/usr/include/trilinos/AnasaziICGSOrthoManager.hpp is in libtrilinos-anasazi-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 | // @HEADER
// ***********************************************************************
//
// Anasazi: Block Eigensolvers Package
// Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
/*! \file AnasaziICGSOrthoManager.hpp
\brief Basic implementation of the Anasazi::OrthoManager class
*/
#ifndef ANASAZI_ICSG_ORTHOMANAGER_HPP
#define ANASAZI_ICSG_ORTHOMANAGER_HPP
/*! \class Anasazi::ICGSOrthoManager
\brief An implementation of the Anasazi::GenOrthoManager that performs orthogonalization
using iterated classical Gram-Schmidt.
\author Chris Baker, Ulrich Hetmaniuk, Rich Lehoucq, and Heidi Thornquist
*/
#include "AnasaziConfigDefs.hpp"
#include "AnasaziMultiVecTraits.hpp"
#include "AnasaziOperatorTraits.hpp"
#include "AnasaziGenOrthoManager.hpp"
#include "Teuchos_TimeMonitor.hpp"
#include "Teuchos_LAPACK.hpp"
#include "Teuchos_BLAS.hpp"
#ifdef ANASAZI_ICGS_DEBUG
# include <Teuchos_FancyOStream.hpp>
#endif
namespace Anasazi {
template<class ScalarType, class MV, class OP>
class ICGSOrthoManager : public GenOrthoManager<ScalarType,MV,OP> {
private:
typedef typename Teuchos::ScalarTraits<ScalarType>::magnitudeType MagnitudeType;
typedef Teuchos::ScalarTraits<ScalarType> SCT;
typedef MultiVecTraits<ScalarType,MV> MVT;
typedef OperatorTraits<ScalarType,MV,OP> OPT;
public:
//! @name Constructor/Destructor
//@{
//! Constructor specifying the operator defining the inner product as well as the number of orthogonalization iterations.
ICGSOrthoManager( Teuchos::RCP<const OP> Op = Teuchos::null, int numIters = 2,
typename Teuchos::ScalarTraits<ScalarType>::magnitudeType eps = 0.0,
typename Teuchos::ScalarTraits<ScalarType>::magnitudeType tol = 0.20 );
//! Destructor
~ICGSOrthoManager() {}
//@}
//! @name Methods implementing Anasazi::GenOrthoManager
//@{
/*! \brief Applies a series of generic projectors.
*
* Given a list of bases <tt>X[i]</tt> and <tt>Y[i]</tt> (a projection pair), this method
* takes a multivector \c S and applies the projectors
* \f[
* P_{X[i],Y[i]} S = S - X[i] \langle Y[i], X[i] \rangle^{-1} \langle Y[i], S \rangle\ .
* \f]
* This operation projects \c S onto the space orthogonal to the <tt>Y[i]</tt>,
* along the range of the <tt>X[i]</tt>. The inner product specified by \f$\langle \cdot,
* \cdot \rangle\f$ is given by innerProd().
*
* \note The call
* \code
* projectGen(S, tuple(X1,X2), tuple(Y1,Y2))
* \endcode
* is equivalent to the call
* \code
* projectGen(S, tuple(X2,X1), tuple(Y2,Y1))
* \endcode
*
* The method also returns the coefficients <tt>C[i]</tt> associated with each projection pair, so that
* \f[
* S_{in} = S_{out} + \sum_i X[i] C[i]
* \f]
* and therefore
* \f[
* C[i] = \langle Y[i], X[i] \rangle^{-1} \langle Y[i], S \rangle\ .
* \f]
*
* Lastly, for reasons of efficiency, the user must specify whether the projection pairs are bi-orthonormal with
* respect to innerProd(), i.e., whether \f$\langle Y[i], X[i] \rangle = I\f$. In the case that the bases are specified
* to be biorthogonal, the inverse \f$\langle Y, X \rangle^{-1}\f$ will not be computed. Furthermore, the user may optionally
* specifiy the image of \c S and the projection pairs under the inner product operator getOp().
*
* projectGen() is implemented to apply the projectors via an iterated Classical Gram-Schmidt, where the iteration is performed
* getNumIters() number of times.
*
@param S [in/out] The multivector to be modified.<br>
On output, the columns of \c S will be orthogonal to each <tt>Y[i]</tt>, satisfying
\f[
\langle Y[i], S_{out} \rangle = 0
\f]
Also,
\f[
S_{in} = S_{out} + \sum_i X[i] C[i]
\f]
@param X [in] Multivectors for bases under which \f$S_{in}\f$ is modified.
@param Y [in] Multivectors for bases to which \f$S_{out}\f$ should be orthogonal.
@param isBiortho [in] A flag specifying whether the bases <tt>X[i]</tt>
and <tt>Y[i]</tt> are biorthonormal, i.e,. whether \f$\langle Y[i],
X[i]\rangle == I\f$.
@param C [out] Coefficients for reconstructing \f$S_{in}\f$ via the bases <tt>X[i]</tt>. If <tt>C[i]</tt> is a non-null pointer
and <tt>C[i]</tt> matches the dimensions of \c S and <tt>X[i]</tt>, then the coefficients computed during the orthogonalization
routine will be stored in the matrix <tt>C[i]</tt>.<br>
If <tt>C[i]</tt> points to a Teuchos::SerialDenseMatrix with size
inconsistent with \c S and \c <tt>X[i]</tt>, then a std::invalid_argument
exception will be thrown.<br>
Otherwise, if <tt>C.size() < i</tt> or <tt>C[i]</tt> is a null pointer,
the caller will not have access to the computed coefficients <tt>C[i]</tt>.
@param MS [in/out] If specified by the user, on input \c MS is required to be the image of \c S under the operator getOp().
On output, \c MS will be updated to reflect the changes in \c S.
@param MX [in] If specified by the user, on <tt>MX[i]</tt> is required to be the image of <tt>X[i]</tt> under the operator getOp().
@param MY [in] If specified by the user, on <tt>MY[i]</tt> is required to be the image of <tt>Y[i]</tt> under the operator getOp().
\pre
<ul>
<li>If <tt>X[i] != Teuchos::null</tt> or <tt>Y[i] != Teuchos::null</tt>, then <tt>X[i]</tt> and <tt>Y[i]</tt> are required to
have the same number of columns, and each should have the same number of rows as \c S.
<li>For any <tt>i != j</tt>, \f$\langle Y[i], X[j] \rangle == 0\f$.
<li>If <tt>biOrtho == true</tt>, \f$\langle Y[i], X[i]\rangle == I\f$
<li>Otherwise, if <tt>biOrtho == false</tt>, then \f$\langle Y[i], X[i]\rangle\f$ should be Hermitian positive-definite.
<li>If <tt>X[i]</tt> and <tt>Y[i]</tt> have \f$xc_i\f$ columns and \c S has \f$sc\f$ columns, then <tt>C[i]</tt> if specified must
be \f$xc_i \times sc\f$.
</ul>
*/
void projectGen(
MV &S,
Teuchos::Array<Teuchos::RCP<const MV> > X,
Teuchos::Array<Teuchos::RCP<const MV> > Y,
bool isBiOrtho,
Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C
= Teuchos::tuple(Teuchos::RCP< Teuchos::SerialDenseMatrix<int,ScalarType> >(Teuchos::null)),
Teuchos::RCP<MV> MS = Teuchos::null,
Teuchos::Array<Teuchos::RCP<const MV> > MX = Teuchos::tuple(Teuchos::RCP<const MV>(Teuchos::null)),
Teuchos::Array<Teuchos::RCP<const MV> > MY = Teuchos::tuple(Teuchos::RCP<const MV>(Teuchos::null))
) const;
/*! \brief Applies a series of generic projectors and returns an orthonormal basis for the residual data.
*
* Given a list of bases <tt>X[i]</tt> and <tt>Y[i]</tt> (a projection pair), this method
* takes a multivector \c S and applies the projectors
* \f[
* P_{X[i],Y[i]} S = S - X[i] \langle Y[i], X[i] \rangle^{-1} \langle Y[i], S \rangle\ .
* \f]
* These operation project \c S onto the space orthogonal to the range of the <tt>Y[i]</tt>,
* along the range of \c X[i]. The inner product specified by \f$\langle \cdot, \cdot \rangle\f$
* is given by innerProd().
*
* The method returns in \c S an orthonormal basis for the residual
* \f[
* \left( \prod_{i} P_{X[i],Y[i]} \right) S_{in} = S_{out} B\ ,
* \f]
* where \c B contains the (not necessarily triangular) coefficients of the residual with respect to the
* new basis.
*
* The method also returns the coefficients <tt>C[i]</tt> and \c B associated with each projection pair, so that
* \f[
* S_{in} = S_{out} B + \sum_i X[i] C[i]
* \f]
* and
* \f[
* C[i] = \langle Y[i], X[i] \rangle^{-1} \langle Y[i], S \rangle\ .
* \f]
*
* Lastly, for reasons of efficiency, the user must specify whether the projection pairs are bi-orthonormal with
* respect to innerProd(), i.e., whether \f$\langle Y[i], X[i] \rangle = I\f$. Furthermore, the user may optionally
* specifiy the image of \c S and the projection pairs under the inner product operator getOp().
@param S [in/out] The multivector to be modified.<br>
On output, the columns of \c S will be orthogonal to each <tt>Y[i]</tt>, satisfying
\f[
\langle Y[i], S_{out} \rangle = 0
\f]
Also,
\f[
S_{in}(1:m,1:n) = S_{out}(1:m,1:rank) B(1:rank,1:n) + \sum_i X[i] C[i]\ ,
\f]
where \c m is the number of rows in \c S, \c n is the number of
columns in \c S, and \c rank is the value returned from the method.
@param X [in] Multivectors for bases under which \f$S_{in}\f$ is modified.
@param Y [in] Multivectors for bases to which \f$S_{out}\f$ should be orthogonal.
@param isBiortho [in] A flag specifying whether the bases <tt>X[i]</tt>
and <tt>Y[i]</tt> are biorthonormal, i.e,. whether \f$\langle Y[i],
X[i]\rangle == I\f$.
@param C [out] Coefficients for reconstructing \f$S_{in}\f$ via the bases <tt>X[i]</tt>. If <tt>C[i]</tt> is a non-null pointer
and <tt>C[i]</tt> matches the dimensions of \c X and <tt>Q[i]</tt>, then the coefficients computed during the orthogonalization
routine will be stored in the matrix <tt>C[i]</tt>.<br>
If <tt>C[i]</tt> points to a Teuchos::SerialDenseMatrix with size
inconsistent with \c S and \c <tt>X[i]</tt>, then a std::invalid_argument
exception will be thrown.<br>
Otherwise, if <tt>C.size() < i</tt> or <tt>C[i]</tt> is a null pointer,
the caller will not have access to the computed coefficients <tt>C[i]</tt>.
@param B [out] The coefficients of the original \c S with respect to the computed basis. If \c B is a non-null pointer and
\c B matches the dimensions of \c B, then the
coefficients computed during the orthogonalization routine will be stored in \c B, similar to calling
\code
innerProd( Sout, Sin, B );
\endcode
If \c B points to a Teuchos::SerialDenseMatrix with size inconsistent with
\c S, then a std::invalid_argument exception will be thrown.<br>
Otherwise, if \c B is null, the caller will not have access to the computed
coefficients.<br>
The normalization uses classical Gram-Schmidt iteration, so that \c B is an upper triangular matrix with positive diagonal elements.
@param MS [in/out] If specified by the user, on input \c MS is required to be the image of \c S under the operator getOp().
On output, \c MS will be updated to reflect the changes in \c S.
@param MX [in] If specified by the user, on <tt>MX[i]</tt> is required to be the image of <tt>X[i]</tt> under the operator getOp().
@param MY [in] If specified by the user, on <tt>MY[i]</tt> is required to be the image of <tt>Y[i]</tt> under the operator getOp().
\pre
<ul>
<li>If <tt>X[i] != Teuchos::null</tt> or <tt>Y[i] != Teuchos::null</tt>, then <tt>X[i]</tt> and <tt>Y[i]</tt> are required to
have the same number of columns, and each should have the same number of rows as \c S.
<li>For any <tt>i != j</tt>, \f$\langle Y[i], X[j] \rangle == 0\f$.
<li>If <tt>biOrtho == true</tt>, \f$\langle Y[i], X[i]\rangle == I\f$
<li>Otherwise, if <tt>biOrtho == false</tt>, then \f$\langle Y[i], X[i]\rangle\f$ should be Hermitian positive-definite.
<li>If <tt>X[i]</tt> and <tt>Y[i]</tt> have \f$xc_i\f$ columns and \c S has \f$sc\f$ columns, then <tt>C[i]</tt> if specified must
be \f$xc_i \times sc\f$.
<li>If <tt>S</tt> has \f$sc\f$ columns, then \c B if specified must be \f$sc \times sc \f$.
</ul>
@return Rank of the basis computed by this method.
*/
int projectAndNormalizeGen (
MV &S,
Teuchos::Array<Teuchos::RCP<const MV> > X,
Teuchos::Array<Teuchos::RCP<const MV> > Y,
bool isBiOrtho,
Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C
= Teuchos::tuple(Teuchos::RCP< Teuchos::SerialDenseMatrix<int,ScalarType> >(Teuchos::null)),
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B = Teuchos::null,
Teuchos::RCP<MV> MS = Teuchos::null,
Teuchos::Array<Teuchos::RCP<const MV> > MX = Teuchos::tuple(Teuchos::RCP<const MV>(Teuchos::null)),
Teuchos::Array<Teuchos::RCP<const MV> > MY = Teuchos::tuple(Teuchos::RCP<const MV>(Teuchos::null))
) const;
//@}
//! @name Methods implementing Anasazi::MatOrthoManager
//@{
/*! \brief Given a list of mutually orthogonal and internally orthonormal bases \c Q, this method
* projects a multivector \c X onto the space orthogonal to the individual <tt>Q[i]</tt>,
* optionally returning the coefficients of \c X for the individual <tt>Q[i]</tt>. All of this is done with respect
* to the inner product innerProd().
*
* This method calls projectGen() as follows:
* \code
* projectGen(X,Q,Q,true,C,MX,MQ,MQ);
* \endcode
* See projectGen() for argument requirements.
*/
void projectMat (
MV &X,
Teuchos::Array<Teuchos::RCP<const MV> > Q,
Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C
= Teuchos::tuple(Teuchos::RCP< Teuchos::SerialDenseMatrix<int,ScalarType> >(Teuchos::null)),
Teuchos::RCP<MV> MX = Teuchos::null,
Teuchos::Array<Teuchos::RCP<const MV> > MQ = Teuchos::tuple(Teuchos::RCP<const MV>(Teuchos::null))
) const;
/*! \brief This method takes a multivector \c X and attempts to compute an orthonormal basis for \f$colspan(X)\f$, with respect to innerProd().
*
* This method calls projectAndNormalizeGen() as follows:
* \code
* projectAndNormalizeGen(X,empty,empty,true,empty,B,MX);
* \endcode
* See projectAndNormalizeGen() for argument requirements.
*/
int normalizeMat (
MV &X,
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B = Teuchos::null,
Teuchos::RCP<MV> MX = Teuchos::null
) const;
/*! \brief Given a set of bases <tt>Q[i]</tt> and a multivector \c X, this method computes an orthonormal basis for \f$colspan(X) - \sum_i colspan(Q[i])\f$.
*
* This method calls projectAndNormalizeGen() as follows:
* \code
* projectAndNormalizeGen(X,Q,Q,true,C,B,MX,MQ,MQ);
* \endcode
* See projectAndNormalizeGen() for argument requirements.
*/
int projectAndNormalizeMat (
MV &X,
Teuchos::Array<Teuchos::RCP<const MV> > Q,
Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C
= Teuchos::tuple(Teuchos::RCP< Teuchos::SerialDenseMatrix<int,ScalarType> >(Teuchos::null)),
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B = Teuchos::null,
Teuchos::RCP<MV> MX = Teuchos::null,
Teuchos::Array<Teuchos::RCP<const MV> > MQ = Teuchos::tuple(Teuchos::RCP<const MV>(Teuchos::null))
) const;
//@}
//! @name Error methods
//@{
/*! \brief This method computes the error in orthonormality of a multivector, measured
* as the Frobenius norm of the difference <tt>innerProd(X,Y) - I</tt>.
* The method has the option of exploiting a caller-provided \c MX.
*/
typename Teuchos::ScalarTraits<ScalarType>::magnitudeType
orthonormErrorMat(const MV &X, Teuchos::RCP<const MV> MX = Teuchos::null) const;
/*! \brief This method computes the error in orthogonality of two multivectors, measured
* as the Frobenius norm of <tt>innerProd(X,Y)</tt>.
* The method has the option of exploiting a caller-provided \c MX.
*/
typename Teuchos::ScalarTraits<ScalarType>::magnitudeType
orthogErrorMat(const MV &X1, const MV &X2, Teuchos::RCP<const MV> MX1, Teuchos::RCP<const MV> MX2) const;
//@}
//! @name Accessor routines
//@{
//! Set parameter for re-orthogonalization threshold.
void setNumIters( int numIters ) {
numIters_ = numIters;
TEUCHOS_TEST_FOR_EXCEPTION(numIters_ < 1,std::invalid_argument,
"Anasazi::ICGSOrthoManager::setNumIters(): input must be >= 1.");
}
//! Return parameter for re-orthogonalization threshold.
int getNumIters() const { return numIters_; }
//@}
private:
MagnitudeType eps_;
MagnitudeType tol_;
//! Parameter for re-orthogonalization.
int numIters_;
// ! Routine to find an orthonormal basis
int findBasis(MV &X, Teuchos::RCP<MV> MX,
Teuchos::SerialDenseMatrix<int,ScalarType> &B,
bool completeBasis, int howMany = -1) const;
};
//////////////////////////////////////////////////////////////////////////////////////////////////
// Constructor
template<class ScalarType, class MV, class OP>
ICGSOrthoManager<ScalarType,MV,OP>::ICGSOrthoManager( Teuchos::RCP<const OP> Op,
int numIters,
typename Teuchos::ScalarTraits<ScalarType>::magnitudeType eps,
typename Teuchos::ScalarTraits<ScalarType>::magnitudeType tol) :
GenOrthoManager<ScalarType,MV,OP>(Op), eps_(eps), tol_(tol)
{
setNumIters(numIters);
TEUCHOS_TEST_FOR_EXCEPTION(eps_ < SCT::magnitude(SCT::zero()),std::invalid_argument,
"Anasazi::ICGSOrthoManager::ICGSOrthoManager(): argument \"eps\" must be non-negative.");
if (eps_ == 0) {
Teuchos::LAPACK<int,MagnitudeType> lapack;
eps_ = lapack.LAMCH('E');
eps_ = Teuchos::ScalarTraits<MagnitudeType>::pow(eps_,.50);
}
TEUCHOS_TEST_FOR_EXCEPTION(
tol_ < SCT::magnitude(SCT::zero()) || tol_ > SCT::magnitude(SCT::one()),
std::invalid_argument,
"Anasazi::ICGSOrthoManager::ICGSOrthoManager(): argument \"tol\" must be in [0,1].");
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Compute the distance from orthonormality
template<class ScalarType, class MV, class OP>
typename Teuchos::ScalarTraits<ScalarType>::magnitudeType
ICGSOrthoManager<ScalarType,MV,OP>::orthonormErrorMat(const MV &X, Teuchos::RCP<const MV> MX) const {
const ScalarType ONE = SCT::one();
int rank = MVT::GetNumberVecs(X);
Teuchos::SerialDenseMatrix<int,ScalarType> xTx(rank,rank);
MatOrthoManager<ScalarType,MV,OP>::innerProdMat(X,X,xTx,MX,MX);
for (int i=0; i<rank; i++) {
xTx(i,i) -= ONE;
}
return xTx.normFrobenius();
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Compute the distance from orthogonality
template<class ScalarType, class MV, class OP>
typename Teuchos::ScalarTraits<ScalarType>::magnitudeType
ICGSOrthoManager<ScalarType,MV,OP>::orthogErrorMat(const MV &X1, const MV &X2, Teuchos::RCP<const MV> MX1, Teuchos::RCP<const MV> MX2) const {
int r1 = MVT::GetNumberVecs(X1);
int r2 = MVT::GetNumberVecs(X2);
Teuchos::SerialDenseMatrix<int,ScalarType> xTx(r1,r2);
MatOrthoManager<ScalarType,MV,OP>::innerProdMat(X1,X2,xTx,MX1,MX2);
return xTx.normFrobenius();
}
//////////////////////////////////////////////////////////////////////////////////////////////////
template<class ScalarType, class MV, class OP>
void ICGSOrthoManager<ScalarType, MV, OP>::projectMat(
MV &X,
Teuchos::Array<Teuchos::RCP<const MV> > Q,
Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C,
Teuchos::RCP<MV> MX,
Teuchos::Array<Teuchos::RCP<const MV> > MQ
) const
{
projectGen(X,Q,Q,true,C,MX,MQ,MQ);
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Find an Op-orthonormal basis for span(X), with rank numvectors(X)
template<class ScalarType, class MV, class OP>
int ICGSOrthoManager<ScalarType, MV, OP>::normalizeMat(
MV &X,
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B,
Teuchos::RCP<MV> MX) const
{
// call findBasis(), with the instruction to try to generate a basis of rank numvecs(X)
// findBasis() requires MX
int xc = MVT::GetNumberVecs(X);
ptrdiff_t xr = MVT::GetGlobalLength(X);
// if Op==null, MX == X (via pointer)
// Otherwise, either the user passed in MX or we will allocated and compute it
if (this->_hasOp) {
if (MX == Teuchos::null) {
// we need to allocate space for MX
MX = MVT::Clone(X,xc);
OPT::Apply(*(this->_Op),X,*MX);
this->_OpCounter += MVT::GetNumberVecs(X);
}
}
// if the user doesn't want to store the coefficients,
// allocate some local memory for them
if ( B == Teuchos::null ) {
B = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(xc,xc) );
}
int mxc = (this->_hasOp) ? MVT::GetNumberVecs( *MX ) : xc;
ptrdiff_t mxr = (this->_hasOp) ? MVT::GetGlobalLength( *MX ) : xr;
// check size of C, B
TEUCHOS_TEST_FOR_EXCEPTION( xc == 0 || xr == 0, std::invalid_argument,
"Anasazi::ICGSOrthoManager::normalizeMat(): X must be non-empty" );
TEUCHOS_TEST_FOR_EXCEPTION( B->numRows() != xc || B->numCols() != xc, std::invalid_argument,
"Anasazi::ICGSOrthoManager::normalizeMat(): Size of X not consistent with size of B" );
TEUCHOS_TEST_FOR_EXCEPTION( xc != mxc || xr != mxr, std::invalid_argument,
"Anasazi::ICGSOrthoManager::normalizeMat(): Size of X not consistent with size of MX" );
TEUCHOS_TEST_FOR_EXCEPTION( static_cast<ptrdiff_t>(xc) > xr, std::invalid_argument,
"Anasazi::ICGSOrthoManager::normalizeMat(): Size of X not feasible for normalization" );
return findBasis(X, MX, *B, true );
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Find an Op-orthonormal basis for span(X) - span(W)
template<class ScalarType, class MV, class OP>
int ICGSOrthoManager<ScalarType, MV, OP>::projectAndNormalizeMat(
MV &X,
Teuchos::Array<Teuchos::RCP<const MV> > Q,
Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C,
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B,
Teuchos::RCP<MV> MX,
Teuchos::Array<Teuchos::RCP<const MV> > MQ
) const
{
return projectAndNormalizeGen(X,Q,Q,true,C,B,MX,MQ,MQ);
}
//////////////////////////////////////////////////////////////////////////////////////////////////
template<class ScalarType, class MV, class OP>
void ICGSOrthoManager<ScalarType, MV, OP>::projectGen(
MV &S,
Teuchos::Array<Teuchos::RCP<const MV> > X,
Teuchos::Array<Teuchos::RCP<const MV> > Y,
bool isBiortho,
Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C,
Teuchos::RCP<MV> MS,
Teuchos::Array<Teuchos::RCP<const MV> > MX,
Teuchos::Array<Teuchos::RCP<const MV> > MY
) const
{
// For the inner product defined by the operator Op or the identity (Op == 0)
// -> Orthogonalize S against each Y[i], modifying it in the range of X[i]
// Modify MS accordingly
//
// Note that when Op is 0, MS is not referenced
//
// Parameter variables
//
// S : Multivector to be transformed
//
// MS : Image of the block vector S by the mass matrix
//
// X,Y: Bases to orthogonalize against/via.
//
#ifdef ANASAZI_ICGS_DEBUG
// Get a FancyOStream from out_arg or create a new one ...
Teuchos::RCP<Teuchos::FancyOStream>
out = Teuchos::getFancyOStream(Teuchos::rcpFromRef(std::cout));
out->setShowAllFrontMatter(false).setShowProcRank(true);
*out << "Entering Anasazi::ICGSOrthoManager::projectGen(...)\n";
#endif
const ScalarType ONE = SCT::one();
const MagnitudeType ZERO = SCT::magnitude(SCT::zero());
Teuchos::LAPACK<int,ScalarType> lapack;
Teuchos::BLAS<int,ScalarType> blas;
int sc = MVT::GetNumberVecs( S );
ptrdiff_t sr = MVT::GetGlobalLength( S );
int numxy = X.length();
TEUCHOS_TEST_FOR_EXCEPTION(X.length() != Y.length(),std::invalid_argument,
"Anasazi::ICGSOrthoManager::projectGen(): X and Y must contain the same number of multivectors.");
std::vector<int> xyc(numxy);
// short-circuit
if (numxy == 0 || sc == 0 || sr == 0) {
#ifdef ANASAZI_ICGS_DEBUG
*out << "Leaving Anasazi::ICGSOrthoManager::projectGen(...)\n";
#endif
return;
}
// if we don't have enough C, expand it with null references
// if we have too many, resize to throw away the latter ones
// if we have exactly as many as we have X,Y this call has no effect
//
// same for MX, MY
C.resize(numxy);
MX.resize(numxy);
MY.resize(numxy);
// check size of S w.r.t. common sense
TEUCHOS_TEST_FOR_EXCEPTION( sc<0 || sr<0, std::invalid_argument,
"Anasazi::ICGSOrthoManager::projectGen(): MVT returned negative dimensions for S." );
// check size of MS
if (this->_hasOp == true) {
if (MS != Teuchos::null) {
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetGlobalLength(*MS) != sr, std::invalid_argument,
"Anasazi::ICGSOrthoManager::projectGen(): MS length not consistent with S." );
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetNumberVecs(*MS) != sc, std::invalid_argument,
"Anasazi::ICGSOrthoManager::projectGen(): MS width not consistent with S." );
}
}
// tally up size of all X,Y and check/allocate C
ptrdiff_t sumxyc = 0;
int MYmissing = 0;
int MXmissing = 0;
for (int i=0; i<numxy; i++) {
if (X[i] != Teuchos::null && Y[i] != Teuchos::null) {
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetGlobalLength(*X[i]) != sr, std::invalid_argument,
"Anasazi::ICGSOrthoManager::projectGen(): X[" << i << "] length not consistent with S." );
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetGlobalLength(*Y[i]) != sr, std::invalid_argument,
"Anasazi::ICGSOrthoManager::projectGen(): Y[" << i << "] length not consistent with S." );
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetNumberVecs(*X[i]) != MVT::GetNumberVecs(*Y[i]), std::invalid_argument,
"Anasazi::ICGSOrthoManager::projectGen(): X[" << i << "] and Y[" << i << "] widths not consistent." );
xyc[i] = MVT::GetNumberVecs( *X[i] );
TEUCHOS_TEST_FOR_EXCEPTION( sr < static_cast<ptrdiff_t>(xyc[i]), std::invalid_argument,
"Anasazi::ICGSOrthoManager::projectGen(): X[" << i << "],Y[" << i << "] have less rows than columns, and therefore cannot be full rank." );
sumxyc += xyc[i];
// check size of C[i]
if ( C[i] == Teuchos::null ) {
C[i] = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(xyc[i],sc) );
}
else {
TEUCHOS_TEST_FOR_EXCEPTION( C[i]->numRows() != xyc[i] || C[i]->numCols() != sc , std::invalid_argument,
"Anasazi::ICGSOrthoManager::projectGen(): Size of Q not consistent with size of C." );
}
// check sizes of MX[i], MY[i] if present
// if not present, count their absence
if (MX[i] != Teuchos::null) {
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetGlobalLength(*MX[i]) != sr || MVT::GetNumberVecs(*MX[i]) != xyc[i], std::invalid_argument,
"Anasazi::ICGSOrthoManager::projectGen(): Size of MX[" << i << "] not consistent with size of X[" << i << "]." );
}
else {
MXmissing += xyc[i];
}
if (MY[i] != Teuchos::null) {
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetGlobalLength(*MY[i]) != sr || MVT::GetNumberVecs(*MY[i]) != xyc[i], std::invalid_argument,
"Anasazi::ICGSOrthoManager::projectGen(): Size of MY[" << i << "] not consistent with size of Y[" << i << "]." );
}
else {
MYmissing += xyc[i];
}
}
else {
// if one is null and the other is not... the user may have made a mistake
TEUCHOS_TEST_FOR_EXCEPTION(X[i] != Teuchos::null || Y[i] != Teuchos::null, std::invalid_argument,
"Anasazi::ICGSOrthoManager::projectGen(): "
<< (X[i] == Teuchos::null ? "Y[" : "X[") << i << "] was provided but "
<< (X[i] == Teuchos::null ? "X[" : "Y[") << i << "] was not.");
}
}
// is this operation even feasible?
TEUCHOS_TEST_FOR_EXCEPTION(sumxyc > sr, std::invalid_argument,
"Anasazi::ICGSOrthoManager::projectGen(): dimension of all X[i],Y[i] is "
<< sumxyc << ", but length of vectors is only " << sr << ". This is infeasible.");
/****** DO NO MODIFY *MS IF _hasOp == false
* if _hasOp == false, we don't need MS, MX or MY
*
* if _hasOp == true, we need MS (for S M-norms) and
* therefore, we must also update MS, regardless of whether
* it gets returned to the user (i.e., whether the user provided it)
* we may need to allocate and compute MX or MY
*
* let BXY denote:
* "X" - we have all M*X[i]
* "Y" - we have all M*Y[i]
* "B" - we have biorthogonality (for all X[i],Y[i])
* Encode these as values
* X = 1
* Y = 2
* B = 4
* We have 8 possibilities, 0-7
*
* We must allocate storage and computer the following, lest
* innerProdMat do it for us:
* none (0) - allocate MX, for inv(<X,Y>) and M*S
*
* for the following, we will compute M*S manually before returning
* B(4) BY(6) Y(2) --> updateMS = 1
* for the following, we will update M*S as we go, using M*X
* XY(3) X(1) none(0) BXY(7) BX(5) --> updateMS = 2
* these choices favor applications of M over allocation of memory
*
*/
int updateMS = -1;
if (this->_hasOp) {
int whichAlloc = 0;
if (MXmissing == 0) {
whichAlloc += 1;
}
if (MYmissing == 0) {
whichAlloc += 2;
}
if (isBiortho) {
whichAlloc += 4;
}
switch (whichAlloc) {
case 2:
case 4:
case 6:
updateMS = 1;
break;
case 0:
case 1:
case 3:
case 5:
case 7:
updateMS = 2;
break;
}
// produce MS
if (MS == Teuchos::null) {
#ifdef ANASAZI_ICGS_DEBUG
*out << "Allocating MS...\n";
#endif
MS = MVT::Clone(S,MVT::GetNumberVecs(S));
OPT::Apply(*(this->_Op),S,*MS);
this->_OpCounter += MVT::GetNumberVecs(S);
}
// allocate the rest
if (whichAlloc == 0) {
// allocate and compute missing MX
for (int i=0; i<numxy; i++) {
if (MX[i] == Teuchos::null) {
#ifdef ANASAZI_ICGS_DEBUG
*out << "Allocating MX[" << i << "]...\n";
#endif
Teuchos::RCP<MV> tmpMX = MVT::Clone(*X[i],xyc[i]);
OPT::Apply(*(this->_Op),*X[i],*tmpMX);
MX[i] = tmpMX;
this->_OpCounter += xyc[i];
}
}
}
}
else {
// Op == I --> MS == S
MS = Teuchos::rcpFromRef(S);
updateMS = 0;
}
TEUCHOS_TEST_FOR_EXCEPTION(updateMS == -1,std::logic_error,
"Anasazi::ICGSOrthoManager::projectGen(): Error in updateMS logic.");
////////////////////////////////////////////////////////////////////
// Perform the Gram-Schmidt transformation for a block of vectors
////////////////////////////////////////////////////////////////////
// Compute Cholesky factorizations for the Y'*M*X
// YMX stores the YMX (initially) and their Cholesky factorizations (utlimately)
Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > YMX(numxy);
if (isBiortho == false) {
for (int i=0; i<numxy; i++) {
#ifdef ANASAZI_ICGS_DEBUG
*out << "Computing YMX[" << i << "] and its Cholesky factorization...\n";
#endif
YMX[i] = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(xyc[i],xyc[i]) );
MatOrthoManager<ScalarType,MV,OP>::innerProdMat(*Y[i],*X[i],*YMX[i],MY[i],MX[i]);
#ifdef ANASAZI_ICGS_DEBUG
// YMX should be symmetric positive definite
// the cholesky will check the positive definiteness, but it looks only at the upper half
// we will check the symmetry by removing the upper half from the lower half, which should
// result in zeros
// also, diagonal of YMX should be real; consider the complex part as error
{
MagnitudeType err = ZERO;
for (int jj=0; jj<YMX[i]->numCols(); jj++) {
err =+ SCT::magnitude(SCT::imag((*YMX[i])(jj,jj)));
for (int ii=jj; ii<YMX[i]->numRows(); ii++) {
err += SCT::magnitude( (*YMX[i])(ii,jj) - SCT::conjugate((*YMX[i])(jj,ii)) );
}
}
*out << "Symmetry error in YMX[" << i << "] == " << err << "\n";
}
#endif
// take the LU factorization
int info;
lapack.POTRF('U',YMX[i]->numRows(),YMX[i]->values(),YMX[i]->stride(),&info);
TEUCHOS_TEST_FOR_EXCEPTION(info != 0,std::logic_error,
"Anasazi::ICGSOrthoManager::projectGen(): Error computing Cholesky factorization of Y[i]^T * M * X[i] using POTRF: returned info " << info);
}
}
// Compute the initial Op-norms
#ifdef ANASAZI_ICGS_DEBUG
std::vector<MagnitudeType> oldNorms(sc);
MatOrthoManager<ScalarType,MV,OP>::normMat(S,oldNorms,MS);
*out << "oldNorms = { ";
std::copy(oldNorms.begin(), oldNorms.end(), std::ostream_iterator<MagnitudeType>(*out, " "));
*out << "}\n";
#endif
// clear the C[i] and allocate Ccur
Teuchos::Array<Teuchos::SerialDenseMatrix<int,ScalarType> > Ccur(numxy);
for (int i=0; i<numxy; i++) {
C[i]->putScalar(ZERO);
Ccur[i].reshape(C[i]->numRows(),C[i]->numCols());
}
for (int iter=0; iter < numIters_; iter++) {
#ifdef ANASAZI_ICGS_DEBUG
*out << "beginning iteration " << iter+1 << "\n";
#endif
// Define the product Y[i]'*Op*S
for (int i=0; i<numxy; i++) {
// Compute Y[i]'*M*S
MatOrthoManager<ScalarType,MV,OP>::innerProdMat(*Y[i],S,Ccur[i],MY[i],MS);
if (isBiortho == false) {
// C[i] = inv(YMX[i])*(Y[i]'*M*S)
int info;
lapack.POTRS('U',YMX[i]->numCols(),Ccur[i].numCols(),
YMX[i]->values(),YMX[i]->stride(),
Ccur[i].values(),Ccur[i].stride(), &info);
TEUCHOS_TEST_FOR_EXCEPTION(info != 0, std::logic_error,
"Anasazi::ICGSOrthoManager::projectGen(): Error code " << info << " from lapack::POTRS." );
}
// Multiply by X[i] and subtract the result in S
#ifdef ANASAZI_ICGS_DEBUG
*out << "Applying projector P_{X[" << i << "],Y[" << i << "]}...\n";
#endif
MVT::MvTimesMatAddMv( -ONE, *X[i], Ccur[i], ONE, S );
// Accumulate coeffs into previous step
*C[i] += Ccur[i];
// Update MS as required
if (updateMS == 1) {
#ifdef ANASAZI_ICGS_DEBUG
*out << "Updating MS...\n";
#endif
OPT::Apply( *(this->_Op), S, *MS);
this->_OpCounter += sc;
}
else if (updateMS == 2) {
#ifdef ANASAZI_ICGS_DEBUG
*out << "Updating MS...\n";
#endif
MVT::MvTimesMatAddMv( -ONE, *MX[i], Ccur[i], ONE, *MS );
}
}
// Compute new Op-norms
#ifdef ANASAZI_ICGS_DEBUG
std::vector<MagnitudeType> newNorms(sc);
MatOrthoManager<ScalarType,MV,OP>::normMat(S,newNorms,MS);
*out << "newNorms = { ";
std::copy(newNorms.begin(), newNorms.end(), std::ostream_iterator<MagnitudeType>(*out, " "));
*out << "}\n";
#endif
}
#ifdef ANASAZI_ICGS_DEBUG
*out << "Leaving Anasazi::ICGSOrthoManager::projectGen(...)\n";
#endif
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Find an Op-orthonormal basis for span(S) - span(Y)
template<class ScalarType, class MV, class OP>
int ICGSOrthoManager<ScalarType, MV, OP>::projectAndNormalizeGen(
MV &S,
Teuchos::Array<Teuchos::RCP<const MV> > X,
Teuchos::Array<Teuchos::RCP<const MV> > Y,
bool isBiortho,
Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C,
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B,
Teuchos::RCP<MV> MS,
Teuchos::Array<Teuchos::RCP<const MV> > MX,
Teuchos::Array<Teuchos::RCP<const MV> > MY
) const {
// For the inner product defined by the operator Op or the identity (Op == 0)
// -> Orthogonalize S against each Y[i], modifying it in the range of X[i]
// Modify MS accordingly
// Then construct a M-orthonormal basis for the remaining part
//
// Note that when Op is 0, MS is not referenced
//
// Parameter variables
//
// S : Multivector to be transformed
//
// MS : Image of the block vector S by the mass matrix
//
// X,Y: Bases to orthogonalize against/via.
//
#ifdef ANASAZI_ICGS_DEBUG
// Get a FancyOStream from out_arg or create a new one ...
Teuchos::RCP<Teuchos::FancyOStream>
out = Teuchos::getFancyOStream(Teuchos::rcpFromRef(std::cout));
out->setShowAllFrontMatter(false).setShowProcRank(true);
*out << "Entering Anasazi::ICGSOrthoManager::projectAndNormalizeGen(...)\n";
#endif
int rank;
int sc = MVT::GetNumberVecs( S );
ptrdiff_t sr = MVT::GetGlobalLength( S );
int numxy = X.length();
TEUCHOS_TEST_FOR_EXCEPTION(X.length() != Y.length(),std::invalid_argument,
"Anasazi::ICGSOrthoManager::projectAndNormalizeGen(): X and Y must contain the same number of multivectors.");
std::vector<int> xyc(numxy);
// short-circuit
if (sc == 0 || sr == 0) {
#ifdef ANASAZI_ICGS_DEBUG
*out << "Leaving Anasazi::ICGSOrthoManager::projectGen(...)\n";
#endif
return 0;
}
// if we don't have enough C, expand it with null references
// if we have too many, resize to throw away the latter ones
// if we have exactly as many as we have X,Y this call has no effect
//
// same for MX, MY
C.resize(numxy);
MX.resize(numxy);
MY.resize(numxy);
// check size of S w.r.t. common sense
TEUCHOS_TEST_FOR_EXCEPTION( sc<0 || sr<0, std::invalid_argument,
"Anasazi::ICGSOrthoManager::projectAndNormalizeGen(): MVT returned negative dimensions for S." );
// check size of MS
if (this->_hasOp == true) {
if (MS != Teuchos::null) {
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetGlobalLength(*MS) != sr, std::invalid_argument,
"Anasazi::ICGSOrthoManager::projectAndNormalizeGen(): MS length not consistent with S." );
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetNumberVecs(*MS) != sc, std::invalid_argument,
"Anasazi::ICGSOrthoManager::projectAndNormalizeGen(): MS width not consistent with S." );
}
}
// tally up size of all X,Y and check/allocate C
ptrdiff_t sumxyc = 0;
int MYmissing = 0;
int MXmissing = 0;
for (int i=0; i<numxy; i++) {
if (X[i] != Teuchos::null && Y[i] != Teuchos::null) {
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetGlobalLength(*X[i]) != sr, std::invalid_argument,
"Anasazi::ICGSOrthoManager::projectAndNormalizeGen(): X[" << i << "] length not consistent with S." );
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetGlobalLength(*Y[i]) != sr, std::invalid_argument,
"Anasazi::ICGSOrthoManager::projectAndNormalizeGen(): Y[" << i << "] length not consistent with S." );
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetNumberVecs(*X[i]) != MVT::GetNumberVecs(*Y[i]), std::invalid_argument,
"Anasazi::ICGSOrthoManager::projectAndNormalizeGen(): X[" << i << "] and Y[" << i << "] widths not consistent." );
xyc[i] = MVT::GetNumberVecs( *X[i] );
TEUCHOS_TEST_FOR_EXCEPTION( sr < static_cast<ptrdiff_t>(xyc[i]), std::invalid_argument,
"Anasazi::ICGSOrthoManager::projectAndNormalizeGen(): X[" << i << "],Y[" << i << "] have less rows than columns, and therefore cannot be full rank." );
sumxyc += xyc[i];
// check size of C[i]
if ( C[i] == Teuchos::null ) {
C[i] = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(xyc[i],sc) );
}
else {
TEUCHOS_TEST_FOR_EXCEPTION( C[i]->numRows() != xyc[i] || C[i]->numCols() != sc , std::invalid_argument,
"Anasazi::ICGSOrthoManager::projectAndNormalizeGen(): Size of Q not consistent with size of C." );
}
// check sizes of MX[i], MY[i] if present
// if not present, count their absence
if (MX[i] != Teuchos::null) {
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetGlobalLength(*MX[i]) != sr || MVT::GetNumberVecs(*MX[i]) != xyc[i], std::invalid_argument,
"Anasazi::ICGSOrthoManager::projectAndNormalizeGen(): Size of MX[" << i << "] not consistent with size of X[" << i << "]." );
}
else {
MXmissing += xyc[i];
}
if (MY[i] != Teuchos::null) {
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetGlobalLength(*MY[i]) != sr || MVT::GetNumberVecs(*MY[i]) != xyc[i], std::invalid_argument,
"Anasazi::ICGSOrthoManager::projectAndNormalizeGen(): Size of MY[" << i << "] not consistent with size of Y[" << i << "]." );
}
else {
MYmissing += xyc[i];
}
}
else {
// if one is null and the other is not... the user may have made a mistake
TEUCHOS_TEST_FOR_EXCEPTION(X[i] != Teuchos::null || Y[i] != Teuchos::null, std::invalid_argument,
"Anasazi::ICGSOrthoManager::projectAndNormalizeGen(): "
<< (X[i] == Teuchos::null ? "Y[" : "X[") << i << "] was provided but "
<< (X[i] == Teuchos::null ? "X[" : "Y[") << i << "] was not.");
}
}
// is this operation even feasible?
TEUCHOS_TEST_FOR_EXCEPTION(sumxyc + sc > sr, std::invalid_argument,
"Anasazi::ICGSOrthoManager::projectAndNormalizeGen(): dimension of all X[i],Y[i] is "
<< sumxyc << " and requested " << sc << "-dimensional basis, but length of vectors is only "
<< sr << ". This is infeasible.");
/****** DO NO MODIFY *MS IF _hasOp == false
* if _hasOp == false, we don't need MS, MX or MY
*
* if _hasOp == true, we need MS (for S M-norms and normalization) and
* therefore, we must also update MS, regardless of whether
* it gets returned to the user (i.e., whether the user provided it)
* we may need to allocate and compute MX or MY
*
* let BXY denote:
* "X" - we have all M*X[i]
* "Y" - we have all M*Y[i]
* "B" - we have biorthogonality (for all X[i],Y[i])
* Encode these as values
* X = 1
* Y = 2
* B = 4
* We have 8 possibilities, 0-7
*
* We must allocate storage and computer the following, lest
* innerProdMat do it for us:
* none (0) - allocate MX, for inv(<X,Y>) and M*S
*
* for the following, we will compute M*S manually before returning
* B(4) BY(6) Y(2) --> updateMS = 1
* for the following, we will update M*S as we go, using M*X
* XY(3) X(1) none(0) BXY(7) BX(5) --> updateMS = 2
* these choices favor applications of M over allocation of memory
*
*/
int updateMS = -1;
if (this->_hasOp) {
int whichAlloc = 0;
if (MXmissing == 0) {
whichAlloc += 1;
}
if (MYmissing == 0) {
whichAlloc += 2;
}
if (isBiortho) {
whichAlloc += 4;
}
switch (whichAlloc) {
case 2:
case 4:
case 6:
updateMS = 1;
break;
case 0:
case 1:
case 3:
case 5:
case 7:
updateMS = 2;
break;
}
// produce MS
if (MS == Teuchos::null) {
#ifdef ANASAZI_ICGS_DEBUG
*out << "Allocating MS...\n";
#endif
MS = MVT::Clone(S,MVT::GetNumberVecs(S));
OPT::Apply(*(this->_Op),S,*MS);
this->_OpCounter += MVT::GetNumberVecs(S);
}
// allocate the rest
if (whichAlloc == 0) {
// allocate and compute missing MX
for (int i=0; i<numxy; i++) {
if (MX[i] == Teuchos::null) {
#ifdef ANASAZI_ICGS_DEBUG
*out << "Allocating MX[" << i << "]...\n";
#endif
Teuchos::RCP<MV> tmpMX = MVT::Clone(*X[i],xyc[i]);
OPT::Apply(*(this->_Op),*X[i],*tmpMX);
MX[i] = tmpMX;
this->_OpCounter += xyc[i];
}
}
}
}
else {
// Op == I --> MS == S
MS = Teuchos::rcpFromRef(S);
updateMS = 0;
}
TEUCHOS_TEST_FOR_EXCEPTION(updateMS == -1,std::logic_error,
"Anasazi::ICGSOrthoManager::projectGen(): Error in updateMS logic.");
// if the user doesn't want to store the coefficients,
// allocate some local memory for them
if ( B == Teuchos::null ) {
B = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(sc,sc) );
}
else {
// check size of B
TEUCHOS_TEST_FOR_EXCEPTION( B->numRows() != sc || B->numCols() != sc, std::invalid_argument,
"Anasazi::ICGSOrthoManager::projectAndNormalizeGen(): Size of S must be consistent with size of B" );
}
// orthogonalize all of S against X,Y
projectGen(S,X,Y,isBiortho,C,MS,MX,MY);
Teuchos::SerialDenseMatrix<int,ScalarType> oldCoeff(sc,1);
// start working
rank = 0;
int numTries = 10; // each vector in X gets 10 random chances to escape degeneracy
int oldrank = -1;
do {
int curssize = sc - rank;
// orthonormalize S, but quit if it is rank deficient
// we can't let findBasis generated random vectors to complete the basis,
// because it doesn't know about Q; we will do this ourselves below
#ifdef ANASAZI_ICGS_DEBUG
*out << "Attempting to find orthonormal basis for X...\n";
#endif
rank = findBasis(S,MS,*B,false,curssize);
if (oldrank != -1 && rank != oldrank) {
// we had previously stopped before, after operating on vector oldrank
// we saved its coefficients, augmented it with a random vector, and
// then called findBasis() again, which proceeded to add vector oldrank
// to the basis.
// now, restore the saved coefficients into B
for (int i=0; i<sc; i++) {
(*B)(i,oldrank) = oldCoeff(i,0);
}
}
if (rank < sc) {
if (rank != oldrank) {
// we quit on this vector and will augment it with random below
// this is the first time that we have quit on this vector
// therefor, (*B)(:,rank) contains the actual coefficients of the
// input vectors with respect to the previous vectors in the basis
// save these values, as (*B)(:,rank) will be overwritten by our next
// call to findBasis()
// we will restore it after we are done working on this vector
for (int i=0; i<sc; i++) {
oldCoeff(i,0) = (*B)(i,rank);
}
}
}
if (rank == sc) {
// we are done
#ifdef ANASAZI_ICGS_DEBUG
*out << "Finished computing basis.\n";
#endif
break;
}
else {
TEUCHOS_TEST_FOR_EXCEPTION( rank < oldrank, OrthoError,
"Anasazi::ICGSOrthoManager::projectAndNormalizeGen(): basis lost rank; this shouldn't happen");
if (rank != oldrank) {
// we added a basis vector from random info; reset the chance counter
numTries = 10;
// store old rank
oldrank = rank;
}
else {
// has this vector run out of chances to escape degeneracy?
if (numTries <= 0) {
break;
}
}
// use one of this vector's chances
numTries--;
// randomize troubled direction
#ifdef ANASAZI_ICGS_DEBUG
*out << "Inserting random vector in X[" << rank << "]. Attempt " << 10-numTries << ".\n";
#endif
Teuchos::RCP<MV> curS, curMS;
std::vector<int> ind(1);
ind[0] = rank;
curS = MVT::CloneViewNonConst(S,ind);
MVT::MvRandom(*curS);
if (this->_hasOp) {
#ifdef ANASAZI_ICGS_DEBUG
*out << "Applying operator to random vector.\n";
#endif
curMS = MVT::CloneViewNonConst(*MS,ind);
OPT::Apply( *(this->_Op), *curS, *curMS );
this->_OpCounter += MVT::GetNumberVecs(*curS);
}
// orthogonalize against X,Y
// if !this->_hasOp, the curMS will be ignored.
// we don't care about these coefficients
// on the contrary, we need to preserve the previous coeffs
{
Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > dummyC(0);
projectGen(*curS,X,Y,isBiortho,dummyC,curMS,MX,MY);
}
}
} while (1);
// this should never raise an exception; but our post-conditions oblige us to check
TEUCHOS_TEST_FOR_EXCEPTION( rank > sc || rank < 0, std::logic_error,
"Anasazi::ICGSOrthoManager::projectAndNormalizeGen(): Debug error in rank variable." );
#ifdef ANASAZI_ICGS_DEBUG
*out << "Returning " << rank << " from Anasazi::ICGSOrthoManager::projectAndNormalizeGen(...)\n";
#endif
return rank;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Find an Op-orthonormal basis for span(X), with the option of extending the subspace so that
// the rank is numvectors(X)
template<class ScalarType, class MV, class OP>
int ICGSOrthoManager<ScalarType, MV, OP>::findBasis(
MV &X, Teuchos::RCP<MV> MX,
Teuchos::SerialDenseMatrix<int,ScalarType> &B,
bool completeBasis, int howMany ) const {
// For the inner product defined by the operator Op or the identity (Op == 0)
// -> Orthonormalize X
// Modify MX accordingly
//
// Note that when Op is 0, MX is not referenced
//
// Parameter variables
//
// X : Vectors to be orthonormalized
//
// MX : Image of the multivector X under the operator Op
//
// Op : Pointer to the operator for the inner product
//
#ifdef ANASAZI_ICGS_DEBUG
// Get a FancyOStream from out_arg or create a new one ...
Teuchos::RCP<Teuchos::FancyOStream>
out = Teuchos::getFancyOStream(Teuchos::rcpFromRef(std::cout));
out->setShowAllFrontMatter(false).setShowProcRank(true);
*out << "Entering Anasazi::ICGSOrthoManager::findBasis(...)\n";
#endif
const ScalarType ONE = SCT::one();
const MagnitudeType ZERO = SCT::magnitude(SCT::zero());
int xc = MVT::GetNumberVecs( X );
if (howMany == -1) {
howMany = xc;
}
/*******************************************************
* If _hasOp == false, we will not reference MX below *
*******************************************************/
TEUCHOS_TEST_FOR_EXCEPTION(this->_hasOp == true && MX == Teuchos::null, std::logic_error,
"Anasazi::ICGSOrthoManager::findBasis(): calling routine did not specify MS.");
TEUCHOS_TEST_FOR_EXCEPTION( howMany < 0 || howMany > xc, std::logic_error,
"Anasazi::ICGSOrthoManager::findBasis(): Invalid howMany parameter" );
/* xstart is which column we are starting the process with, based on howMany
* columns before xstart are assumed to be Op-orthonormal already
*/
int xstart = xc - howMany;
for (int j = xstart; j < xc; j++) {
// numX represents the number of currently orthonormal columns of X
int numX = j;
// j represents the index of the current column of X
// these are different interpretations of the same value
//
// set the lower triangular part of B to zero
for (int i=j+1; i<xc; ++i) {
B(i,j) = ZERO;
}
// Get a view of the vector currently being worked on.
std::vector<int> index(1);
index[0] = j;
Teuchos::RCP<MV> Xj = MVT::CloneViewNonConst( X, index );
Teuchos::RCP<MV> MXj;
if ((this->_hasOp)) {
// MXj is a view of the current vector in MX
MXj = MVT::CloneViewNonConst( *MX, index );
}
else {
// MXj is a pointer to Xj, and MUST NOT be modified
MXj = Xj;
}
// Get a view of the previous vectors.
std::vector<int> prev_idx( numX );
Teuchos::RCP<const MV> prevX, prevMX;
if (numX > 0) {
for (int i=0; i<numX; ++i) prev_idx[i] = i;
prevX = MVT::CloneView( X, prev_idx );
if (this->_hasOp) {
prevMX = MVT::CloneView( *MX, prev_idx );
}
}
bool rankDef = true;
/* numTrials>0 will denote that the current vector was randomized for the purpose
* of finding a basis vector, and that the coefficients of that vector should
* not be stored in B
*/
for (int numTrials = 0; numTrials < 10; numTrials++) {
#ifdef ANASAZI_ICGS_DEBUG
*out << "Trial " << numTrials << " for vector " << j << "\n";
#endif
// Make storage for these Gram-Schmidt iterations.
Teuchos::SerialDenseMatrix<int,ScalarType> product(numX, 1);
std::vector<MagnitudeType> origNorm(1), newNorm(1), newNorm2(1);
//
// Save old MXj vector and compute Op-norm
//
Teuchos::RCP<MV> oldMXj = MVT::CloneCopy( *MXj );
MatOrthoManager<ScalarType,MV,OP>::normMat(*Xj,origNorm,MXj);
#ifdef ANASAZI_ICGS_DEBUG
*out << "origNorm = " << origNorm[0] << "\n";
#endif
if (numX > 0) {
// Apply the first step of Gram-Schmidt
// product <- prevX^T MXj
MatOrthoManager<ScalarType,MV,OP>::innerProdMat(*prevX,*Xj,product,Teuchos::null,MXj);
// Xj <- Xj - prevX prevX^T MXj
// = Xj - prevX product
#ifdef ANASAZI_ICGS_DEBUG
*out << "Orthogonalizing X[" << j << "]...\n";
#endif
MVT::MvTimesMatAddMv( -ONE, *prevX, product, ONE, *Xj );
// Update MXj
if (this->_hasOp) {
// MXj <- Op*Xj_new
// = Op*(Xj_old - prevX prevX^T MXj)
// = MXj - prevMX product
#ifdef ANASAZI_ICGS_DEBUG
*out << "Updating MX[" << j << "]...\n";
#endif
MVT::MvTimesMatAddMv( -ONE, *prevMX, product, ONE, *MXj );
}
// Compute new Op-norm
MatOrthoManager<ScalarType,MV,OP>::normMat(*Xj,newNorm,MXj);
MagnitudeType product_norm = product.normOne();
#ifdef ANASAZI_ICGS_DEBUG
*out << "newNorm = " << newNorm[0] << "\n";
*out << "prodoct_norm = " << product_norm << "\n";
#endif
// Check if a correction is needed.
if ( product_norm/newNorm[0] >= tol_ || newNorm[0] < eps_*origNorm[0]) {
#ifdef ANASAZI_ICGS_DEBUG
if (product_norm/newNorm[0] >= tol_) {
*out << "product_norm/newNorm == " << product_norm/newNorm[0] << "... another step of Gram-Schmidt.\n";
}
else {
*out << "eps*origNorm == " << eps_*origNorm[0] << "... another step of Gram-Schmidt.\n";
}
#endif
// Apply the second step of Gram-Schmidt
// This is the same as above
Teuchos::SerialDenseMatrix<int,ScalarType> P2(numX,1);
MatOrthoManager<ScalarType,MV,OP>::innerProdMat(*prevX,*Xj,P2,Teuchos::null,MXj);
product += P2;
#ifdef ANASAZI_ICGS_DEBUG
*out << "Orthogonalizing X[" << j << "]...\n";
#endif
MVT::MvTimesMatAddMv( -ONE, *prevX, P2, ONE, *Xj );
if ((this->_hasOp)) {
#ifdef ANASAZI_ICGS_DEBUG
*out << "Updating MX[" << j << "]...\n";
#endif
MVT::MvTimesMatAddMv( -ONE, *prevMX, P2, ONE, *MXj );
}
// Compute new Op-norms
MatOrthoManager<ScalarType,MV,OP>::normMat(*Xj,newNorm2,MXj);
product_norm = P2.normOne();
#ifdef ANASAZI_ICGS_DEBUG
*out << "newNorm2 = " << newNorm2[0] << "\n";
*out << "product_norm = " << product_norm << "\n";
#endif
if ( product_norm/newNorm2[0] >= tol_ || newNorm2[0] < eps_*origNorm[0] ) {
// we don't do another GS, we just set it to zero.
#ifdef ANASAZI_ICGS_DEBUG
if (product_norm/newNorm2[0] >= tol_) {
*out << "product_norm/newNorm2 == " << product_norm/newNorm2[0] << "... setting vector to zero.\n";
}
else if (newNorm[0] < newNorm2[0]) {
*out << "newNorm2 > newNorm... setting vector to zero.\n";
}
else {
*out << "eps*origNorm == " << eps_*origNorm[0] << "... setting vector to zero.\n";
}
#endif
MVT::MvInit(*Xj,ZERO);
if ((this->_hasOp)) {
#ifdef ANASAZI_ICGS_DEBUG
*out << "Setting MX[" << j << "] to zero as well.\n";
#endif
MVT::MvInit(*MXj,ZERO);
}
}
}
} // if (numX > 0) do GS
// save the coefficients, if we are working on the original vector and not a randomly generated one
if (numTrials == 0) {
for (int i=0; i<numX; i++) {
B(i,j) = product(i,0);
}
}
// Check if Xj has any directional information left after the orthogonalization.
MatOrthoManager<ScalarType,MV,OP>::normMat(*Xj,newNorm,MXj);
if ( newNorm[0] != ZERO && newNorm[0] > SCT::sfmin() ) {
#ifdef ANASAZI_ICGS_DEBUG
*out << "Normalizing X[" << j << "], norm(X[" << j << "]) = " << newNorm[0] << "\n";
#endif
// Normalize Xj.
// Xj <- Xj / norm
MVT::MvScale( *Xj, ONE/newNorm[0]);
if (this->_hasOp) {
#ifdef ANASAZI_ICGS_DEBUG
*out << "Normalizing M*X[" << j << "]...\n";
#endif
// Update MXj.
MVT::MvScale( *MXj, ONE/newNorm[0]);
}
// save it, if it corresponds to the original vector and not a randomly generated one
if (numTrials == 0) {
B(j,j) = newNorm[0];
}
// We are not rank deficient in this vector. Move on to the next vector in X.
rankDef = false;
break;
}
else {
#ifdef ANASAZI_ICGS_DEBUG
*out << "Not normalizing M*X[" << j << "]...\n";
#endif
// There was nothing left in Xj after orthogonalizing against previous columns in X.
// X is rank deficient.
// reflect this in the coefficients
B(j,j) = ZERO;
if (completeBasis) {
// Fill it with random information and keep going.
#ifdef ANASAZI_ICGS_DEBUG
*out << "Inserting random vector in X[" << j << "]...\n";
#endif
MVT::MvRandom( *Xj );
if (this->_hasOp) {
#ifdef ANASAZI_ICGS_DEBUG
*out << "Updating M*X[" << j << "]...\n";
#endif
OPT::Apply( *(this->_Op), *Xj, *MXj );
this->_OpCounter += MVT::GetNumberVecs(*Xj);
}
}
else {
rankDef = true;
break;
}
}
} // for (numTrials = 0; numTrials < 10; ++numTrials)
// if rankDef == true, then quit and notify user of rank obtained
if (rankDef == true) {
TEUCHOS_TEST_FOR_EXCEPTION( rankDef && completeBasis, OrthoError,
"Anasazi::ICGSOrthoManager::findBasis(): Unable to complete basis" );
#ifdef ANASAZI_ICGS_DEBUG
*out << "Returning early, rank " << j << " from Anasazi::ICGSOrthoManager::findBasis(...)\n";
#endif
return j;
}
} // for (j = 0; j < xc; ++j)
#ifdef ANASAZI_ICGS_DEBUG
*out << "Returning " << xc << " from Anasazi::ICGSOrthoManager::findBasis(...)\n";
#endif
return xc;
}
} // namespace Anasazi
#endif // ANASAZI_ICSG_ORTHOMANAGER_HPP
|