This file is indexed.

/usr/include/trilinos/AnasaziSimpleLOBPCGSolMgr.hpp is in libtrilinos-anasazi-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
// @HEADER
// ***********************************************************************
//
//                 Anasazi: Block Eigensolvers Package
//                 Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER

#ifndef ANASAZI_SIMPLE_LOBPCG_SOLMGR_HPP
#define ANASAZI_SIMPLE_LOBPCG_SOLMGR_HPP

/*! \file AnasaziSimpleLOBPCGSolMgr.hpp
  \brief The Anasazi::SimpleLOBPCGSolMgr provides a simple solver manager over the LOBPCG
  eigensolver.
*/

#include "AnasaziConfigDefs.hpp"
#include "AnasaziTypes.hpp"

#include "AnasaziEigenproblem.hpp"
#include "AnasaziSolverManager.hpp"

#include "AnasaziLOBPCG.hpp"
#include "AnasaziBasicSort.hpp"
#include "AnasaziSVQBOrthoManager.hpp"
#include "AnasaziStatusTestMaxIters.hpp"
#include "AnasaziStatusTestResNorm.hpp"
#include "AnasaziStatusTestCombo.hpp"
#include "AnasaziStatusTestOutput.hpp"
#include "AnasaziBasicOutputManager.hpp"
#include "AnasaziSolverUtils.hpp"

#include "Teuchos_TimeMonitor.hpp"

/// \example LOBPCGEpetraExSimple.cpp
/// \brief Use "Simple LOBPCG" with Epetra test problem (computed here).
///
/// This example computes the eigenvalues of largest magnitude of an
/// eigenvalue problem $A x = \lambda x$, using Anasazi's "simple"
/// implementation of the LOBPCG method, with Epetra linear algebra.
/// It constructs the test problem within the example itself.

/*! \class Anasazi::SimpleLOBPCGSolMgr
  \brief The Anasazi::SimpleLOBPCGSolMgr provides a simple solver
  manager over the LOBPCG eigensolver.

  Anasazi::SimpleLOBPCGSolMgr allows the user to specify convergence
  tolerance, verbosity level and block size. When block size is less than the
  number of requested eigenvalues specified in the eigenproblem, checkpointing
  is activated.

  The purpose of this solver manager was to provide an example of a simple
  solver manager, useful for demonstration as well as a jumping-off point for
  solvermanager development. Also, the solver manager is useful for testing
  some of the features of the Anasazi::LOBPCG eigensolver, principally the use
  of auxiliary vectors.

  This solver manager does not verify before quitting that the nev eigenvectors
  that have converged are also the smallest nev eigenvectors that are known.

  \ingroup anasazi_solver_framework

  \author Chris Baker, Ulrich Hetmaniuk, Rich Lehoucq, Heidi Thornquist
*/

namespace Anasazi {

template<class ScalarType, class MV, class OP>
class SimpleLOBPCGSolMgr : public SolverManager<ScalarType,MV,OP> {

  private:
    typedef MultiVecTraits<ScalarType,MV> MVT;
    typedef Teuchos::ScalarTraits<ScalarType> SCT;
    typedef typename Teuchos::ScalarTraits<ScalarType>::magnitudeType MagnitudeType;
    typedef Teuchos::ScalarTraits<MagnitudeType> MT;

  public:

  //!@name Constructors/Destructor
  //@{

  /*! \brief Basic constructor for SimpleLOBPCGSolMgr.
   *
   * This constructor accepts the Eigenproblem to be solved in addition
   * to a parameter list of options for the solver manager. These options include the following:
   *   - "Which" - a \c string specifying the desired eigenvalues: SM, LM, SR or LR. Default: SR
   *   - "Block Size" - a \c int specifying the block size to be used by the underlying LOBPCG solver. Default: problem->getNEV()
   *   - "Maximum Iterations" - a \c int specifying the maximum number of iterations the underlying solver is allowed to perform. Default: 100
   *   - "Verbosity" - a sum of MsgType specifying the verbosity. Default: Anasazi::Errors
   *   - "Convergence Tolerance" - a \c MagnitudeType specifying the level that residual norms must reach to decide convergence. Default: machine precision
   */
  SimpleLOBPCGSolMgr( const Teuchos::RCP<Eigenproblem<ScalarType,MV,OP> > &problem,
                             Teuchos::ParameterList &pl );

  //! Destructor.
  virtual ~SimpleLOBPCGSolMgr() {};
  //@}

  //! @name Accessor methods
  //@{

  const Eigenproblem<ScalarType,MV,OP>& getProblem() const {
    return *problem_;
  }

  int getNumIters() const {
    return numIters_;
  }

  //@}

  //! @name Solver application methods
  //@{

  /*! \brief This method performs possibly repeated calls to the underlying eigensolver's iterate() routine
   * until the problem has been solved (as decided by the solver manager) or the solver manager decides to
   * quit.
   *
   * \returns ::ReturnType specifying:
   *    - ::Converged: the eigenproblem was solved to the specification required by the solver manager.
   *    - ::Unconverged: the eigenproblem was not solved to the specification desired by the solver manager
  */
  ReturnType solve();
  //@}

  private:
  Teuchos::RCP<Eigenproblem<ScalarType,MV,OP> > problem_;
  std::string whch_;
  MagnitudeType tol_;
  int verb_;
  int blockSize_;
  int maxIters_;
  int numIters_;
};


////////////////////////////////////////////////////////////////////////////////////////
template<class ScalarType, class MV, class OP>
SimpleLOBPCGSolMgr<ScalarType,MV,OP>::SimpleLOBPCGSolMgr(
        const Teuchos::RCP<Eigenproblem<ScalarType,MV,OP> > &problem,
        Teuchos::ParameterList &pl ) :
  problem_(problem),
  whch_("LM"),
  tol_(1e-6),
  verb_(Anasazi::Errors),
  blockSize_(0),
  maxIters_(100),
  numIters_(0)
{
  TEUCHOS_TEST_FOR_EXCEPTION(problem_ == Teuchos::null,              std::invalid_argument, "Problem not given to solver manager.");
  TEUCHOS_TEST_FOR_EXCEPTION(!problem_->isProblemSet(),              std::invalid_argument, "Problem not set.");
  TEUCHOS_TEST_FOR_EXCEPTION(!problem_->isHermitian(),               std::invalid_argument, "Problem not symmetric.");
  TEUCHOS_TEST_FOR_EXCEPTION(problem_->getInitVec() == Teuchos::null,std::invalid_argument, "Problem does not contain initial vectors to clone from.");

  whch_ = pl.get("Which","SR");
  TEUCHOS_TEST_FOR_EXCEPTION(whch_ != "SM" && whch_ != "LM" && whch_ != "SR" && whch_ != "LR",
                     AnasaziError,
                     "SimpleLOBPCGSolMgr: \"Which\" parameter must be SM, LM, SR or LR.");

  tol_ = pl.get("Convergence Tolerance",tol_);
  TEUCHOS_TEST_FOR_EXCEPTION(tol_ <= 0,
                     AnasaziError,
                     "SimpleLOBPCGSolMgr: \"Tolerance\" parameter must be strictly postiive.");

  // verbosity level
  if (pl.isParameter("Verbosity")) {
    if (Teuchos::isParameterType<int>(pl,"Verbosity")) {
      verb_ = pl.get("Verbosity", verb_);
    } else {
      verb_ = (int)Teuchos::getParameter<Anasazi::MsgType>(pl,"Verbosity");
    }
  }


  blockSize_= pl.get("Block Size",problem_->getNEV());
  TEUCHOS_TEST_FOR_EXCEPTION(blockSize_ <= 0,
                     AnasaziError,
                     "SimpleLOBPCGSolMgr: \"Block Size\" parameter must be strictly positive.");

  maxIters_ = pl.get("Maximum Iterations",maxIters_);
}



////////////////////////////////////////////////////////////////////////////////////////
template<class ScalarType, class MV, class OP>
ReturnType
SimpleLOBPCGSolMgr<ScalarType,MV,OP>::solve() {

  // sort manager
  Teuchos::RCP<BasicSort<MagnitudeType> > sorter = Teuchos::rcp( new BasicSort<MagnitudeType>(whch_) );
  // output manager
  Teuchos::RCP<BasicOutputManager<ScalarType> > printer = Teuchos::rcp( new BasicOutputManager<ScalarType>(verb_) );
  // status tests
  Teuchos::RCP<StatusTestMaxIters<ScalarType,MV,OP> > max;
  if (maxIters_ > 0) {
    max = Teuchos::rcp( new StatusTestMaxIters<ScalarType,MV,OP>(maxIters_) );
  }
  else {
    max = Teuchos::null;
  }
  Teuchos::RCP<StatusTestResNorm<ScalarType,MV,OP> > norm
      = Teuchos::rcp( new StatusTestResNorm<ScalarType,MV,OP>(tol_) );
  Teuchos::Array< Teuchos::RCP<StatusTest<ScalarType,MV,OP> > > alltests;
  alltests.push_back(norm);
  if (max != Teuchos::null) alltests.push_back(max);
  Teuchos::RCP<StatusTestCombo<ScalarType,MV,OP> > combo
      = Teuchos::rcp( new StatusTestCombo<ScalarType,MV,OP>(
              StatusTestCombo<ScalarType,MV,OP>::OR, alltests
        ));
  // printing StatusTest
  Teuchos::RCP<StatusTestOutput<ScalarType,MV,OP> > outputtest
    = Teuchos::rcp( new StatusTestOutput<ScalarType,MV,OP>( printer,combo,1,Passed ) );
  // orthomanager
  Teuchos::RCP<SVQBOrthoManager<ScalarType,MV,OP> > ortho
    = Teuchos::rcp( new SVQBOrthoManager<ScalarType,MV,OP>(problem_->getM()) );
  // parameter list
  Teuchos::ParameterList plist;
  plist.set("Block Size",blockSize_);
  plist.set("Full Ortho",true);

  // create an LOBPCG solver
  Teuchos::RCP<LOBPCG<ScalarType,MV,OP> > lobpcg_solver
    = Teuchos::rcp( new LOBPCG<ScalarType,MV,OP>(problem_,sorter,printer,outputtest,ortho,plist) );
  // add the auxillary vecs from the eigenproblem to the solver
  if (problem_->getAuxVecs() != Teuchos::null) {
    lobpcg_solver->setAuxVecs( Teuchos::tuple<Teuchos::RCP<const MV> >(problem_->getAuxVecs()) );
  }

  int numfound = 0;
  int nev = problem_->getNEV();
  Teuchos::Array< Teuchos::RCP<MV> > foundvecs;
  Teuchos::Array< Teuchos::RCP< std::vector<MagnitudeType> > > foundvals;
  while (numfound < nev) {
    // reduce the strain on norm test, if we are almost done
    if (nev - numfound < blockSize_) {
      norm->setQuorum(nev-numfound);
    }

    // tell the solver to iterate
    try {
      lobpcg_solver->iterate();
    }
    catch (const std::exception &e) {
      // we are a simple solver manager. we don't catch exceptions. set solution empty, then rethrow.
      printer->stream(Anasazi::Errors) << "Exception: " << e.what() << std::endl;
      Eigensolution<ScalarType,MV> sol;
      sol.numVecs = 0;
      problem_->setSolution(sol);
      throw;
    }

    // check the status tests
    if (norm->getStatus() == Passed) {

      int num = norm->howMany();
      // if num < blockSize_, it is because we are on the last iteration: num+numfound>=nev
      TEUCHOS_TEST_FOR_EXCEPTION(num < blockSize_ && num+numfound < nev,
                         std::logic_error,
                         "Anasazi::SimpleLOBPCGSolMgr::solve(): logic error.");
      std::vector<int> ind = norm->whichVecs();
      // just grab the ones that we need
      if (num + numfound > nev) {
        num = nev - numfound;
        ind.resize(num);
      }

      // copy the converged eigenvectors
      Teuchos::RCP<MV> newvecs = MVT::CloneCopy(*lobpcg_solver->getRitzVectors(),ind);
      // store them
      foundvecs.push_back(newvecs);
      // add them as auxiliary vectors
      Teuchos::Array<Teuchos::RCP<const MV> > auxvecs = lobpcg_solver->getAuxVecs();
      auxvecs.push_back(newvecs);
      // setAuxVecs() will reset the solver to uninitialized, without messing with numIters()
      lobpcg_solver->setAuxVecs(auxvecs);

      // copy the converged eigenvalues
      Teuchos::RCP<std::vector<MagnitudeType> > newvals = Teuchos::rcp( new std::vector<MagnitudeType>(num) );
      std::vector<Value<ScalarType> > all = lobpcg_solver->getRitzValues();
      for (int i=0; i<num; i++) {
        (*newvals)[i] = all[ind[i]].realpart;
      }
      foundvals.push_back(newvals);

      numfound += num;
    }
    else if (max != Teuchos::null && max->getStatus() == Passed) {

      int num = norm->howMany();
      std::vector<int> ind = norm->whichVecs();

      if (num > 0) {
        // copy the converged eigenvectors
        Teuchos::RCP<MV> newvecs = MVT::CloneCopy(*lobpcg_solver->getRitzVectors(),ind);
        // store them
        foundvecs.push_back(newvecs);
        // don't bother adding them as auxiliary vectors; we have reached maxiters and are going to quit

        // copy the converged eigenvalues
        Teuchos::RCP<std::vector<MagnitudeType> > newvals = Teuchos::rcp( new std::vector<MagnitudeType>(num) );
        std::vector<Value<ScalarType> > all = lobpcg_solver->getRitzValues();
        for (int i=0; i<num; i++) {
          (*newvals)[i] = all[ind[i]].realpart;
        }
        foundvals.push_back(newvals);

        numfound += num;
      }
      break;  // while(numfound < nev)
    }
    else {
      TEUCHOS_TEST_FOR_EXCEPTION(true,std::logic_error,"Anasazi::SimpleLOBPCGSolMgr::solve(): solver returned without satisfy status test.");
    }
  } // end of while(numfound < nev)

  TEUCHOS_TEST_FOR_EXCEPTION(foundvecs.size() != foundvals.size(),std::logic_error,"Anasazi::SimpleLOBPCGSolMgr::solve(): inconsistent array sizes");

  // create contiguous storage for all eigenvectors, eigenvalues
  Eigensolution<ScalarType,MV> sol;
  sol.numVecs = numfound;
  if (numfound > 0) {
    // allocate space for eigenvectors
    sol.Evecs = MVT::Clone(*problem_->getInitVec(),numfound);
  }
  else {
    sol.Evecs = Teuchos::null;
  }
  sol.Espace = sol.Evecs;
  // allocate space for eigenvalues
  std::vector<MagnitudeType> vals(numfound);
  sol.Evals.resize(numfound);
  // all real eigenvalues: set index vectors [0,...,numfound-1]
  sol.index.resize(numfound,0);
  // store eigenvectors, eigenvalues
  int curttl = 0;
  for (unsigned int i=0; i<foundvals.size(); i++) {
    TEUCHOS_TEST_FOR_EXCEPTION((signed int)(foundvals[i]->size()) != MVT::GetNumberVecs(*foundvecs[i]), std::logic_error, "Anasazi::SimpleLOBPCGSolMgr::solve(): inconsistent sizes");
    unsigned int lclnum = foundvals[i]->size();
    std::vector<int> lclind(lclnum);
    for (unsigned int j=0; j<lclnum; j++) lclind[j] = curttl+j;
    // put the eigenvectors
    MVT::SetBlock(*foundvecs[i],lclind,*sol.Evecs);
    // put the eigenvalues
    std::copy( foundvals[i]->begin(), foundvals[i]->end(), vals.begin()+curttl );

    curttl += lclnum;
  }
  TEUCHOS_TEST_FOR_EXCEPTION( curttl != sol.numVecs, std::logic_error, "Anasazi::SimpleLOBPCGSolMgr::solve(): inconsistent sizes");

  // sort the eigenvalues and permute the eigenvectors appropriately
  if (numfound > 0) {
    std::vector<int> order(sol.numVecs);
    sorter->sort(vals,Teuchos::rcpFromRef(order),sol.numVecs);
    // store the values in the Eigensolution
    for (int i=0; i<sol.numVecs; i++) {
      sol.Evals[i].realpart = vals[i];
      sol.Evals[i].imagpart = MT::zero();
    }
    // now permute the eigenvectors according to order
    SolverUtils<ScalarType,MV,OP> msutils;
    msutils.permuteVectors(sol.numVecs,order,*sol.Evecs);
  }

  // print final summary
  lobpcg_solver->currentStatus(printer->stream(FinalSummary));

  // print timing information
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
  if ( printer->isVerbosity( TimingDetails ) ) {
    Teuchos::TimeMonitor::summarize( printer->stream( TimingDetails ) );
  }
#endif

  // send the solution to the eigenproblem
  problem_->setSolution(sol);
  printer->stream(Debug) << "Returning " << sol.numVecs << " eigenpairs to eigenproblem." << std::endl;

  // get the number of iterations performed for this solve.
  numIters_ = lobpcg_solver->getNumIters();

  // return from SolMgr::solve()
  if (sol.numVecs < nev) return Unconverged;
  return Converged;
}




} // end Anasazi namespace

#endif /* ANASAZI_SIMPLE_LOBPCG_SOLMGR_HPP */