_TEST_FOR_EXCEPTION( info!=0, std::runtime_error, ss.str() );
    }
    else
    {
        // VAV needs to stay unchanged, GGES will overwrite
        //  S with the triangular matrix from the Schur form
        d_S->assign(*d_VAV);

        // Get QR Decomposition of Projected Problem
        char vecs = 'V'; // compute Schur vectors
        int sdim;
        int work_size = 3*d_curDim;
        std::vector<ScalarType>  work(work_size);
        int info;

        Teuchos::LAPACK<int,ScalarType> lapack;
        lapack.GEES( vecs, d_curDim, d_S->values(), d_S->stride(), &sdim, &d_alphar[0], &d_alphai[0],
                     d_Z->values(), d_Z->stride(), &work[0], work_size, 0, 0, &info);

        std::fill( d_betar.begin(), d_betar.end(), ST::one() );

        d_ritzIndexValid   = false;
        d_ritzVectorsValid = false;

        std::stringstream ss;
        ss << "Anasazi::GeneralizedDavidson: GEES returned error code " << info << std::endl;
        TEUCHOS_TEST_FOR_EXCEPTION( info!=0, std::runtime_error, ss.str() );
    }
}

//---------------------------------------------------------------------------//
/*
 * Get index vector into current Ritz values/vectors
 *
 * The current ordering of d_alphar, d_alphai, d_betar will be used.
 * Reordering those vectors will invalidate the vector returned here.
 */
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidson<ScalarType,MV,OP>::computeRitzIndex()
{
    if( d_ritzIndexValid )
        return;

    d_ritzIndex.resize( d_curDim );
    int i=0;
    while( i < d_curDim )
    {
        if( d_alphai[i] == ST::zero() )
        {
            d_ritzIndex[i] = 0;
            i++;
        }
        else
        {
            d_ritzIndex[i]   =  1;
            d_ritzIndex[i+1] = -1;
            i+=2;
        }
    }
    d_ritzIndexValid = true;
}

//---------------------------------------------------------------------------//
/*
 * Compute current Ritz vectors
 *
 * The current ordering of d_alphar, d_alphai, d_betar will be used.
 * Reordering those vectors will invalidate the vector returned here.
 */
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidson<ScalarType,MV,OP>::computeRitzVectors()
{
    if( d_ritzVectorsValid )
        return;

    // Make Ritz indices current
    computeRitzIndex();

    // Get indices of converged vector
    std::vector<int> checkedIndices(d_residualSize);
    for( int ii=0; ii<d_residualSize; ++ii )
        checkedIndices[ii] = ii;

    // Get eigenvectors of projected system
    Teuchos::SerialDenseMatrix<int,ScalarType> X(Teuchos::Copy,*d_Z,d_curDim,d_curDim);
    computeProjectedEigenvectors( X );

    // Get view of wanted vectors
    Teuchos::SerialDenseMatrix<int,ScalarType> X_wanted(Teuchos::View,X,d_curDim,d_residualSize);

    // Get views of relevant portion of V, evecs
    d_ritzVecs = MVT::CloneViewNonConst( *d_ritzVecSpace, checkedIndices );

    std::vector<int> curIndices(d_curDim);
    for( int i=0; i<d_curDim; ++i )
        curIndices[i] = i;

    RCP<const MV> V_current = MVT::CloneView( *d_V, curIndices );

    // Now form Ritz vector
    MVT::MvTimesMatAddMv(ST::one(),*V_current,X_wanted,ST::zero(),*d_ritzVecs);

    // Normalize vectors, conjugate pairs get normalized together
    std::vector<MagnitudeType> scale(d_residualSize);
    MVT::MvNorm( *d_ritzVecs, scale );
    Teuchos::LAPACK<int,ScalarType> lapack;
    for( int i=0; i<d_residualSize; ++i )
    {
        if( d_ritzIndex[i] == 0 )
        {
            scale[i] = 1.0/scale[i];
        }
        else if( d_ritzIndex[i] == 1 )
        {
            MagnitudeType nrm = lapack.LAPY2(scale[i],scale[i+1]);
            scale[i]   = 1.0/nrm;
            scale[i+1] = 1.0/nrm;
        }
    }
    MVT::MvScale( *d_ritzVecs, scale );

    d_ritzVectorsValid = true;

}

//---------------------------------------------------------------------------//
// Use sort manager to sort generalized eigenvalues
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidson<ScalarType,MV,OP>::sortValues( std::vector<MagnitudeType> &realParts,
                                             std::vector<MagnitudeType> &imagParts,
                                             std::vector<int>    &permVec,
                                             int N)
{
    permVec.resize(N);

    TEUCHOS_TEST_FOR_EXCEPTION( (int) realParts.size()<N, std::runtime_error,
        "Anasazi::GeneralizedDavidson::SortValues: Number of requested sorted values greater than vector length." );
    TEUCHOS_TEST_FOR_EXCEPTION( (int) imagParts.size()<N, std::runtime_error,
        "Anasazi::GeneralizedDavidson::SortValues: Number of requested sorted values greater than vector length." );

    RCP< std::vector<int> > rcpPermVec = Teuchos::rcpFromRef(permVec);

    d_sortMan->sort( realParts, imagParts, rcpPermVec, N );

    d_ritzIndexValid = false;
    d_ritzVectorsValid = false;
}

//---------------------------------------------------------------------------//
/*
 * Compute (right) scaled eigenvectors of a pair of dense matrices
 *
 * This routine computes the eigenvectors for the generalized eigenvalue
 * problem \f$ \beta A x = \alpha B x \f$.  The input matrices are the upper
 * quasi-triangular matrices S and T from a real QZ decomposition,
 * the routine dtgevc will back-calculate the eigenvectors of the original
 * pencil (A,B) using the orthogonal matrices Q and Z.
 */
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidson<ScalarType,MV,OP>::computeProjectedEigenvectors(
        Teuchos::SerialDenseMatrix<int,ScalarType> &X )
{
    int N = X.numRows();
    if( d_haveB )
    {
        Teuchos::SerialDenseMatrix<int,ScalarType>  S(Teuchos::Copy, *d_S, N, N);
        Teuchos::SerialDenseMatrix<int,ScalarType>  T(Teuchos::Copy, *d_T, N, N);
        Teuchos::SerialDenseMatrix<int,ScalarType> VL(Teuchos::Copy, *d_Q, N, N);

        char whichVecs = 'R'; // only need right eigenvectors
        char howMany   = 'B'; // back-compute eigenvectors of original A,B (we have Schur decomposition here)
        int work_size = 6*d_maxSubspaceDim;
        std::vector<ScalarType> work(work_size,ST::zero());
        int info;
        int M;

        Teuchos::LAPACK<int,ScalarType> lapack;
        lapack.TGEVC( whichVecs, howMany, 0, N, S.values(), S.stride(), T.values(), T.stride(),
                      VL.values(), VL.stride(), X.values(), X.stride(), N, &M, &work[0], &info );

        std::stringstream ss;
        ss << "Anasazi::GeneralizedDavidson: TGEVC returned error code " << info << std::endl;
        TEUCHOS_TEST_FOR_EXCEPTION( info!=0, std::runtime_error, ss.str() );
    }
    else
    {
        Teuchos::SerialDenseMatrix<int,ScalarType>  S(Teuchos::Copy, *d_S, N, N);
        Teuchos::SerialDenseMatrix<int,ScalarType> VL(Teuchos::Copy, *d_Z, N, N);

        char whichVecs = 'R'; // only need right eigenvectors
        char howMany   = 'B'; // back-compute eigenvectors of original A (we have Schur decomposition here)
        int sel = 0;
        std::vector<ScalarType> work(3*N);
        int m;
        int info;

        Teuchos::LAPACK<int,ScalarType> lapack;

        lapack.TREVC( whichVecs, howMany, &sel, N, S.values(), S.stride(), VL.values(), VL.stride(),
                      X.values(), X.stride(), N, &m, &work[0], &info );

        std::stringstream ss;
        ss << "Anasazi::GeneralizedDavidson: TREVC returned error code " << info << std::endl;
        TEUCHOS_TEST_FOR_EXCEPTION( info!=0, std::runtime_error, ss.str() );
    }
}

//---------------------------------------------------------------------------//
// Scale eigenvectors by quasi-diagonal matrices alpha and beta
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidson<ScalarType,MV,OP>::scaleEigenvectors(
        const Teuchos::SerialDenseMatrix<int,ScalarType> &X,
              Teuchos::SerialDenseMatrix<int,ScalarType> &X_alpha,
              Teuchos::SerialDenseMatrix<int,ScalarType> &X_beta )
{
    int Nr = X.numRows();
    int Nc = X.numCols();

    TEUCHOS_TEST_FOR_EXCEPTION( Nr>d_curDim, std::logic_error,
        "Anasazi::GeneralizedDavidson::ScaleEigenvectors: Matrix size exceeds current dimension");
    TEUCHOS_TEST_FOR_EXCEPTION( Nc>d_curDim, std::logic_error,
        "Anasazi::GeneralizedDavidson::ScaleEigenvectors: Matrix size exceeds current dimension");
    TEUCHOS_TEST_FOR_EXCEPTION( X_alpha.numRows()!=Nr, std::logic_error,
        "Anasazi::GeneralizedDavidson::ScaleEigenvectors: number of rows in Xalpha does not match X");
    TEUCHOS_TEST_FOR_EXCEPTION( X_alpha.numCols()!=Nc, std::logic_error,
        "Anasazi::GeneralizedDavidson::ScaleEigenvectors: number of cols in Xalpha does not match X");
    TEUCHOS_TEST_FOR_EXCEPTION( X_beta.numRows()!=Nr, std::logic_error,
        "Anasazi::GeneralizedDavidson::ScaleEigenvectors: number of rows in Xbeta does not match X");
    TEUCHOS_TEST_FOR_EXCEPTION( X_beta.numCols()!=Nc, std::logic_error,
        "Anasazi::GeneralizedDavidson::ScaleEigenvectors: number of cols in Xbeta does not match X");

    // Now form quasi-diagonal matrices
    //  containing alpha and beta
    Teuchos::SerialDenseMatrix<int,ScalarType> Alpha(Nc,Nc,true);
    Teuchos::SerialDenseMatrix<int,ScalarType> Beta(Nc,Nc,true);

    computeRitzIndex();

    for( int i=0; i<Nc; ++i )
    {
        if( d_ritzIndex[i] == 0 )
        {
            Alpha(i,i) = d_alphar[i];
            Beta(i,i)  = d_betar[i];
        }
        else if( d_ritzIndex[i] == 1 )
        {
            Alpha(i,i)   = d_alphar[i];
            Alpha(i,i+1) = d_alphai[i];
            Beta(i,i)    = d_betar[i];
        }
        else
        {
            Alpha(i,i-1) = d_alphai[i];
            Alpha(i,i)   = d_alphar[i];
            Beta(i,i)    = d_betar[i];
        }
    }

    int err;

    // Multiply the eigenvectors by alpha
    err = X_alpha.multiply( Teuchos::NO_TRANS, Teuchos::NO_TRANS, ST::one(), X, Alpha, ST::zero() );
    std::stringstream astream;
    astream << "GeneralizedDavidson::ScaleEigenvectors: multiply returned error code " << err;
    TEUCHOS_TEST_FOR_EXCEPTION( err!=0, std::runtime_error, astream.str() );

    // Multiply the eigenvectors by beta
    err = X_beta.multiply( Teuchos::NO_TRANS, Teuchos::NO_TRANS, ST::one(), X, Beta, ST::zero() );
    std::stringstream bstream;
    bstream << "GeneralizedDavidson::ScaleEigenvectors: multiply returned error code " << err;
    TEUCHOS_TEST_FOR_EXCEPTION( err!=0, std::runtime_error, bstream.str() );
}

//---------------------------------------------------------------------------//
// Compute residual
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidson<ScalarType,MV,OP>::computeResidual()
{
    computeRitzIndex();

    // Determine how many residual vectors need to be computed
    d_residualSize = std::max( d_blockSize, d_NEV );
    if( d_curDim < d_residualSize )
    {
        d_residualSize = d_curDim;
    }
    else if( d_ritzIndex[d_residualSize-1] == 1 )
    {
        d_residualSize++;
    }

    // Get indices of all valid residual vectors
    std::vector<int> residualIndices(d_residualSize);
    for( int i=0; i<d_residualSize; ++i )
        residualIndices[i] = i;

    // X will store (right) eigenvectors of projected system
    Teuchos::SerialDenseMatrix<int,ScalarType> X(Teuchos::Copy,*d_Z,d_curDim,d_curDim);

    // Get eigenvectors of projected problem -- computed from previous Schur decomposition
    computeProjectedEigenvectors( X );

    // X_alpha and X_beta will be eigenvectors right-multiplied by alpha, beta (which are quasi-diagonal portions of S,T)
    Teuchos::SerialDenseMatrix<int,ScalarType> X_alpha(d_curDim,d_residualSize);
    Teuchos::SerialDenseMatrix<int,ScalarType>  X_beta(d_curDim,d_residualSize);

    // X_wanted is the wanted portion of X
    Teuchos::SerialDenseMatrix<int,ScalarType> X_wanted(Teuchos::View, X, d_curDim, d_residualSize);

    // Scale Eigenvectors by alpha or beta
    scaleEigenvectors( X_wanted, X_alpha, X_beta );

    // Get view of residual vector(s)
    RCP<MV> R_active = MVT::CloneViewNonConst( *d_R, residualIndices );

    // View of active portion of AV,BV
    std::vector<int> activeIndices(d_curDim);
    for( int i=0; i<d_curDim; ++i )
        activeIndices[i]=i;

    // Compute residual
    RCP<const MV> AV_active = MVT::CloneView( *d_AV, activeIndices );
    MVT::MvTimesMatAddMv(ST::one(),*AV_active, X_beta,  ST::zero(),*R_active);

    if( d_haveB )
    {
        RCP<const MV> BV_active = MVT::CloneView( *d_BV, activeIndices );
        MVT::MvTimesMatAddMv(ST::one(),*BV_active, X_alpha,-ST::one(), *R_active);
    }
    else
    {
        RCP<const MV> V_active = MVT::CloneView( *d_V, activeIndices );
        MVT::MvTimesMatAddMv(ST::one(),*V_active, X_alpha,-ST::one(), *R_active);
    }

    /* Apply a scaling to the residual
     * For generalized eigenvalue problems, LAPACK scales eigenvectors
     *  to have unit length in the infinity norm, we want them to have unit
     *  length in the 2-norm.  For conjugate pairs, the scaling is such that
     *  |xr|^2 + |xi|^2 = 1
     * Additionally, the residual is currently computed as r=beta*A*x-alpha*B*x
     *  but the "standard" residual is r=A*x-(alpha/beta)*B*x, or if we want
     *  to scale the residual by the Ritz value then it is r=(beta/alpha)*A*x-B*x
     *  Performing the scaling this way allows us to avoid the possibility of
     *  diving by infinity or zero if the StatusTest were allowed to handle the
     *  scaling.
     */
    Teuchos::LAPACK<int,ScalarType> lapack;
    Teuchos::BLAS<int,ScalarType> blas;
    std::vector<MagnitudeType> resScaling(d_residualSize);
    for( int icol=0; icol<d_residualSize; ++icol )
    {
        if( d_ritzIndex[icol] == 0 )
        {
            MagnitudeType Xnrm = blas.NRM2( d_curDim, X_wanted[icol], 1);
            MagnitudeType ABscaling = d_relativeConvergence ? d_alphar[icol] : d_betar[icol];
            resScaling[icol] = MT::one() / (Xnrm * ABscaling);
        }
        else if( d_ritzIndex[icol] == 1 )
        {
            MagnitudeType Xnrm1 = blas.NRM2( d_curDim, X_wanted[icol],   1 );
            MagnitudeType Xnrm2 = blas.NRM2( d_curDim, X_wanted[icol+1], 1 );
            MagnitudeType Xnrm  = lapack.LAPY2(Xnrm1,Xnrm2);
            MagnitudeType ABscaling = d_relativeConvergence ? lapack.LAPY2(d_alphar[icol],d_alphai[icol])
                                                            : d_betar[icol];
            resScaling[icol]   = MT::one() / (Xnrm * ABscaling);
            resScaling[icol+1] = MT::one() / (Xnrm * ABscaling);
        }
    }
    MVT::MvScale( *R_active, resScaling );

    // Compute residual norms
    d_resNorms.resize(d_residualSize);
    MVT::MvNorm(*R_active,d_resNorms);

    // If Ritz value i is real, then the corresponding residual vector
    //  is the true residual
    // If Ritz values i and i+1 form a conjugate pair, then the
    //  corresponding residual vectors are the real and imaginary components
    //  of the residual.  Adjust the residual norms appropriately...
    for( int i=0; i<d_residualSize; ++i )
    {
        if( d_ritzIndex[i] == 1 )
        {
            MagnitudeType nrm = lapack.LAPY2(d_resNorms[i],d_resNorms[i+1]);
            d_resNorms[i]   = nrm;
            d_resNorms[i+1] = nrm;
        }
    }

    // Evaluate with status test
    d_tester->checkStatus(this);

    // Determine which residual vectors should be used for subspace expansion
    if( d_useLeading || d_blockSize >= d_NEV )
    {
        d_expansionSize=d_blockSize;
        if( d_ritzIndex[d_blockSize-1]==1 )
            d_expansionSize++;

        d_expansionIndices.resize(d_expansionSize);
        for( int i=0; i<d_expansionSize; ++i )
            d_expansionIndices[i] = i;
    }
    else
    {
        std::vector<int> convergedVectors = d_tester->whichVecs();

        // Get index of first unconverged vector
        int startVec;
        for( startVec=0; startVec<d_residualSize; ++startVec )
        {
            if( std::find(convergedVectors.begin(),convergedVectors.end(),startVec)==convergedVectors.end() )
                break;
        }

        // Now get a contiguous block of indices starting at startVec
        // If this crosses the end of our residual vectors, take the final d_blockSize vectors
        int endVec = startVec + d_blockSize - 1;
        if( endVec > (d_residualSize-1) )
        {
            endVec   = d_residualSize-1;
            startVec = d_residualSize-d_blockSize;
        }

        // Don't split conjugate pairs on either end of the range
        if( d_ritzIndex[startVec]==-1 )
        {
            startVec--;
            endVec--;
        }

        if( d_ritzIndex[endVec]==1 )
            endVec++;

        d_expansionSize = 1+endVec-startVec;
        d_expansionIndices.resize(d_expansionSize);
        for( int i=0; i<d_expansionSize; ++i )
            d_expansionIndices[i] = startVec+i;
    }
}

//---------------------------------------------------------------------------//
// Print current status.
//---------------------------------------------------------------------------//
template <class ScalarType, class MV, class OP>
void GeneralizedDavidson<ScalarType,MV,OP>::currentStatus( std::ostream &myout )
{
    using std::endl;

    myout.setf(std::ios::scientific, std::ios::floatfield);
    myout.precision(6);
    myout <<endl;
    myout <<"================================================================================" << endl;
    myout << endl;
    myout <<"                    GeneralizedDavidson Solver Solver Status" << endl;
    myout << endl;
    myout <<"The solver is "<<(d_initialized ? "initialized." : "not initialized.") << endl;
    myout <<"The number of iterations performed is " << d_iteration << endl;
    myout <<"The number of operator applies performed is " << d_opApplies << endl;
    myout <<"The block size is         " << d_expansionSize << endl;
    myout <<"The current basis size is " << d_curDim << endl;
    myout <<"The number of requested eigenvalues is " << d_NEV << endl;
    myout <<"The number of converged values is " << d_tester->howMany() << endl;
    myout << endl;

    myout.setf(std::ios_base::right, std::ios_base::adjustfield);

    if( d_initialized )
    {
        myout << "CURRENT RITZ VALUES" << endl;

        myout << std::setw(24) << "Ritz Value"
              << std::setw(30) << "Residual Norm" << endl;
        myout << "--------------------------------------------------------------------------------" << endl;
        if( d_residualSize > 0 )
        {
            std::vector<MagnitudeType> realRitz(d_curDim), imagRitz(d_curDim);
            std::vector< Value<ScalarType> > ritzVals = getRitzValues();
            for( int i=0; i<d_curDim; ++i )
            {
                realRitz[i] = ritzVals[i].realpart;
                imagRitz[i] = ritzVals[i].imagpart;
            }
            std::vector<int> permvec;
            sortValues( realRitz, imagRitz, permvec, d_curDim );

            int numToPrint = std::max( d_numToPrint, d_NEV );
            numToPrint = std::min( d_curDim, numToPrint );

            // Because the sort manager does not use a stable sort, occasionally
            //  the portion of a conjugate pair with negative imaginary part will be placed
            //  first...in that case the following will not give the usual expected behavior
            //  and an extra value will be printed.  This is only an issue with the output
            //  format because the actually sorting of Schur forms is guaranteed to be stable.
            if( d_ritzIndex[permvec[numToPrint-1]] != 0 )
                numToPrint++;

            int i=0;
            while( i<numToPrint )
            {
                if( imagRitz[i] == ST::zero() )
                {
                    myout << std::setw(15) << realRitz[i];
                    myout << " + i" << std::setw(15) << ST::magnitude( imagRitz[i] );
                    if( i < d_residualSize )
                        myout << std::setw(20) << d_resNorms[permvec[i]] << endl;
                    else
                        myout << "        Not Computed" << endl;

                    i++;
                }
                else
                {
                    // Positive imaginary part
                    myout << std::setw(15) << realRitz[i];
                    myout << " + i" << std::setw(15) << ST::magnitude( imagRitz[i] );
                    if( i < d_residualSize )
                        myout << std::setw(20) << d_resNorms[permvec[i]] << endl;
                    else
                        myout << "        Not Computed" << endl;

                    // Negative imaginary part
                    myout << std::setw(15) << realRitz[i];
                    myout << " - i" << std::setw(15) << ST::magnitude( imagRitz[i] );
                    if( i < d_residualSize )
                        myout << std::setw(20) << d_resNorms[permvec[i]] << endl;
                    else
                        myout << "        Not Computed" << endl;

                    i+=2;
                }
            }
        }
        else
        {
            myout << std::setw(20) << "[ NONE COMPUTED ]" << endl;
        }
    }
    myout << endl;
    myout << "================================================================================" << endl;
    myout << endl;
}

} // namespace Anasazi

#endif // ANASAZI_GENERALIZED_DAVIDSON_HPP