/usr/include/trilinos/AnasaziSaddleContainer.hpp is in libtrilinos-anasazi-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 | // @HEADER
// ***********************************************************************
//
// Anasazi: Block Eigensolvers Package
// Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
/*! \file AnasaziSaddleContainer.hpp
* \brief Stores a set of vectors of the form [V; L] where V is a distributed multivector
* and L is a serialdense matrix.
*
* Used in solving TraceMin's saddle point problem.
*/
#ifndef ANASAZI_SADDLE_CONTAINER_HPP
#define ANASAZI_SADDLE_CONTAINER_HPP
#include "AnasaziConfigDefs.hpp"
#include "Teuchos_VerboseObject.hpp"
#ifdef HAVE_ANASAZI_BELOS
#include "BelosMultiVecTraits.hpp"
#endif
using Teuchos::RCP;
using Teuchos::rcp;
namespace Anasazi {
namespace Experimental {
template <class ScalarType, class MV>
class SaddleContainer //: public Anasazi::SaddleContainer<ScalarType, MV>
{
template <class Scalar_, class MV_, class OP_> friend class SaddleOperator;
private:
typedef Anasazi::MultiVecTraits<ScalarType,MV> MVT;
typedef Teuchos::SerialDenseMatrix<int,ScalarType> SerialDenseMatrix;
const ScalarType ONE, ZERO;
RCP<MV> upper_;
RCP<SerialDenseMatrix> lowerRaw_;
std::vector<int> indices_;
RCP<SerialDenseMatrix> getLower() const;
void setLower(const RCP<SerialDenseMatrix> lower);
public:
// Constructors
SaddleContainer( ) : ONE(Teuchos::ScalarTraits<ScalarType>::one()), ZERO(Teuchos::ScalarTraits<ScalarType>::zero()) { };
SaddleContainer( const RCP<MV> X, bool eye=false );
// Things that are necessary for compilation
// Returns a clone of the current vector
SaddleContainer<ScalarType, MV> * Clone(const int nvecs) const;
// Returns a duplicate of the current vector
SaddleContainer<ScalarType, MV> * CloneCopy() const;
// Returns a duplicate of the specified vectors
SaddleContainer<ScalarType, MV> * CloneCopy(const std::vector<int> &index) const;
SaddleContainer<ScalarType, MV> * CloneViewNonConst(const std::vector<int> &index) const;
const SaddleContainer<ScalarType, MV> * CloneView(const std::vector<int> &index) const;
ptrdiff_t GetGlobalLength() const { return MVT::GetGlobalLength(*upper_) + lowerRaw_->numRows(); };
int GetNumberVecs() const { return MVT::GetNumberVecs(*upper_); };
// Update *this with alpha * A * B + beta * (*this)
void MvTimesMatAddMv(ScalarType alpha, const SaddleContainer<ScalarType,MV> &A,
const Teuchos::SerialDenseMatrix<int, ScalarType> &B,
ScalarType beta);
// Replace *this with alpha * A + beta * B
void MvAddMv(ScalarType alpha, const SaddleContainer<ScalarType,MV>& A,
ScalarType beta, const SaddleContainer<ScalarType,MV>& B);
// Scale the vectors by alpha
void MvScale( ScalarType alpha );
// Scale the i-th vector by alpha[i]
void MvScale( const std::vector<ScalarType>& alpha );
// Compute a dense matrix B through the matrix-matrix multiply alpha * A^H * (*this)
void MvTransMv (ScalarType alpha, const SaddleContainer<ScalarType, MV>& A,
Teuchos::SerialDenseMatrix< int, ScalarType >& B) const;
// Compute a vector b where the components are the individual dot-products, i.e.b[i] = A[i]^H*this[i] where A[i] is the i-th column of A.
void MvDot (const SaddleContainer<ScalarType, MV>& A, std::vector<ScalarType> &b) const;
// Compute the 2-norm of each individual vector
void MvNorm ( std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> &normvec) const;
// Copy the vectors in A to a set of vectors in *this. The numvecs vectors in
// A are copied to a subset of vectors in *this indicated by the indices given
// in index.
void SetBlock (const SaddleContainer<ScalarType, MV>& A, const std::vector<int> &index);
// Deep copy.
void Assign (const SaddleContainer<ScalarType, MV>&A);
// Fill the vectors in *this with random numbers.
void MvRandom ();
// Replace each element of the vectors in *this with alpha.
void MvInit (ScalarType alpha);
// Prints the multivector to an output stream
void MvPrint (std::ostream &os) const;
};
// THIS IS NEW!
template <class ScalarType, class MV>
RCP< Teuchos::SerialDenseMatrix<int,ScalarType> > SaddleContainer<ScalarType, MV>::getLower() const
{
if(indices_.empty())
{
return lowerRaw_;
}
int nrows = lowerRaw_->numRows();
int ncols = indices_.size();
RCP<SerialDenseMatrix> lower = rcp(new SerialDenseMatrix(nrows,ncols,false));
for(int r=0; r<nrows; r++)
{
for(int c=0; c<ncols; c++)
{
(*lower)(r,c) = (*lowerRaw_)(r,indices_[c]);
}
}
return lower;
}
// THIS IS NEW!
template <class ScalarType, class MV>
void SaddleContainer<ScalarType, MV>::setLower(const RCP<SerialDenseMatrix> lower)
{
// If the indices are empty, lower points to lowerRaw
if(indices_.empty())
{
return;
}
int nrows = lowerRaw_->numRows();
int ncols = indices_.size();
for(int r=0; r<nrows; r++)
{
for(int c=0; c<ncols; c++)
{
(*lowerRaw_)(r,indices_[c]) = (*lower)(r,c);
}
}
}
// Constructor
template <class ScalarType, class MV>
SaddleContainer<ScalarType, MV>::SaddleContainer( const RCP<MV> X, bool eye )
: ONE(Teuchos::ScalarTraits<ScalarType>::one()), ZERO(Teuchos::ScalarTraits<ScalarType>::zero())
{
int nvecs = MVT::GetNumberVecs(*X);
if(eye)
{
// Initialize upper_ as all 0s
upper_ = MVT::Clone(*X, nvecs);
MVT::MvInit(*upper_);
// Initialize Y to be I
lowerRaw_ = rcp(new SerialDenseMatrix(nvecs,nvecs));
for(int i=0; i < nvecs; i++)
(*lowerRaw_)(i,i) = ONE;
}
else
{
// Point upper_ to X
upper_ = X;
// Initialize Y to be 0
lowerRaw_ = rcp(new SerialDenseMatrix(nvecs,nvecs));
}
}
// Returns a clone of the current vector
template <class ScalarType, class MV>
SaddleContainer<ScalarType, MV> * SaddleContainer<ScalarType, MV>::Clone(const int nvecs) const
{
SaddleContainer<ScalarType, MV> * newSC = new SaddleContainer<ScalarType, MV>();
newSC->upper_ = MVT::Clone(*upper_,nvecs);
newSC->lowerRaw_ = rcp(new SerialDenseMatrix(lowerRaw_->numRows(),nvecs));
return newSC;
}
// Returns a duplicate of the current vector
template <class ScalarType, class MV>
SaddleContainer<ScalarType, MV> * SaddleContainer<ScalarType, MV>::CloneCopy() const
{
SaddleContainer<ScalarType, MV> * newSC = new SaddleContainer<ScalarType, MV>();
newSC->upper_ = MVT::CloneCopy(*upper_);
newSC->lowerRaw_ = getLower();
return newSC;
}
// Returns a duplicate of the specified vectors
template <class ScalarType, class MV>
SaddleContainer<ScalarType, MV> * SaddleContainer<ScalarType, MV>::CloneCopy(const std::vector< int > &index) const
{
SaddleContainer<ScalarType, MV> * newSC = new SaddleContainer<ScalarType, MV>();
newSC->upper_ = MVT::CloneCopy(*upper_,index);
int ncols = index.size();
int nrows = lowerRaw_->numRows();
RCP<SerialDenseMatrix> lower = getLower();
newSC->lowerRaw_ = rcp(new SerialDenseMatrix(nrows,ncols));
for(int c=0; c < ncols; c++)
{
for(int r=0; r < nrows; r++)
(*newSC->lowerRaw_)(r,c) = (*lower)(r,index[c]);
}
return newSC;
}
// THIS IS NEW!
template <class ScalarType, class MV>
SaddleContainer<ScalarType, MV> * SaddleContainer<ScalarType, MV>::CloneViewNonConst(const std::vector<int> &index) const
{
SaddleContainer<ScalarType, MV> * newSC = new SaddleContainer<ScalarType, MV>();
newSC->upper_ = MVT::CloneViewNonConst(*upper_,index);
newSC->lowerRaw_ = lowerRaw_;
if(!indices_.empty())
{
newSC->indices_.resize(index.size());
for(unsigned int i=0; i<index.size(); i++)
{
newSC->indices_[i] = indices_[index[i]];
}
}
else
{
newSC->indices_ = index;
}
return newSC;
}
// THIS IS NEW!
template <class ScalarType, class MV>
const SaddleContainer<ScalarType, MV> * SaddleContainer<ScalarType, MV>::CloneView(const std::vector<int> &index) const
{
SaddleContainer<ScalarType, MV> * newSC = new SaddleContainer<ScalarType, MV>();
newSC->upper_ = MVT::CloneViewNonConst(*upper_,index);
newSC->lowerRaw_ = lowerRaw_;
if(!indices_.empty())
{
newSC->indices_.resize(index.size());
for(unsigned int i=0; i<index.size(); i++)
{
newSC->indices_[i] = indices_[index[i]];
}
}
else
{
newSC->indices_ = index;
}
return newSC;
}
// Update *this with alpha * A * B + beta * (*this)
// THIS IS NEW!
template <class ScalarType, class MV>
void SaddleContainer<ScalarType, MV>::MvTimesMatAddMv(ScalarType alpha, const SaddleContainer<ScalarType,MV> &A,
const Teuchos::SerialDenseMatrix<int, ScalarType> &B,
ScalarType beta)
{
MVT::MvTimesMatAddMv(alpha,*(A.upper_),B,beta,*upper_);
RCP<SerialDenseMatrix> lower = getLower();
RCP<SerialDenseMatrix> Alower = A.getLower();
lower->multiply(Teuchos::NO_TRANS,Teuchos::NO_TRANS,alpha,*Alower,B,beta);
setLower(lower);
}
// Replace *this with alpha * A + beta * B
template <class ScalarType, class MV>
void SaddleContainer<ScalarType, MV>::MvAddMv(ScalarType alpha, const SaddleContainer<ScalarType,MV>& A,
ScalarType beta, const SaddleContainer<ScalarType,MV>& B)
{
MVT::MvAddMv(alpha, *(A.upper_), beta, *(B.upper_), *upper_);
RCP<SerialDenseMatrix> lower = getLower();
RCP<SerialDenseMatrix> Alower = A.getLower();
RCP<SerialDenseMatrix> Blower = B.getLower();
//int ncolsA = Alower->numCols(); // unused
//int ncolsThis = lower->numCols(); // unused
//int nrows = lower->numRows(); // unused
// Y = alpha A
lower->assign(*Alower);
if(alpha != ONE)
lower->scale(alpha);
// Y += beta B
if(beta == ONE)
*lower += *Blower;
else if(beta == -ONE)
*lower -= *Blower;
else if(beta != ZERO)
{
SerialDenseMatrix scaledB(*Blower);
scaledB.scale(beta);
*lower += *Blower;
}
setLower(lower);
}
// Scale the vectors by alpha
template <class ScalarType, class MV>
void SaddleContainer<ScalarType, MV>::MvScale( ScalarType alpha )
{
MVT::MvScale(*upper_, alpha);
RCP<SerialDenseMatrix> lower = getLower();
lower->scale(alpha);
setLower(lower);
}
// Scale the i-th vector by alpha[i]
template <class ScalarType, class MV>
void SaddleContainer<ScalarType, MV>::MvScale( const std::vector<ScalarType>& alpha )
{
MVT::MvScale(*upper_, alpha);
RCP<SerialDenseMatrix> lower = getLower();
int nrows = lower->numRows();
int ncols = lower->numCols();
for(int c=0; c<ncols; c++)
{
for(int r=0; r<nrows; r++)
(*lower)(r,c) *= alpha[c];
}
setLower(lower);
}
// Compute a dense matrix B through the matrix-matrix multiply alpha * A^H * (*this)
// THIS IS NEW!
template <class ScalarType, class MV>
void SaddleContainer<ScalarType, MV>::MvTransMv (ScalarType alpha, const SaddleContainer<ScalarType, MV>& A,
Teuchos::SerialDenseMatrix< int, ScalarType >& B) const
{
MVT::MvTransMv(alpha,*(A.upper_),*upper_,B);
RCP<SerialDenseMatrix> lower = getLower();
RCP<SerialDenseMatrix> Alower = A.getLower();
B.multiply(Teuchos::TRANS,Teuchos::NO_TRANS,alpha,*(Alower),*lower,ONE);
}
// Compute a vector b where the components are the individual dot-products, i.e.b[i] = A[i]^H*this[i] where A[i] is the i-th column of A.
template <class ScalarType, class MV>
void SaddleContainer<ScalarType, MV>::MvDot (const SaddleContainer<ScalarType, MV>& A, std::vector<ScalarType> &b) const
{
MVT::MvDot(*upper_, *(A.upper_), b);
RCP<SerialDenseMatrix> lower = getLower();
RCP<SerialDenseMatrix> Alower = A.getLower();
int nrows = lower->numRows();
int ncols = lower->numCols();
for(int c=0; c < ncols; c++)
{
for(int r=0; r < nrows; r++)
{
b[c] += ((*Alower)(r,c) * (*lower)(r,c));
}
}
}
// Compute the 2-norm of each individual vector
// THIS IS NEW!
template <class ScalarType, class MV>
void SaddleContainer<ScalarType, MV>::MvNorm ( std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> &normvec) const
{
// TODO: Make this better
MvDot(*this,normvec);
for(unsigned int i=0; i<normvec.size(); i++)
normvec[i] = sqrt(normvec[i]);
}
// Copy the vectors in A to a set of vectors in *this. The numvecs vectors in
// A are copied to a subset of vectors in *this indicated by the indices given
// in index.
template <class ScalarType, class MV>
void SaddleContainer<ScalarType, MV>::SetBlock (const SaddleContainer<ScalarType, MV>& A, const std::vector<int> &index)
{
MVT::SetBlock(*(A.upper_), index, *upper_);
RCP<SerialDenseMatrix> lower = getLower();
RCP<SerialDenseMatrix> Alower = A.getLower();
int nrows = lower->numRows();
int nvecs = index.size();
for(int c=0; c<nvecs; c++)
{
for(int r=0; r<nrows; r++)
(*lower)(r,index[c]) = (*Alower)(r,c);
}
setLower(lower);
}
// Deep copy.
template <class ScalarType, class MV>
void SaddleContainer<ScalarType, MV>::Assign (const SaddleContainer<ScalarType, MV>&A)
{
MVT::Assign(*(A.upper_),*(upper_));
RCP<SerialDenseMatrix> lower = getLower();
RCP<SerialDenseMatrix> Alower = A.getLower();
*lower = *Alower; // This is a well-defined operator for SerialDenseMatrix
setLower(lower);
}
// Fill the vectors in *this with random numbers.
// THIS IS NEW!
template <class ScalarType, class MV>
void SaddleContainer<ScalarType, MV>::MvRandom ()
{
MVT::MvRandom(*upper_);
RCP<SerialDenseMatrix> lower = getLower();
lower->random();
setLower(lower);
}
// Replace each element of the vectors in *this with alpha.
template <class ScalarType, class MV>
void SaddleContainer<ScalarType, MV>::MvInit (ScalarType alpha)
{
MVT::MvInit(*upper_,alpha);
RCP<SerialDenseMatrix> lower = getLower();
lower->putScalar(alpha);
setLower(lower);
}
// Prints the multivector to an output stream
template <class ScalarType, class MV>
void SaddleContainer<ScalarType, MV>::MvPrint (std::ostream &os) const
{
RCP<SerialDenseMatrix> lower = getLower();
//int nrows = lower->numRows(); // unused
//int ncols = lower->numCols(); // unused
os << "Object SaddleContainer" << std::endl;
os << "X\n";
upper_->describe(*(Teuchos::VerboseObjectBase::getDefaultOStream()),Teuchos::VERB_EXTREME);
// os << "X\n" << *upper_ << std::endl;
os << "Y\n" << *lower << std::endl;
}
} // End namespace Experimental
template<class ScalarType, class MV >
class MultiVecTraits<ScalarType,Experimental::SaddleContainer<ScalarType, MV> >
{
typedef Experimental::SaddleContainer<ScalarType,MV> SC;
public:
static RCP<SC > Clone( const SC& mv, const int numvecs )
{ return rcp( const_cast<SC&>(mv).Clone(numvecs) ); }
static RCP<SC > CloneCopy( const SC& mv )
{ return rcp( const_cast<SC&>(mv).CloneCopy() ); }
static RCP<SC > CloneCopy( const SC& mv, const std::vector<int>& index )
{ return rcp( const_cast<SC&>(mv).CloneCopy(index) ); }
static ptrdiff_t GetGlobalLength( const SC& mv )
{ return mv.GetGlobalLength(); }
static int GetNumberVecs( const SC& mv )
{ return mv.GetNumberVecs(); }
static void MvTimesMatAddMv( ScalarType alpha, const SC& A,
const Teuchos::SerialDenseMatrix<int,ScalarType>& B,
ScalarType beta, SC& mv )
{ mv.MvTimesMatAddMv(alpha, A, B, beta); }
static void MvAddMv( ScalarType alpha, const SC& A, ScalarType beta, const SC& B, SC& mv )
{ mv.MvAddMv(alpha, A, beta, B); }
static void MvTransMv( ScalarType alpha, const SC& A, const SC& mv, Teuchos::SerialDenseMatrix<int,ScalarType>& B)
{ mv.MvTransMv(alpha, A, B); }
static void MvDot( const SC& mv, const SC& A, std::vector<ScalarType> & b)
{ mv.MvDot( A, b); }
static void MvScale ( SC& mv, ScalarType alpha )
{ mv.MvScale( alpha ); }
static void MvScale ( SC& mv, const std::vector<ScalarType>& alpha )
{ mv.MvScale( alpha ); }
static void MvNorm( const SC& mv, std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> & normvec)
{ mv.MvNorm(normvec); }
static void SetBlock( const SC& A, const std::vector<int>& index, SC& mv )
{ mv.SetBlock(A, index); }
static void Assign( const SC& A, SC& mv )
{ mv.Assign(A); }
static void MvRandom( SC& mv )
{ mv.MvRandom(); }
static void MvInit( SC& mv, ScalarType alpha = Teuchos::ScalarTraits<ScalarType>::zero() )
{ mv.MvInit(alpha); }
static void MvPrint( const SC& mv, std::ostream& os )
{ mv.MvPrint(os); }
};
} // end namespace Anasazi
#ifdef HAVE_ANASAZI_BELOS
namespace Belos
{
template<class ScalarType, class MV >
class MultiVecTraits< ScalarType, Anasazi::Experimental::SaddleContainer<ScalarType,MV> >
{
typedef Anasazi::Experimental::SaddleContainer<ScalarType,MV> SC;
public:
static RCP<SC > Clone( const SC& mv, const int numvecs )
{ return rcp( const_cast<SC&>(mv).Clone(numvecs) ); }
static RCP<SC > CloneCopy( const SC& mv )
{ return rcp( const_cast<SC&>(mv).CloneCopy() ); }
static RCP<SC > CloneCopy( const SC& mv, const std::vector<int>& index )
{ return rcp( const_cast<SC&>(mv).CloneCopy(index) ); }
static RCP<SC> CloneViewNonConst( SC& mv, const std::vector<int>& index )
{ return rcp( mv.CloneViewNonConst(index) ); }
static RCP<const SC> CloneView( const SC& mv, const std::vector<int> & index )
{ return rcp( mv.CloneView(index) ); }
static ptrdiff_t GetGlobalLength( const SC& mv )
{ return mv.GetGlobalLength(); }
static int GetNumberVecs( const SC& mv )
{ return mv.GetNumberVecs(); }
static void MvTimesMatAddMv( ScalarType alpha, const SC& A,
const Teuchos::SerialDenseMatrix<int,ScalarType>& B,
ScalarType beta, SC& mv )
{ mv.MvTimesMatAddMv(alpha, A, B, beta); }
static void MvAddMv( ScalarType alpha, const SC& A, ScalarType beta, const SC& B, SC& mv )
{ mv.MvAddMv(alpha, A, beta, B); }
static void MvTransMv( ScalarType alpha, const SC& A, const SC& mv, Teuchos::SerialDenseMatrix<int,ScalarType>& B)
{ mv.MvTransMv(alpha, A, B); }
static void MvDot( const SC& mv, const SC& A, std::vector<ScalarType> & b)
{ mv.MvDot( A, b); }
static void MvScale ( SC& mv, ScalarType alpha )
{ mv.MvScale( alpha ); }
static void MvScale ( SC& mv, const std::vector<ScalarType>& alpha )
{ mv.MvScale( alpha ); }
// TODO: MAKE SURE TYPE == TWONORM
static void MvNorm( const SC& mv, std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> & normvec, NormType type=TwoNorm)
{ mv.MvNorm(normvec); }
static void SetBlock( const SC& A, const std::vector<int>& index, SC& mv )
{ mv.SetBlock(A, index); }
static void Assign( const SC& A, SC& mv )
{ mv.Assign(A); }
static void MvRandom( SC& mv )
{ mv.MvRandom(); }
static void MvInit( SC& mv, ScalarType alpha = Teuchos::ScalarTraits<ScalarType>::zero() )
{ mv.MvInit(alpha); }
static void MvPrint( const SC& mv, std::ostream& os )
{ mv.MvPrint(os); }
};
} // end namespace Belos
#endif
#endif
|