/usr/include/trilinos/AnasaziSolverUtils.hpp is in libtrilinos-anasazi-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 | // @HEADER
// ***********************************************************************
//
// Anasazi: Block Eigensolvers Package
// Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
#ifndef ANASAZI_SOLVER_UTILS_HPP
#define ANASAZI_SOLVER_UTILS_HPP
/*! \file AnasaziSolverUtils.hpp
\brief Class which provides internal utilities for the Anasazi solvers.
*/
/*! \class Anasazi::SolverUtils
\brief Anasazi's templated, static class providing utilities for
the solvers.
This class provides concrete, templated implementations of utilities necessary
for the solvers. These utilities include
sorting, orthogonalization, projecting/solving local eigensystems, and sanity
checking. These are internal utilties, so the user should not alter this class.
\author Ulrich Hetmaniuk, Rich Lehoucq, and Heidi Thornquist
*/
#include "AnasaziConfigDefs.hpp"
#include "AnasaziMultiVecTraits.hpp"
#include "AnasaziOperatorTraits.hpp"
#include "Teuchos_ScalarTraits.hpp"
#include "AnasaziOutputManager.hpp"
#include "Teuchos_BLAS.hpp"
#include "Teuchos_LAPACK.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"
namespace Anasazi {
template<class ScalarType, class MV, class OP>
class SolverUtils
{
public:
typedef typename Teuchos::ScalarTraits<ScalarType>::magnitudeType MagnitudeType;
typedef typename Teuchos::ScalarTraits<ScalarType> SCT;
//! @name Constructor/Destructor
//@{
//! Constructor.
SolverUtils();
//! Destructor.
virtual ~SolverUtils() {};
//@}
//! @name Sorting Methods
//@{
//! Permute the vectors in a multivector according to the permutation vector \c perm, and optionally the residual vector \c resids
static void permuteVectors(const int n, const std::vector<int> &perm, MV &Q, std::vector< typename Teuchos::ScalarTraits<ScalarType>::magnitudeType >* resids = 0);
//! Permute the columns of a Teuchos::SerialDenseMatrix according to the permutation vector \c perm
static void permuteVectors(const std::vector<int> &perm, Teuchos::SerialDenseMatrix<int,ScalarType> &Q);
//@}
//! @name Basis update methods
//@{
//! Apply a sequence of Householder reflectors (from \c GEQRF) to a multivector, using minimal workspace.
/*!
@param k [in] the number of Householder reflectors composing the product
@param V [in/out] the multivector to be modified, with \f$n\f$ columns
@param H [in] a \f$n \times k\f$ matrix containing the encoded Householder vectors, as returned from \c GEQRF (see below)
@param tau [in] the \f$n\f$ coefficients for the Householder reflects, as returned from \c GEQRF
@param workMV [work] (optional) a multivector used for workspace. it need contain only a single vector; it if contains more, only the first vector will be modified.
This routine applies a sequence of Householder reflectors, \f$H_1 H_2 \cdots H_k\f$, to a multivector \f$V\f$. The
reflectors are applied individually, as rank-one updates to the multivector. The benefit of this is that the only
required workspace is a one-column multivector. This workspace can be provided by the user. If it is not, it will
be allocated locally on each call to applyHouse.
Each \f$H_i\f$ (\f$i=1,\ldots,k \leq n\f$) has the form<br>
\f$ H_i = I - \tau_i v_i v_i^T \f$ <br>
where \f$\tau_i\f$ is a scalar and \f$v_i\f$ is a vector with
\f$v_i(1:i-1) = 0\f$ and \f$e_i^T v_i = 1\f$; \f$v(i+1:n)\f$ is stored below <tt>H(i,i)</tt>
and \f$\tau_i\f$ in <tt>tau[i-1]</tt>. (Note: zero-based indexing used for data structures \c H and \c tau, while one-based indexing used for mathematic object \f$v_i\f$).
If the multivector is \f$m \times n\f$ and we apply \f$k\f$ Householder reflectors, the total cost of the method is
\f$4mnk - 2m(k^2-k)\f$ flops. For \f$k=n\f$, this becomes \f$2mn^2\f$, the same as for a matrix-matrix multiplication by the accumulated Householder reflectors.
*/
static void applyHouse(int k, MV &V, const Teuchos::SerialDenseMatrix<int,ScalarType> &H, const std::vector<ScalarType> &tau, Teuchos::RCP<MV> workMV = Teuchos::null);
//@}
//! @name Eigensolver Projection Methods
//@{
//! Routine for computing the first NEV generalized eigenpairs of the Hermitian pencil <tt>(KK, MM)</tt>
/*!
@param size [in] Dimension of the eigenproblem (KK, MM)
@param KK [in] Hermitian "stiffness" matrix
@param MM [in] Hermitian positive-definite "mass" matrix
@param EV [in] Dense matrix to store the nev eigenvectors
@param theta [in] Array to store the eigenvalues (Size = nev )
@param nev [in/out] Number of the smallest eigenvalues requested (in) / computed (out)
@param esType [in] Flag to select the algorithm
<ul>
<li> esType = 0 (default) Uses LAPACK routine (Cholesky factorization of MM)
with deflation of MM to get orthonormality of
eigenvectors (\f$S^TMMS = I\f$)
<li> esType = 1 Uses LAPACK routine (Cholesky factorization of MM)
(no check of orthonormality)
<li> esType = 10 Uses LAPACK routine for simple eigenproblem on KK
(MM is not referenced in this case)
</ul>
\note The code accesses only the upper triangular part of KK and MM.
\return Integer \c info on the status of the computation
// Return the integer info on the status of the computation
<ul>
<li> info = 0 >> Success
<li> info = - 20 >> Failure in LAPACK routine
</ul>
*/
static int directSolver(int size, const Teuchos::SerialDenseMatrix<int,ScalarType> &KK,
Teuchos::RCP<const Teuchos::SerialDenseMatrix<int,ScalarType> > MM,
Teuchos::SerialDenseMatrix<int,ScalarType> &EV,
std::vector< typename Teuchos::ScalarTraits<ScalarType>::magnitudeType > &theta,
int &nev, int esType = 0);
//@}
//! @name Sanity Checking Methods
//@{
//! Return the maximum coefficient of the matrix \f$M * X - MX\f$ scaled by the maximum coefficient of \c MX.
/*! \note When \c M is not specified, the identity is used.
*/
static typename Teuchos::ScalarTraits<ScalarType>::magnitudeType errorEquality(const MV &X, const MV &MX, Teuchos::RCP<const OP> M = Teuchos::null);
//@}
private:
//! @name Internal Typedefs
//@{
typedef MultiVecTraits<ScalarType,MV> MVT;
typedef OperatorTraits<ScalarType,MV,OP> OPT;
//@}
};
//-----------------------------------------------------------------------------
//
// CONSTRUCTOR
//
//-----------------------------------------------------------------------------
template<class ScalarType, class MV, class OP>
SolverUtils<ScalarType, MV, OP>::SolverUtils() {}
//-----------------------------------------------------------------------------
//
// SORTING METHODS
//
//-----------------------------------------------------------------------------
//////////////////////////////////////////////////////////////////////////
// permuteVectors for MV
template<class ScalarType, class MV, class OP>
void SolverUtils<ScalarType, MV, OP>::permuteVectors(
const int n,
const std::vector<int> &perm,
MV &Q,
std::vector< typename Teuchos::ScalarTraits<ScalarType>::magnitudeType >* resids)
{
// Permute the vectors according to the permutation vector \c perm, and
// optionally the residual vector \c resids
int i, j;
std::vector<int> permcopy(perm), swapvec(n-1);
std::vector<int> index(1);
ScalarType one = Teuchos::ScalarTraits<ScalarType>::one();
ScalarType zero = Teuchos::ScalarTraits<ScalarType>::zero();
TEUCHOS_TEST_FOR_EXCEPTION(n > MVT::GetNumberVecs(Q), std::invalid_argument, "Anasazi::SolverUtils::permuteVectors(): argument n larger than width of input multivector.");
// We want to recover the elementary permutations (individual swaps)
// from the permutation vector. Do this by constructing the inverse
// of the permutation, by sorting them to {1,2,...,n}, and recording
// the elementary permutations of the inverse.
for (i=0; i<n-1; i++) {
//
// find i in the permcopy vector
for (j=i; j<n; j++) {
if (permcopy[j] == i) {
// found it at index j
break;
}
TEUCHOS_TEST_FOR_EXCEPTION(j == n-1, std::invalid_argument, "Anasazi::SolverUtils::permuteVectors(): permutation index invalid.");
}
//
// Swap two scalars
std::swap( permcopy[j], permcopy[i] );
swapvec[i] = j;
}
// now apply the elementary permutations of the inverse in reverse order
for (i=n-2; i>=0; i--) {
j = swapvec[i];
//
// Swap (i,j)
//
// Swap residuals (if they exist)
if (resids) {
std::swap( (*resids)[i], (*resids)[j] );
}
//
// Swap corresponding vectors
index[0] = j;
Teuchos::RCP<MV> tmpQ = MVT::CloneCopy( Q, index );
Teuchos::RCP<MV> tmpQj = MVT::CloneViewNonConst( Q, index );
index[0] = i;
Teuchos::RCP<MV> tmpQi = MVT::CloneViewNonConst( Q, index );
MVT::MvAddMv( one, *tmpQi, zero, *tmpQi, *tmpQj );
MVT::MvAddMv( one, *tmpQ, zero, *tmpQ, *tmpQi );
}
}
//////////////////////////////////////////////////////////////////////////
// permuteVectors for MV
template<class ScalarType, class MV, class OP>
void SolverUtils<ScalarType, MV, OP>::permuteVectors(
const std::vector<int> &perm,
Teuchos::SerialDenseMatrix<int,ScalarType> &Q)
{
// Permute the vectors in Q according to the permutation vector \c perm, and
// optionally the residual vector \c resids
Teuchos::BLAS<int,ScalarType> blas;
const int n = perm.size();
const int m = Q.numRows();
TEUCHOS_TEST_FOR_EXCEPTION(n != Q.numCols(), std::invalid_argument, "Anasazi::SolverUtils::permuteVectors(): size of permutation vector not equal to number of columns.");
// Sort the primitive ritz vectors
Teuchos::SerialDenseMatrix<int,ScalarType> copyQ(Teuchos::Copy, Q);
for (int i=0; i<n; i++) {
blas.COPY(m, copyQ[perm[i]], 1, Q[i], 1);
}
}
//-----------------------------------------------------------------------------
//
// BASIS UPDATE METHODS
//
//-----------------------------------------------------------------------------
// apply householder reflectors to multivector
template<class ScalarType, class MV, class OP>
void SolverUtils<ScalarType, MV, OP>::applyHouse(int k, MV &V, const Teuchos::SerialDenseMatrix<int,ScalarType> &H, const std::vector<ScalarType> &tau, Teuchos::RCP<MV> workMV) {
const int n = MVT::GetNumberVecs(V);
const ScalarType ONE = SCT::one();
const ScalarType ZERO = SCT::zero();
// early exit if V has zero-size or if k==0
if (MVT::GetNumberVecs(V) == 0 || MVT::GetGlobalLength(V) == 0 || k == 0) {
return;
}
if (workMV == Teuchos::null) {
// user did not give us any workspace; allocate some
workMV = MVT::Clone(V,1);
}
else if (MVT::GetNumberVecs(*workMV) > 1) {
std::vector<int> first(1);
first[0] = 0;
workMV = MVT::CloneViewNonConst(*workMV,first);
}
else {
TEUCHOS_TEST_FOR_EXCEPTION(MVT::GetNumberVecs(*workMV) < 1,std::invalid_argument,"Anasazi::SolverUtils::applyHouse(): work multivector was empty.");
}
// Q = H_1 ... H_k is square, with as many rows as V has vectors
// however, H need only have k columns, one each for the k reflectors.
TEUCHOS_TEST_FOR_EXCEPTION( H.numCols() != k, std::invalid_argument,"Anasazi::SolverUtils::applyHouse(): H must have at least k columns.");
TEUCHOS_TEST_FOR_EXCEPTION( (int)tau.size() != k, std::invalid_argument,"Anasazi::SolverUtils::applyHouse(): tau must have at least k entries.");
TEUCHOS_TEST_FOR_EXCEPTION( H.numRows() != MVT::GetNumberVecs(V), std::invalid_argument,"Anasazi::SolverUtils::applyHouse(): Size of H,V are inconsistent.");
// perform the loop
// flops: Sum_{i=0:k-1} 4 m (n-i) == 4mnk - 2m(k^2- k)
for (int i=0; i<k; i++) {
// apply V H_i+1 = V - tau_i+1 (V v_i+1) v_i+1^T
// because of the structure of v_i+1, this transform does not affect the first i columns of V
std::vector<int> activeind(n-i);
for (int j=0; j<n-i; j++) activeind[j] = j+i;
Teuchos::RCP<MV> actV = MVT::CloneViewNonConst(V,activeind);
// note, below H_i, v_i and tau_i are mathematical objects which use 1-based indexing
// while H, v and tau are data structures using 0-based indexing
// get v_i+1: i-th column of H
Teuchos::SerialDenseMatrix<int,ScalarType> v(Teuchos::Copy,H,n-i,1,i,i);
// v_i+1(1:i) = 0: this isn't part of v
// e_i+1^T v_i+1 = 1 = v(0)
v(0,0) = ONE;
// compute -tau_i V v_i
// tau_i+1 is tau[i]
// flops: 2 m n-i
MVT::MvTimesMatAddMv(-tau[i],*actV,v,ZERO,*workMV);
// perform V = V + workMV v_i^T
// flops: 2 m n-i
Teuchos::SerialDenseMatrix<int,ScalarType> vT(v,Teuchos::CONJ_TRANS);
MVT::MvTimesMatAddMv(ONE,*workMV,vT,ONE,*actV);
actV = Teuchos::null;
}
}
//-----------------------------------------------------------------------------
//
// EIGENSOLVER PROJECTION METHODS
//
//-----------------------------------------------------------------------------
template<class ScalarType, class MV, class OP>
int SolverUtils<ScalarType, MV, OP>::directSolver(
int size,
const Teuchos::SerialDenseMatrix<int,ScalarType> &KK,
Teuchos::RCP<const Teuchos::SerialDenseMatrix<int,ScalarType> > MM,
Teuchos::SerialDenseMatrix<int,ScalarType> &EV,
std::vector< typename Teuchos::ScalarTraits<ScalarType>::magnitudeType > &theta,
int &nev, int esType)
{
// Routine for computing the first NEV generalized eigenpairs of the symmetric pencil (KK, MM)
//
// Parameter variables:
//
// size : Dimension of the eigenproblem (KK, MM)
//
// KK : Hermitian "stiffness" matrix
//
// MM : Hermitian positive-definite "mass" matrix
//
// EV : Matrix to store the nev eigenvectors
//
// theta : Array to store the eigenvalues (Size = nev )
//
// nev : Number of the smallest eigenvalues requested (input)
// Number of the smallest computed eigenvalues (output)
// Routine may compute and return more or less eigenvalues than requested.
//
// esType : Flag to select the algorithm
//
// esType = 0 (default) Uses LAPACK routine (Cholesky factorization of MM)
// with deflation of MM to get orthonormality of
// eigenvectors (S^T MM S = I)
//
// esType = 1 Uses LAPACK routine (Cholesky factorization of MM)
// (no check of orthonormality)
//
// esType = 10 Uses LAPACK routine for simple eigenproblem on KK
// (MM is not referenced in this case)
//
// Note: The code accesses only the upper triangular part of KK and MM.
//
// Return the integer info on the status of the computation
//
// info = 0 >> Success
//
// info < 0 >> error in the info-th argument
// info = - 20 >> Failure in LAPACK routine
// Define local arrays
// Create blas/lapack objects.
Teuchos::LAPACK<int,ScalarType> lapack;
Teuchos::BLAS<int,ScalarType> blas;
int rank = 0;
int info = 0;
if (size < nev || size < 0) {
return -1;
}
if (KK.numCols() < size || KK.numRows() < size) {
return -2;
}
if ((esType == 0 || esType == 1)) {
if (MM == Teuchos::null) {
return -3;
}
else if (MM->numCols() < size || MM->numRows() < size) {
return -3;
}
}
if (EV.numCols() < size || EV.numRows() < size) {
return -4;
}
if (theta.size() < (unsigned int) size) {
return -5;
}
if (nev <= 0) {
return -6;
}
// Query LAPACK for the "optimal" block size for HEGV
std::string lapack_name = "hetrd";
std::string lapack_opts = "u";
int NB = lapack.ILAENV(1, lapack_name, lapack_opts, size, -1, -1, -1);
int lwork = size*(NB+2); // For HEEV, lwork should be NB+2, instead of NB+1
std::vector<ScalarType> work(lwork);
std::vector<MagnitudeType> rwork(3*size-2);
// tt contains the eigenvalues from HEGV, which are necessarily real, and
// HEGV expects this vector to be real as well
std::vector<MagnitudeType> tt( size );
//typedef typename std::vector<MagnitudeType>::iterator MTIter; // unused
MagnitudeType tol = SCT::magnitude(SCT::squareroot(SCT::eps()));
// MagnitudeType tol = 1e-12;
ScalarType zero = Teuchos::ScalarTraits<ScalarType>::zero();
ScalarType one = Teuchos::ScalarTraits<ScalarType>::one();
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > KKcopy, MMcopy;
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > U;
switch (esType) {
default:
case 0:
//
// Use LAPACK to compute the generalized eigenvectors
//
for (rank = size; rank > 0; --rank) {
U = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(rank,rank) );
//
// Copy KK & MM
//
KKcopy = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( Teuchos::Copy, KK, rank, rank ) );
MMcopy = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( Teuchos::Copy, *MM, rank, rank ) );
//
// Solve the generalized eigenproblem with LAPACK
//
info = 0;
lapack.HEGV(1, 'V', 'U', rank, KKcopy->values(), KKcopy->stride(),
MMcopy->values(), MMcopy->stride(), &tt[0], &work[0], lwork,
&rwork[0], &info);
//
// Treat error messages
//
if (info < 0) {
std::cerr << std::endl;
std::cerr << "Anasazi::SolverUtils::directSolver(): In HEGV, argument " << -info << "has an illegal value.\n";
std::cerr << std::endl;
return -20;
}
if (info > 0) {
if (info > rank)
rank = info - rank;
continue;
}
//
// Check the quality of eigenvectors ( using mass-orthonormality )
//
MMcopy = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( Teuchos::Copy, *MM, rank, rank ) );
for (int i = 0; i < rank; ++i) {
for (int j = 0; j < i; ++j) {
(*MMcopy)(i,j) = SCT::conjugate((*MM)(j,i));
}
}
// U = 0*U + 1*MMcopy*KKcopy = MMcopy * KKcopy
TEUCHOS_TEST_FOR_EXCEPTION(
U->multiply(Teuchos::NO_TRANS,Teuchos::NO_TRANS,one,*MMcopy,*KKcopy,zero) != 0,
std::logic_error, "Anasazi::SolverUtils::directSolver() call to Teuchos::SerialDenseMatrix::multiply() returned an error.");
// MMcopy = 0*MMcopy + 1*KKcopy^H*U = KKcopy^H * MMcopy * KKcopy
TEUCHOS_TEST_FOR_EXCEPTION(
MMcopy->multiply(Teuchos::CONJ_TRANS,Teuchos::NO_TRANS,one,*KKcopy,*U,zero) != 0,
std::logic_error, "Anasazi::SolverUtils::directSolver() call to Teuchos::SerialDenseMatrix::multiply() returned an error.");
MagnitudeType maxNorm = SCT::magnitude(zero);
MagnitudeType maxOrth = SCT::magnitude(zero);
for (int i = 0; i < rank; ++i) {
for (int j = i; j < rank; ++j) {
if (j == i)
maxNorm = SCT::magnitude((*MMcopy)(i,j) - one) > maxNorm
? SCT::magnitude((*MMcopy)(i,j) - one) : maxNorm;
else
maxOrth = SCT::magnitude((*MMcopy)(i,j)) > maxOrth
? SCT::magnitude((*MMcopy)(i,j)) : maxOrth;
}
}
/* if (verbose > 4) {
std::cout << " >> Local eigensolve >> Size: " << rank;
std::cout.precision(2);
std::cout.setf(std::ios::scientific, std::ios::floatfield);
std::cout << " Normalization error: " << maxNorm;
std::cout << " Orthogonality error: " << maxOrth;
std::cout << endl;
}*/
if ((maxNorm <= tol) && (maxOrth <= tol)) {
break;
}
} // for (rank = size; rank > 0; --rank)
//
// Copy the computed eigenvectors and eigenvalues
// ( they may be less than the number requested because of deflation )
//
// std::cout << "directSolve rank: " << rank << "\tsize: " << size << endl;
nev = (rank < nev) ? rank : nev;
EV.putScalar( zero );
std::copy(tt.begin(),tt.begin()+nev,theta.begin());
for (int i = 0; i < nev; ++i) {
blas.COPY( rank, (*KKcopy)[i], 1, EV[i], 1 );
}
break;
case 1:
//
// Use the Cholesky factorization of MM to compute the generalized eigenvectors
//
// Copy KK & MM
//
KKcopy = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( Teuchos::Copy, KK, size, size ) );
MMcopy = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( Teuchos::Copy, *MM, size, size ) );
//
// Solve the generalized eigenproblem with LAPACK
//
info = 0;
lapack.HEGV(1, 'V', 'U', size, KKcopy->values(), KKcopy->stride(),
MMcopy->values(), MMcopy->stride(), &tt[0], &work[0], lwork,
&rwork[0], &info);
//
// Treat error messages
//
if (info < 0) {
std::cerr << std::endl;
std::cerr << "Anasazi::SolverUtils::directSolver(): In HEGV, argument " << -info << "has an illegal value.\n";
std::cerr << std::endl;
return -20;
}
if (info > 0) {
if (info > size)
nev = 0;
else {
std::cerr << std::endl;
std::cerr << "Anasazi::SolverUtils::directSolver(): In HEGV, DPOTRF or DHEEV returned an error code (" << info << ").\n";
std::cerr << std::endl;
return -20;
}
}
//
// Copy the eigenvectors and eigenvalues
//
std::copy(tt.begin(),tt.begin()+nev,theta.begin());
for (int i = 0; i < nev; ++i) {
blas.COPY( size, (*KKcopy)[i], 1, EV[i], 1 );
}
break;
case 10:
//
// Simple eigenproblem
//
// Copy KK
//
KKcopy = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( Teuchos::Copy, KK, size, size ) );
//
// Solve the generalized eigenproblem with LAPACK
//
lapack.HEEV('V', 'U', size, KKcopy->values(), KKcopy->stride(), &tt[0], &work[0], lwork, &rwork[0], &info);
//
// Treat error messages
if (info != 0) {
std::cerr << std::endl;
if (info < 0) {
std::cerr << "Anasazi::SolverUtils::directSolver(): In DHEEV, argument " << -info << " has an illegal value\n";
}
else {
std::cerr << "Anasazi::SolverUtils::directSolver(): In DHEEV, the algorithm failed to converge (" << info << ").\n";
}
std::cerr << std::endl;
info = -20;
break;
}
//
// Copy the eigenvectors
//
std::copy(tt.begin(),tt.begin()+nev,theta.begin());
for (int i = 0; i < nev; ++i) {
blas.COPY( size, (*KKcopy)[i], 1, EV[i], 1 );
}
break;
}
return info;
}
//-----------------------------------------------------------------------------
//
// SANITY CHECKING METHODS
//
//-----------------------------------------------------------------------------
template<class ScalarType, class MV, class OP>
typename Teuchos::ScalarTraits<ScalarType>::magnitudeType
SolverUtils<ScalarType, MV, OP>::errorEquality(const MV &X, const MV &MX, Teuchos::RCP<const OP> M)
{
// Return the maximum coefficient of the matrix M * X - MX
// scaled by the maximum coefficient of MX.
// When M is not specified, the identity is used.
MagnitudeType maxDiff = SCT::magnitude(SCT::zero());
int xc = MVT::GetNumberVecs(X);
int mxc = MVT::GetNumberVecs(MX);
TEUCHOS_TEST_FOR_EXCEPTION(xc != mxc,std::invalid_argument,"Anasazi::SolverUtils::errorEquality(): input multivecs have different number of columns.");
if (xc == 0) {
return maxDiff;
}
MagnitudeType maxCoeffX = SCT::magnitude(SCT::zero());
std::vector<MagnitudeType> tmp( xc );
MVT::MvNorm(MX, tmp);
for (int i = 0; i < xc; ++i) {
maxCoeffX = (tmp[i] > maxCoeffX) ? tmp[i] : maxCoeffX;
}
std::vector<int> index( 1 );
Teuchos::RCP<MV> MtimesX;
if (M != Teuchos::null) {
MtimesX = MVT::Clone( X, xc );
OPT::Apply( *M, X, *MtimesX );
}
else {
MtimesX = MVT::CloneCopy(X);
}
MVT::MvAddMv( -1.0, MX, 1.0, *MtimesX, *MtimesX );
MVT::MvNorm( *MtimesX, tmp );
for (int i = 0; i < xc; ++i) {
maxDiff = (tmp[i] > maxDiff) ? tmp[i] : maxDiff;
}
return (maxCoeffX == 0.0) ? maxDiff : maxDiff/maxCoeffX;
}
} // end namespace Anasazi
#endif // ANASAZI_SOLVER_UTILS_HPP
|