This file is indexed.

/usr/include/trilinos/AnasaziSolverUtils.hpp is in libtrilinos-anasazi-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
// @HEADER
// ***********************************************************************
//
//                 Anasazi: Block Eigensolvers Package
//                 Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER

#ifndef ANASAZI_SOLVER_UTILS_HPP
#define ANASAZI_SOLVER_UTILS_HPP

/*!     \file AnasaziSolverUtils.hpp
        \brief Class which provides internal utilities for the Anasazi solvers.
*/

/*!    \class Anasazi::SolverUtils
       \brief Anasazi's templated, static class providing utilities for
       the solvers.

       This class provides concrete, templated implementations of utilities necessary
       for the solvers.  These utilities include
       sorting, orthogonalization, projecting/solving local eigensystems, and sanity
       checking.  These are internal utilties, so the user should not alter this class.

       \author Ulrich Hetmaniuk, Rich Lehoucq, and Heidi Thornquist
*/

#include "AnasaziConfigDefs.hpp"
#include "AnasaziMultiVecTraits.hpp"
#include "AnasaziOperatorTraits.hpp"
#include "Teuchos_ScalarTraits.hpp"

#include "AnasaziOutputManager.hpp"
#include "Teuchos_BLAS.hpp"
#include "Teuchos_LAPACK.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"

namespace Anasazi {

  template<class ScalarType, class MV, class OP>
  class SolverUtils
  {
  public:
    typedef typename Teuchos::ScalarTraits<ScalarType>::magnitudeType MagnitudeType;
    typedef typename Teuchos::ScalarTraits<ScalarType>  SCT;

    //! @name Constructor/Destructor
    //@{

    //! Constructor.
    SolverUtils();

    //! Destructor.
    virtual ~SolverUtils() {};

    //@}

    //! @name Sorting Methods
    //@{

    //! Permute the vectors in a multivector according to the permutation vector \c perm, and optionally the residual vector \c resids
    static void permuteVectors(const int n, const std::vector<int> &perm, MV &Q, std::vector< typename Teuchos::ScalarTraits<ScalarType>::magnitudeType >* resids = 0);

    //! Permute the columns of a Teuchos::SerialDenseMatrix according to the permutation vector \c perm
    static void permuteVectors(const std::vector<int> &perm, Teuchos::SerialDenseMatrix<int,ScalarType> &Q);

    //@}

    //! @name Basis update methods
    //@{

    //! Apply a sequence of Householder reflectors (from \c GEQRF) to a multivector, using minimal workspace.
    /*!
      @param k [in] the number of Householder reflectors composing the product
      @param V [in/out] the multivector to be modified, with \f$n\f$ columns
      @param H [in] a \f$n \times k\f$ matrix containing the encoded Householder vectors, as returned from \c GEQRF (see below)
      @param tau [in] the \f$n\f$ coefficients for the Householder reflects, as returned from \c GEQRF
      @param workMV [work] (optional) a multivector used for workspace. it need contain only a single vector; it if contains more, only the first vector will be modified.

      This routine applies a sequence of Householder reflectors, \f$H_1 H_2 \cdots H_k\f$, to a multivector \f$V\f$. The
      reflectors are applied individually, as rank-one updates to the multivector. The benefit of this is that the only
      required workspace is a one-column multivector. This workspace can be provided by the user. If it is not, it will
      be allocated locally on each call to applyHouse.

      Each \f$H_i\f$ (\f$i=1,\ldots,k \leq n\f$) has the form<br>
      \f$ H_i = I - \tau_i v_i v_i^T \f$ <br>
      where \f$\tau_i\f$ is a scalar and \f$v_i\f$ is a vector with
      \f$v_i(1:i-1) = 0\f$ and \f$e_i^T v_i = 1\f$; \f$v(i+1:n)\f$ is stored below <tt>H(i,i)</tt>
      and \f$\tau_i\f$ in <tt>tau[i-1]</tt>. (Note: zero-based indexing used for data structures \c H and \c tau, while one-based indexing used for mathematic object \f$v_i\f$).

      If the multivector is \f$m \times n\f$ and we apply \f$k\f$ Householder reflectors, the total cost of the method is
      \f$4mnk - 2m(k^2-k)\f$ flops. For \f$k=n\f$, this becomes \f$2mn^2\f$, the same as for a matrix-matrix multiplication by the accumulated Householder reflectors.
     */
    static void applyHouse(int k, MV &V, const Teuchos::SerialDenseMatrix<int,ScalarType> &H, const std::vector<ScalarType> &tau, Teuchos::RCP<MV> workMV = Teuchos::null);

    //@}

    //! @name Eigensolver Projection Methods
    //@{

    //! Routine for computing the first NEV generalized eigenpairs of the Hermitian pencil <tt>(KK, MM)</tt>
    /*!
      @param size [in] Dimension of the eigenproblem (KK, MM)
      @param KK [in] Hermitian "stiffness" matrix
      @param MM [in] Hermitian positive-definite "mass" matrix
      @param EV [in] Dense matrix to store the nev eigenvectors
      @param theta [in] Array to store the eigenvalues (Size = nev )
      @param nev [in/out] Number of the smallest eigenvalues requested (in) / computed (out)
      @param esType [in] Flag to select the algorithm
      <ul>
      <li> esType =  0  (default) Uses LAPACK routine (Cholesky factorization of MM)
                        with deflation of MM to get orthonormality of
                        eigenvectors (\f$S^TMMS = I\f$)
      <li> esType =  1  Uses LAPACK routine (Cholesky factorization of MM)
                        (no check of orthonormality)
      <li> esType = 10  Uses LAPACK routine for simple eigenproblem on KK
                        (MM is not referenced in this case)
      </ul>

      \note The code accesses only the upper triangular part of KK and MM.
      \return Integer \c info on the status of the computation
      // Return the integer info on the status of the computation
      <ul>
      <li> info = 0 >> Success
      <li> info = - 20 >> Failure in LAPACK routine
      </ul>
    */
    static int directSolver(int size, const Teuchos::SerialDenseMatrix<int,ScalarType> &KK,
                     Teuchos::RCP<const Teuchos::SerialDenseMatrix<int,ScalarType> > MM,
                     Teuchos::SerialDenseMatrix<int,ScalarType> &EV,
                     std::vector< typename Teuchos::ScalarTraits<ScalarType>::magnitudeType > &theta,
                     int &nev, int esType = 0);
    //@}

    //! @name Sanity Checking Methods
    //@{

    //! Return the maximum coefficient of the matrix \f$M * X - MX\f$ scaled by the maximum coefficient of \c MX.
    /*! \note When \c M is not specified, the identity is used.
     */
    static typename Teuchos::ScalarTraits<ScalarType>::magnitudeType errorEquality(const MV &X, const MV &MX, Teuchos::RCP<const OP> M = Teuchos::null);

    //@}

  private:

    //! @name Internal Typedefs
    //@{

    typedef MultiVecTraits<ScalarType,MV> MVT;
    typedef OperatorTraits<ScalarType,MV,OP> OPT;

    //@}
  };

  //-----------------------------------------------------------------------------
  //
  //  CONSTRUCTOR
  //
  //-----------------------------------------------------------------------------

  template<class ScalarType, class MV, class OP>
  SolverUtils<ScalarType, MV, OP>::SolverUtils() {}


  //-----------------------------------------------------------------------------
  //
  //  SORTING METHODS
  //
  //-----------------------------------------------------------------------------

  //////////////////////////////////////////////////////////////////////////
  // permuteVectors for MV
  template<class ScalarType, class MV, class OP>
  void SolverUtils<ScalarType, MV, OP>::permuteVectors(
              const int n,
              const std::vector<int> &perm,
              MV &Q,
              std::vector< typename Teuchos::ScalarTraits<ScalarType>::magnitudeType >* resids)
  {
    // Permute the vectors according to the permutation vector \c perm, and
    // optionally the residual vector \c resids

    int i, j;
    std::vector<int> permcopy(perm), swapvec(n-1);
    std::vector<int> index(1);
    ScalarType one = Teuchos::ScalarTraits<ScalarType>::one();
    ScalarType zero = Teuchos::ScalarTraits<ScalarType>::zero();

    TEUCHOS_TEST_FOR_EXCEPTION(n > MVT::GetNumberVecs(Q), std::invalid_argument, "Anasazi::SolverUtils::permuteVectors(): argument n larger than width of input multivector.");

    // We want to recover the elementary permutations (individual swaps)
    // from the permutation vector. Do this by constructing the inverse
    // of the permutation, by sorting them to {1,2,...,n}, and recording
    // the elementary permutations of the inverse.
    for (i=0; i<n-1; i++) {
      //
      // find i in the permcopy vector
      for (j=i; j<n; j++) {
        if (permcopy[j] == i) {
          // found it at index j
          break;
        }
        TEUCHOS_TEST_FOR_EXCEPTION(j == n-1, std::invalid_argument, "Anasazi::SolverUtils::permuteVectors(): permutation index invalid.");
      }
      //
      // Swap two scalars
      std::swap( permcopy[j], permcopy[i] );

      swapvec[i] = j;
    }

    // now apply the elementary permutations of the inverse in reverse order
    for (i=n-2; i>=0; i--) {
      j = swapvec[i];
      //
      // Swap (i,j)
      //
      // Swap residuals (if they exist)
      if (resids) {
        std::swap(  (*resids)[i], (*resids)[j] );
      }
      //
      // Swap corresponding vectors
      index[0] = j;
      Teuchos::RCP<MV> tmpQ = MVT::CloneCopy( Q, index );
      Teuchos::RCP<MV> tmpQj = MVT::CloneViewNonConst( Q, index );
      index[0] = i;
      Teuchos::RCP<MV> tmpQi = MVT::CloneViewNonConst( Q, index );
      MVT::MvAddMv( one, *tmpQi, zero, *tmpQi, *tmpQj );
      MVT::MvAddMv( one, *tmpQ, zero, *tmpQ, *tmpQi );
    }
  }


  //////////////////////////////////////////////////////////////////////////
  // permuteVectors for MV
  template<class ScalarType, class MV, class OP>
  void SolverUtils<ScalarType, MV, OP>::permuteVectors(
              const std::vector<int> &perm,
              Teuchos::SerialDenseMatrix<int,ScalarType> &Q)
  {
    // Permute the vectors in Q according to the permutation vector \c perm, and
    // optionally the residual vector \c resids
    Teuchos::BLAS<int,ScalarType> blas;
    const int n = perm.size();
    const int m = Q.numRows();

    TEUCHOS_TEST_FOR_EXCEPTION(n != Q.numCols(), std::invalid_argument, "Anasazi::SolverUtils::permuteVectors(): size of permutation vector not equal to number of columns.");

    // Sort the primitive ritz vectors
    Teuchos::SerialDenseMatrix<int,ScalarType> copyQ(Teuchos::Copy, Q);
    for (int i=0; i<n; i++) {
      blas.COPY(m, copyQ[perm[i]], 1, Q[i], 1);
    }
  }


  //-----------------------------------------------------------------------------
  //
  //  BASIS UPDATE METHODS
  //
  //-----------------------------------------------------------------------------

  // apply householder reflectors to multivector
  template<class ScalarType, class MV, class OP>
  void SolverUtils<ScalarType, MV, OP>::applyHouse(int k, MV &V, const Teuchos::SerialDenseMatrix<int,ScalarType> &H, const std::vector<ScalarType> &tau, Teuchos::RCP<MV> workMV) {

    const int n = MVT::GetNumberVecs(V);
    const ScalarType ONE = SCT::one();
    const ScalarType ZERO = SCT::zero();

    // early exit if V has zero-size or if k==0
    if (MVT::GetNumberVecs(V) == 0 || MVT::GetGlobalLength(V) == 0 || k == 0) {
      return;
    }

    if (workMV == Teuchos::null) {
      // user did not give us any workspace; allocate some
      workMV = MVT::Clone(V,1);
    }
    else if (MVT::GetNumberVecs(*workMV) > 1) {
      std::vector<int> first(1);
      first[0] = 0;
      workMV = MVT::CloneViewNonConst(*workMV,first);
    }
    else {
      TEUCHOS_TEST_FOR_EXCEPTION(MVT::GetNumberVecs(*workMV) < 1,std::invalid_argument,"Anasazi::SolverUtils::applyHouse(): work multivector was empty.");
    }
    // Q = H_1 ... H_k is square, with as many rows as V has vectors
    // however, H need only have k columns, one each for the k reflectors.
    TEUCHOS_TEST_FOR_EXCEPTION( H.numCols() != k, std::invalid_argument,"Anasazi::SolverUtils::applyHouse(): H must have at least k columns.");
    TEUCHOS_TEST_FOR_EXCEPTION( (int)tau.size() != k, std::invalid_argument,"Anasazi::SolverUtils::applyHouse(): tau must have at least k entries.");
    TEUCHOS_TEST_FOR_EXCEPTION( H.numRows() != MVT::GetNumberVecs(V), std::invalid_argument,"Anasazi::SolverUtils::applyHouse(): Size of H,V are inconsistent.");

    // perform the loop
    // flops: Sum_{i=0:k-1} 4 m (n-i) == 4mnk - 2m(k^2- k)
    for (int i=0; i<k; i++) {
      // apply V H_i+1 = V - tau_i+1 (V v_i+1) v_i+1^T
      // because of the structure of v_i+1, this transform does not affect the first i columns of V
      std::vector<int> activeind(n-i);
      for (int j=0; j<n-i; j++) activeind[j] = j+i;
      Teuchos::RCP<MV> actV = MVT::CloneViewNonConst(V,activeind);

      // note, below H_i, v_i and tau_i are mathematical objects which use 1-based indexing
      // while H, v and tau are data structures using 0-based indexing

      // get v_i+1: i-th column of H
      Teuchos::SerialDenseMatrix<int,ScalarType> v(Teuchos::Copy,H,n-i,1,i,i);
      // v_i+1(1:i) = 0: this isn't part of v
      // e_i+1^T v_i+1 = 1 = v(0)
      v(0,0) = ONE;

      // compute -tau_i V v_i
      // tau_i+1 is tau[i]
      // flops: 2 m n-i
      MVT::MvTimesMatAddMv(-tau[i],*actV,v,ZERO,*workMV);

      // perform V = V + workMV v_i^T
      // flops: 2 m n-i
      Teuchos::SerialDenseMatrix<int,ScalarType> vT(v,Teuchos::CONJ_TRANS);
      MVT::MvTimesMatAddMv(ONE,*workMV,vT,ONE,*actV);

      actV = Teuchos::null;
    }
  }


  //-----------------------------------------------------------------------------
  //
  //  EIGENSOLVER PROJECTION METHODS
  //
  //-----------------------------------------------------------------------------

  template<class ScalarType, class MV, class OP>
  int SolverUtils<ScalarType, MV, OP>::directSolver(
      int size,
      const Teuchos::SerialDenseMatrix<int,ScalarType> &KK,
      Teuchos::RCP<const Teuchos::SerialDenseMatrix<int,ScalarType> > MM,
      Teuchos::SerialDenseMatrix<int,ScalarType> &EV,
      std::vector< typename Teuchos::ScalarTraits<ScalarType>::magnitudeType > &theta,
      int &nev, int esType)
  {
    // Routine for computing the first NEV generalized eigenpairs of the symmetric pencil (KK, MM)
    //
    // Parameter variables:
    //
    // size : Dimension of the eigenproblem (KK, MM)
    //
    // KK : Hermitian "stiffness" matrix
    //
    // MM : Hermitian positive-definite "mass" matrix
    //
    // EV : Matrix to store the nev eigenvectors
    //
    // theta : Array to store the eigenvalues (Size = nev )
    //
    // nev : Number of the smallest eigenvalues requested (input)
    //       Number of the smallest computed eigenvalues (output)
    //       Routine may compute and return more or less eigenvalues than requested.
    //
    // esType : Flag to select the algorithm
    //
    // esType =  0 (default) Uses LAPACK routine (Cholesky factorization of MM)
    //                       with deflation of MM to get orthonormality of
    //                       eigenvectors (S^T MM S = I)
    //
    // esType =  1           Uses LAPACK routine (Cholesky factorization of MM)
    //                       (no check of orthonormality)
    //
    // esType = 10           Uses LAPACK routine for simple eigenproblem on KK
    //                       (MM is not referenced in this case)
    //
    // Note: The code accesses only the upper triangular part of KK and MM.
    //
    // Return the integer info on the status of the computation
    //
    // info = 0 >> Success
    //
    // info < 0 >> error in the info-th argument
    // info = - 20 >> Failure in LAPACK routine

    // Define local arrays

    // Create blas/lapack objects.
    Teuchos::LAPACK<int,ScalarType> lapack;
    Teuchos::BLAS<int,ScalarType> blas;

    int rank = 0;
    int info = 0;

    if (size < nev || size < 0) {
      return -1;
    }
    if (KK.numCols() < size || KK.numRows() < size) {
      return -2;
    }
    if ((esType == 0 || esType == 1)) {
      if (MM == Teuchos::null) {
        return -3;
      }
      else if (MM->numCols() < size || MM->numRows() < size) {
        return -3;
      }
    }
    if (EV.numCols() < size || EV.numRows() < size) {
      return -4;
    }
    if (theta.size() < (unsigned int) size) {
      return -5;
    }
    if (nev <= 0) {
      return -6;
    }

    // Query LAPACK for the "optimal" block size for HEGV
    std::string lapack_name = "hetrd";
    std::string lapack_opts = "u";
    int NB = lapack.ILAENV(1, lapack_name, lapack_opts, size, -1, -1, -1);
    int lwork = size*(NB+2);  // For HEEV, lwork should be NB+2, instead of NB+1
    std::vector<ScalarType> work(lwork);
    std::vector<MagnitudeType> rwork(3*size-2);
    // tt contains the eigenvalues from HEGV, which are necessarily real, and
    // HEGV expects this vector to be real as well
    std::vector<MagnitudeType> tt( size );
    //typedef typename std::vector<MagnitudeType>::iterator MTIter; // unused

    MagnitudeType tol = SCT::magnitude(SCT::squareroot(SCT::eps()));
    // MagnitudeType tol = 1e-12;
    ScalarType zero = Teuchos::ScalarTraits<ScalarType>::zero();
    ScalarType one = Teuchos::ScalarTraits<ScalarType>::one();

    Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > KKcopy, MMcopy;
    Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > U;

    switch (esType) {
      default:
      case 0:
        //
        // Use LAPACK to compute the generalized eigenvectors
        //
        for (rank = size; rank > 0; --rank) {

          U = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(rank,rank) );
          //
          // Copy KK & MM
          //
          KKcopy = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( Teuchos::Copy, KK, rank, rank ) );
          MMcopy = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( Teuchos::Copy, *MM, rank, rank ) );
          //
          // Solve the generalized eigenproblem with LAPACK
          //
          info = 0;
          lapack.HEGV(1, 'V', 'U', rank, KKcopy->values(), KKcopy->stride(),
              MMcopy->values(), MMcopy->stride(), &tt[0], &work[0], lwork,
              &rwork[0], &info);
          //
          // Treat error messages
          //
          if (info < 0) {
            std::cerr << std::endl;
            std::cerr << "Anasazi::SolverUtils::directSolver(): In HEGV, argument " << -info << "has an illegal value.\n";
            std::cerr << std::endl;
            return -20;
          }
          if (info > 0) {
            if (info > rank)
              rank = info - rank;
            continue;
          }
          //
          // Check the quality of eigenvectors ( using mass-orthonormality )
          //
          MMcopy = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( Teuchos::Copy, *MM, rank, rank ) );
          for (int i = 0; i < rank; ++i) {
            for (int j = 0; j < i; ++j) {
              (*MMcopy)(i,j) = SCT::conjugate((*MM)(j,i));
            }
          }
          // U = 0*U + 1*MMcopy*KKcopy = MMcopy * KKcopy
          TEUCHOS_TEST_FOR_EXCEPTION(
              U->multiply(Teuchos::NO_TRANS,Teuchos::NO_TRANS,one,*MMcopy,*KKcopy,zero) != 0,
              std::logic_error, "Anasazi::SolverUtils::directSolver() call to Teuchos::SerialDenseMatrix::multiply() returned an error.");
          // MMcopy = 0*MMcopy + 1*KKcopy^H*U = KKcopy^H * MMcopy * KKcopy
          TEUCHOS_TEST_FOR_EXCEPTION(
              MMcopy->multiply(Teuchos::CONJ_TRANS,Teuchos::NO_TRANS,one,*KKcopy,*U,zero) != 0,
              std::logic_error, "Anasazi::SolverUtils::directSolver() call to Teuchos::SerialDenseMatrix::multiply() returned an error.");
          MagnitudeType maxNorm = SCT::magnitude(zero);
          MagnitudeType maxOrth = SCT::magnitude(zero);
          for (int i = 0; i < rank; ++i) {
            for (int j = i; j < rank; ++j) {
              if (j == i)
                maxNorm = SCT::magnitude((*MMcopy)(i,j) - one) > maxNorm
                  ? SCT::magnitude((*MMcopy)(i,j) - one) : maxNorm;
              else
                maxOrth = SCT::magnitude((*MMcopy)(i,j)) > maxOrth
                  ? SCT::magnitude((*MMcopy)(i,j)) : maxOrth;
            }
          }
          /*        if (verbose > 4) {
                    std::cout << " >> Local eigensolve >> Size: " << rank;
                    std::cout.precision(2);
                    std::cout.setf(std::ios::scientific, std::ios::floatfield);
                    std::cout << " Normalization error: " << maxNorm;
                    std::cout << " Orthogonality error: " << maxOrth;
                    std::cout << endl;
                    }*/
          if ((maxNorm <= tol) && (maxOrth <= tol)) {
            break;
          }
        } // for (rank = size; rank > 0; --rank)
        //
        // Copy the computed eigenvectors and eigenvalues
        // ( they may be less than the number requested because of deflation )
        //
        // std::cout << "directSolve    rank: " << rank << "\tsize: " << size << endl;
        nev = (rank < nev) ? rank : nev;
        EV.putScalar( zero );
        std::copy(tt.begin(),tt.begin()+nev,theta.begin());
        for (int i = 0; i < nev; ++i) {
          blas.COPY( rank, (*KKcopy)[i], 1, EV[i], 1 );
        }
        break;

      case 1:
        //
        // Use the Cholesky factorization of MM to compute the generalized eigenvectors
        //
        // Copy KK & MM
        //
        KKcopy = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( Teuchos::Copy, KK, size, size ) );
        MMcopy = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( Teuchos::Copy, *MM, size, size ) );
        //
        // Solve the generalized eigenproblem with LAPACK
        //
        info = 0;
        lapack.HEGV(1, 'V', 'U', size, KKcopy->values(), KKcopy->stride(),
            MMcopy->values(), MMcopy->stride(), &tt[0], &work[0], lwork,
            &rwork[0], &info);
        //
        // Treat error messages
        //
        if (info < 0) {
          std::cerr << std::endl;
          std::cerr << "Anasazi::SolverUtils::directSolver(): In HEGV, argument " << -info << "has an illegal value.\n";
          std::cerr << std::endl;
          return -20;
        }
        if (info > 0) {
          if (info > size)
            nev = 0;
          else {
            std::cerr << std::endl;
            std::cerr << "Anasazi::SolverUtils::directSolver(): In HEGV, DPOTRF or DHEEV returned an error code (" << info << ").\n";
            std::cerr << std::endl;
            return -20;
          }
        }
        //
        // Copy the eigenvectors and eigenvalues
        //
        std::copy(tt.begin(),tt.begin()+nev,theta.begin());
        for (int i = 0; i < nev; ++i) {
          blas.COPY( size, (*KKcopy)[i], 1, EV[i], 1 );
        }
        break;

      case 10:
        //
        // Simple eigenproblem
        //
        // Copy KK
        //
        KKcopy = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( Teuchos::Copy, KK, size, size ) );
        //
        // Solve the generalized eigenproblem with LAPACK
        //
        lapack.HEEV('V', 'U', size, KKcopy->values(), KKcopy->stride(), &tt[0], &work[0], lwork, &rwork[0], &info);
        //
        // Treat error messages
        if (info != 0) {
          std::cerr << std::endl;
          if (info < 0) {
            std::cerr << "Anasazi::SolverUtils::directSolver(): In DHEEV, argument " << -info << " has an illegal value\n";
          }
          else {
            std::cerr << "Anasazi::SolverUtils::directSolver(): In DHEEV, the algorithm failed to converge (" << info << ").\n";
          }
          std::cerr << std::endl;
          info = -20;
          break;
        }
        //
        // Copy the eigenvectors
        //
        std::copy(tt.begin(),tt.begin()+nev,theta.begin());
        for (int i = 0; i < nev; ++i) {
          blas.COPY( size, (*KKcopy)[i], 1, EV[i], 1 );
        }
        break;
    }

    return info;
  }


  //-----------------------------------------------------------------------------
  //
  //  SANITY CHECKING METHODS
  //
  //-----------------------------------------------------------------------------

  template<class ScalarType, class MV, class OP>
  typename Teuchos::ScalarTraits<ScalarType>::magnitudeType
  SolverUtils<ScalarType, MV, OP>::errorEquality(const MV &X, const MV &MX, Teuchos::RCP<const OP> M)
  {
    // Return the maximum coefficient of the matrix M * X - MX
    // scaled by the maximum coefficient of MX.
    // When M is not specified, the identity is used.

    MagnitudeType maxDiff = SCT::magnitude(SCT::zero());

    int xc = MVT::GetNumberVecs(X);
    int mxc = MVT::GetNumberVecs(MX);

    TEUCHOS_TEST_FOR_EXCEPTION(xc != mxc,std::invalid_argument,"Anasazi::SolverUtils::errorEquality(): input multivecs have different number of columns.");
    if (xc == 0) {
      return maxDiff;
    }

    MagnitudeType maxCoeffX = SCT::magnitude(SCT::zero());
    std::vector<MagnitudeType> tmp( xc );
    MVT::MvNorm(MX, tmp);

    for (int i = 0; i < xc; ++i) {
      maxCoeffX = (tmp[i] > maxCoeffX) ? tmp[i] : maxCoeffX;
    }

    std::vector<int> index( 1 );
    Teuchos::RCP<MV> MtimesX;
    if (M != Teuchos::null) {
      MtimesX = MVT::Clone( X, xc );
      OPT::Apply( *M, X, *MtimesX );
    }
    else {
      MtimesX = MVT::CloneCopy(X);
    }
    MVT::MvAddMv( -1.0, MX, 1.0, *MtimesX, *MtimesX );
    MVT::MvNorm( *MtimesX, tmp );

    for (int i = 0; i < xc; ++i) {
      maxDiff = (tmp[i] > maxDiff) ? tmp[i] : maxDiff;
    }

    return (maxCoeffX == 0.0) ? maxDiff : maxDiff/maxCoeffX;

  }

} // end namespace Anasazi

#endif // ANASAZI_SOLVER_UTILS_HPP