/usr/include/trilinos/AnasaziTraceMinBase.hpp is in libtrilinos-anasazi-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 | // @HEADER
// ***********************************************************************
//
// Anasazi: Block Eigensolvers Package
// Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
// TODO: Modify code so R is not computed unless needed
/*! \file AnasaziTraceMinBase.hpp
\brief Abstract base class for trace minimization eigensolvers
*/
#ifndef ANASAZI_TRACEMIN_BASE_HPP
#define ANASAZI_TRACEMIN_BASE_HPP
#include "AnasaziBasicSort.hpp"
#include "AnasaziConfigDefs.hpp"
#include "AnasaziEigensolver.hpp"
#include "AnasaziMatOrthoManager.hpp"
#include "AnasaziMultiVecTraits.hpp"
#include "AnasaziOperatorTraits.hpp"
#include "AnasaziSaddleOperator.hpp"
#include "AnasaziSaddleContainer.hpp"
#include "AnasaziSolverUtils.hpp"
#include "AnasaziTraceMinRitzOp.hpp"
#include "AnasaziTraceMinTypes.hpp"
#include "AnasaziTypes.hpp"
#include "Teuchos_ParameterList.hpp"
#include "Teuchos_ScalarTraits.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"
#include "Teuchos_SerialDenseSolver.hpp"
#include "Teuchos_TimeMonitor.hpp"
using Teuchos::RCP;
using Teuchos::rcp;
namespace Anasazi {
/**
* @namespace Experimental
* Namespace for new Anasazi features that are not ready for public release,
* but are ready for evaluation by friendly expert users.
*
* \warning Expect header files, classes, functions, and other interfaces to change or disappear.
* Anything in this namespace is under active development and evaluation. Documentation may be
* sparse or not exist yet. If you understand these caveats and accept them, please feel free to
* take a look inside and try things out.
*/
namespace Experimental {
//! @name TraceMinBase Structures
//@{
/** \brief Structure to contain pointers to TraceMinBase state variables.
*
* This struct is utilized by TraceMinBase::initialize() and TraceMinBase::getState().
*/
template <class ScalarType, class MV>
struct TraceMinBaseState {
//! \brief The current dimension of the solver.
int curDim;
/*! \brief The current basis.
*
* V has TraceMinBase::getMaxSubspaceDim() vectors, but only the first \c curDim are valid.
*/
RCP<const MV> V;
//! The image of V under K
RCP<const MV> KV;
//! The image of V under M, or Teuchos::null if M was not specified
RCP<const MV> MopV;
//! The current eigenvectors.
RCP<const MV> X;
//! The image of the current eigenvectors under K.
RCP<const MV> KX;
//! The image of the current eigenvectors under M, or Teuchos::null if M was not specified.
RCP<const MV> MX;
//! The current residual vectors
RCP<const MV> R;
//! The current Ritz values. This vector is a copy of the internal data.
RCP<const std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> > T;
/*! \brief The current projected K matrix.
*
* KK is of order TraceMinBase::getMaxSubspaceDim(), but only the principal submatrix of order \c curDim is meaningful. It is Hermitian in memory.
*
*/
RCP<const Teuchos::SerialDenseMatrix<int,ScalarType> > KK;
//! The current Ritz vectors.
RCP<const Teuchos::SerialDenseMatrix<int,ScalarType> > RV;
//! Whether V has been projected and orthonormalized already
bool isOrtho;
//! Number of unconverged eigenvalues
int NEV;
//! Largest safe shift
ScalarType largestSafeShift;
//! Current Ritz shifts
RCP< const std::vector<ScalarType> > ritzShifts;
TraceMinBaseState() : curDim(0), V(Teuchos::null), KV(Teuchos::null), MopV(Teuchos::null),
X(Teuchos::null), KX(Teuchos::null), MX(Teuchos::null), R(Teuchos::null),
T(Teuchos::null), KK(Teuchos::null), RV(Teuchos::null), isOrtho(false),
NEV(0), largestSafeShift(Teuchos::ScalarTraits<ScalarType>::zero()),
ritzShifts(Teuchos::null) {}
};
//@}
//! @name TraceMinBase Exceptions
//@{
/** \brief TraceMinBaseInitFailure is thrown when the TraceMinBase solver is unable to
* generate an initial iterate in the TraceMinBase::initialize() routine.
*
* This exception is thrown from the TraceMinBase::initialize() method, which is
* called by the user or from the TraceMinBase::iterate() method if isInitialized()
* == \c false.
*
* In the case that this exception is thrown,
* TraceMinBase::isInitialized() will be \c false and the user will need to provide
* a new initial iterate to the solver.
*
*/
class TraceMinBaseInitFailure : public AnasaziError {public:
TraceMinBaseInitFailure(const std::string& what_arg) : AnasaziError(what_arg)
{}};
/** \brief TraceMinBaseOrthoFailure is thrown when the orthogonalization manager is
* unable to orthogonalize the vectors in the current basis.
*/
class TraceMinBaseOrthoFailure : public AnasaziError {public:
TraceMinBaseOrthoFailure(const std::string& what_arg) : AnasaziError(what_arg)
{}};
//@}
/*! \class TraceMinBase
\brief This is an abstract base class for the trace minimization eigensolvers.
For more information, please see Anasazi::TraceMin (with constant subspace dimension)
and Anasazi::TraceMinDavidson (with expanding subspaces)
\ingroup anasazi_solver_framework
\author Alicia Klinvex
*/
template <class ScalarType, class MV, class OP>
class TraceMinBase : public Eigensolver<ScalarType,MV,OP> {
public:
//! @name Constructor/Destructor
//@{
/*! \brief %TraceMinBase constructor with eigenproblem, solver utilities, and parameter list of solver options.
*
* This constructor takes pointers required by the eigensolver, in addition
* to a parameter list of options for the eigensolver. These options include the following:
* - \c "Saddle Solver Type" - a \c string specifying how to solve the saddle point problem arising at each iteration.
* Options are "Projected Krylov", "Schur Complement", and "Block Diagonal Preconditioned Minres". Default: "Projected Krylov"
* - \c "Projected Krylov": Uses projected-minres to solve the problem.
* - \c "Schur Complement": Explicitly forms the (inexact) Schur complement using minres.
* - \c "Block Diagonal Preconditioned Minres": Uses a block preconditioner on the entire saddle point problem. For more information, please see "Overview of Anasazi and its newest eigensolver, TraceMin" on the main Anasazi page.
* We recommend using "Projected Krylov" in the absence of preconditioning. If you want to use a preconditioner, "Block Diagonal Preconditioned Minres" is recommended.
* "Schur Complement" mainly exists for special use cases.
* - Ritz shift parameters
* - \c "When To Shift" - a \c string specifying when Ritz shifts should be performed. Options are "Never", "After Trace Levels", and "Always". Default: "Always"
* - \c "Never": Do not perform Ritz shifts. This option produces guaranteed convergence but converges linearly. Not recommended.
* - \c "After Trace Levels": Do not perform Ritz shifts until the trace of \f$X^TKX\f$ has stagnated (i.e. the relative change in trace has become small).
* The \c MagnitudeType specifying how small the relative change in trace must become may be provided via the parameter \c "Trace Threshold", whose default value is 0.02.
* - \c "Always": Always attempt to use Ritz shifts.
* - \c "How To Choose Shift" - a \c string specifying how to choose the Ritz shifts (assuming Ritz shifts are being used).
* Options are "Largest Converged", "Adjusted Ritz Values", and "Ritz Values". Default: "Adjusted Ritz Values"
* - \c "Largest Converged": Ritz shifts are chosen to be the largest converged eigenvalue. Until an eigenvalue converges, the Ritz shifts are all 0.
* - \c "Adjusted Ritz Values": Ritz shifts are chosen based on the Ritz values and their associated residuals in such a way as to guarantee global convergence.
* This method is described in "The trace minimization method for the symmetric generalized eigenvalue problem."
* - \c "Ritz Values": Ritz shifts are chosen to equal the Ritz values. This does NOT guarantee global convergence.
* - \c "Use Multiple Shifts" - a \c bool specifying whether to use one or many Ritz shifts (assuming shifting is enabled). Default: true
*
* Anasazi's trace minimization solvers are still in development, and we plan to add additional features in the future including additional saddle point solvers.
*/
TraceMinBase( const RCP<Eigenproblem<ScalarType,MV,OP> > &problem,
const RCP<SortManager<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> > &sorter,
const RCP<OutputManager<ScalarType> > &printer,
const RCP<StatusTest<ScalarType,MV,OP> > &tester,
const RCP<MatOrthoManager<ScalarType,MV,OP> > &ortho,
Teuchos::ParameterList ¶ms
);
//! %Anasazi::TraceMinBase destructor.
virtual ~TraceMinBase();
//@}
//! @name Solver methods
//@{
/*! \brief This method performs trace minimization iterations until the status
* test indicates the need to stop or an error occurs (in which case, an
* appropriate exception is thrown).
*
* iterate() will first determine whether the solver is initialized; if
* not, it will call initialize(). After
* initialization, the solver performs TraceMin iterations until the
* status test evaluates as ::Passed, at which point the method returns to
* the caller.
*
* The trace minimization iteration proceeds as follows:
* -# Solve the saddle point problem to obtain Delta
* -# Add Delta to the basis
* In TraceMin, this is done by computing V := X - Delta, then projecting and normalizing.
* In TraceMinDavidson, this is done by computing V := [V Delta], then projecting and normalizing
* -# Compute the Ritz pairs.
* -# Update the residual.
*
* The status test is queried at the beginning of the iteration.
*
* Possible exceptions thrown include std::invalid_argument or
* one of the TraceMinBase-specific exceptions.
*/
void iterate();
void harmonicIterate();
/*! \brief Initialize the solver to an iterate, optionally providing the
* other members of the state.
*
* The %TraceMinBase eigensolver contains a certain amount of state,
* including the current Krylov basis, the current eigenvectors,
* the current residual, etc. (see getState())
*
* initialize() gives the user the opportunity to manually set these,
* although this must be done with caution, as the validity of the
* user input will not be checked.
*
* \post
* <li>isInitialized() == \c true (see post-conditions of isInitialize())
*
* The user has the option of specifying any component of the state using
* initialize(). However, these arguments are assumed to match the
* post-conditions specified under isInitialized(). Any component of the
* state (i.e., KX) not given to initialize() will be generated.
*
* Note, for any pointer in \c newstate which directly points to the multivectors in
* the solver, the data is not copied.
*/
void initialize(TraceMinBaseState<ScalarType,MV>& newstate);
void harmonicInitialize(TraceMinBaseState<ScalarType,MV> newstate);
/*! \brief Initialize the solver with the initial vectors from the eigenproblem
* or random data.
*/
void initialize();
/*! \brief Indicates whether the solver has been initialized or not.
*
* \return bool indicating the state of the solver.
* \post
* If isInitialized() == \c true:
* - getCurSubspaceDim() > 0 and is a multiple of getBlockSize()
* - the first getCurSubspaceDim() vectors of V are orthogonal to auxiliary vectors and have orthonormal columns
* - the principal submatrix of order getCurSubspaceDim() of KK contains the projected eigenproblem matrix
* - X contains the Ritz vectors with respect to the current Krylov basis
* - T contains the Ritz values with respect to the current Krylov basis
* - KX == Op*X
* - MX == M*X if M != Teuchos::null\n
* Otherwise, MX == Teuchos::null
* - R contains the residual vectors with respect to X
*/
bool isInitialized() const;
/*! \brief Get access to the current state of the eigensolver.
*
* The data is only valid if isInitialized() == \c true.
*
* \returns A TraceMinBaseState object containing const pointers to the current
* solver state. Note, these are direct pointers to the multivectors; they are not
* pointers to views of the multivectors.
*/
TraceMinBaseState<ScalarType,MV> getState() const;
//@}
//! @name Status methods
//@{
//! \brief Get the current iteration count.
int getNumIters() const;
//! \brief Reset the iteration count.
void resetNumIters();
/*! \brief Get access to the current Ritz vectors.
\return A multivector with getBlockSize() vectors containing
the sorted Ritz vectors corresponding to the most significant Ritz values.
The i-th vector of the return corresponds to the i-th Ritz vector; there is no need to use
getRitzIndex().
*/
RCP<const MV> getRitzVectors();
/*! \brief Get the Ritz values for the previous iteration.
*
* \return A vector of length getCurSubspaceDim() containing the Ritz values from the
* previous projected eigensolve.
*/
std::vector<Value<ScalarType> > getRitzValues();
/*! \brief Get the index used for extracting individual Ritz vectors from getRitzVectors().
*
* Because the trace minimization methods are a Hermitian solvers, all Ritz values are real
* and all Ritz vectors can be represented in a single column of a multivector. Therefore,
* getRitzIndex() is not needed when using the output from getRitzVectors().
*
* \return An \c int vector of size getCurSubspaceDim() composed of zeros.
*/
std::vector<int> getRitzIndex();
/*! \brief Get the current residual norms, computing the norms if they are not up-to-date with the current residual vectors.
*
* \return A vector of length getCurSubspaceDim() containing the norms of the
* residuals, with respect to the orthogonalization manager's norm() method.
*/
std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> getResNorms();
/*! \brief Get the current residual 2-norms, computing the norms if they are not up-to-date with the current residual vectors.
*
* \return A vector of length getCurSubspaceDim() containing the 2-norms of the
* current residuals.
*/
std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> getRes2Norms();
/*! \brief Get the 2-norms of the residuals.
*
* The Ritz residuals are not defined for trace minimization iterations. Hence, this method returns the
* 2-norms of the direct residuals, and is equivalent to calling getRes2Norms().
*
* \return A vector of length getBlockSize() containing the 2-norms of the direct residuals.
*/
std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> getRitzRes2Norms();
/*! \brief Get the dimension of the search subspace used to generate the current eigenvectors and eigenvalues.
*
* \return An integer specifying the rank of the Krylov subspace currently in use by the eigensolver. If isInitialized() == \c false,
* the return is 0. Otherwise, it will be some strictly positive multiple of getBlockSize().
*/
int getCurSubspaceDim() const;
//! Get the maximum dimension allocated for the search subspace. For the trace minimization methods, this always returns numBlocks*blockSize.
int getMaxSubspaceDim() const;
//@}
//! @name Accessor routines from Eigensolver
//@{
//! Set a new StatusTest for the solver.
void setStatusTest(RCP<StatusTest<ScalarType,MV,OP> > test);
//! Get the current StatusTest used by the solver.
RCP<StatusTest<ScalarType,MV,OP> > getStatusTest() const;
//! Get a constant reference to the eigenvalue problem.
const Eigenproblem<ScalarType,MV,OP>& getProblem() const;
/*! \brief Set the blocksize.
*
* This method is required to support the interface provided by Eigensolver. However, the preferred method
* of setting the allocated size for the TraceMinBase eigensolver is setSize(). In fact, setBlockSize()
* simply calls setSize(), maintaining the current number of blocks.
*
* The block size determines the number of Ritz vectors and values that are computed on each iteration, thereby
* determining the increase in the subspace dimension at each iteration.
*/
void setBlockSize(int blockSize);
//! Get the blocksize used by the iterative solver.
int getBlockSize() const;
/*! \brief Set the auxiliary vectors for the solver.
*
* Auxiliary vectors are ones that you want your eigenvectors to be
* held orthogonal to. One example of where you may want to use this
* is in the computation of the Fiedler vector, where you would likely
* want to project against the vector of all 1s.
*
* Because the current basis V cannot be assumed
* orthogonal to the new auxiliary vectors, a call to setAuxVecs() will
* reset the solver to the uninitialized state. This happens only in the
* case where the new auxiliary vectors have a combined dimension of
* greater than zero.
*
* In order to preserve the current state, the user will need to extract
* it from the solver using getState(), orthogonalize it against the
* new auxiliary vectors, and reinitialize using initialize().
*/
void setAuxVecs(const Teuchos::Array<RCP<const MV> > &auxvecs);
//! Get the auxiliary vectors for the solver.
Teuchos::Array<RCP<const MV> > getAuxVecs() const;
//@}
//! @name BlockBase-specific accessor routines
//@{
/*! \brief Set the blocksize and number of blocks to be used by the
* iterative solver in solving this eigenproblem.
*
* Changing either the block size or the number of blocks will reset the
* solver to an uninitialized state.
*/
void setSize(int blockSize, int numBlocks);
//! @name Output methods
//@{
//! This method requests that the solver print out its current status to the given output stream.
void currentStatus(std::ostream &os);
//@}
protected:
//
// Convenience typedefs
//
typedef SolverUtils<ScalarType,MV,OP> Utils;
typedef MultiVecTraits<ScalarType,MV> MVT;
typedef OperatorTraits<ScalarType,MV,OP> OPT;
typedef Teuchos::ScalarTraits<ScalarType> SCT;
typedef typename SCT::magnitudeType MagnitudeType;
typedef TraceMinRitzOp<ScalarType,MV,OP> tracemin_ritz_op_type;
typedef SaddleContainer<ScalarType,MV> saddle_container_type;
typedef SaddleOperator<ScalarType,MV,tracemin_ritz_op_type> saddle_op_type;
const MagnitudeType ONE;
const MagnitudeType ZERO;
const MagnitudeType NANVAL;
//
// Classes inputed through constructor that define the eigenproblem to be solved.
//
const RCP<Eigenproblem<ScalarType,MV,OP> > problem_;
const RCP<SortManager<MagnitudeType> > sm_;
const RCP<OutputManager<ScalarType> > om_;
RCP<StatusTest<ScalarType,MV,OP> > tester_;
const RCP<MatOrthoManager<ScalarType,MV,OP> > orthman_;
//
// Information obtained from the eigenproblem
//
RCP<const OP> Op_;
RCP<const OP> MOp_;
RCP<const OP> Prec_;
bool hasM_;
//
// Internal timers
// TODO: Fix the timers
//
RCP<Teuchos::Time> timerOp_, timerMOp_, timerSaddle_, timerSortEval_, timerDS_,
timerLocal_, timerCompRes_, timerOrtho_, timerInit_;
//
// Internal structs
// TODO: Fix the checks
//
struct CheckList {
bool checkV, checkX, checkMX,
checkKX, checkQ, checkKK;
CheckList() : checkV(false),checkX(false),
checkMX(false),checkKX(false),
checkQ(false),checkKK(false) {};
};
//
// Internal methods
//
std::string accuracyCheck(const CheckList &chk, const std::string &where) const;
//
// Counters
//
int count_ApplyOp_, count_ApplyM_;
//
// Algorithmic parameters.
//
// blockSize_ is the solver block size; it controls the number of vectors added to the basis on each iteration.
int blockSize_;
// numBlocks_ is the size of the allocated space for the basis, in blocks.
int numBlocks_;
//
// Current solver state
//
// initialized_ specifies that the basis vectors have been initialized and the iterate() routine
// is capable of running; _initialize is controlled by the initialize() member method
// For the implications of the state of initialized_, please see documentation for initialize()
bool initialized_;
//
// curDim_ reflects how much of the current basis is valid
// NOTE: 0 <= curDim_ <= blockSize_*numBlocks_
// this also tells us how many of the values in theta_ are valid Ritz values
int curDim_;
//
// State Multivecs
// V is the current basis
// X is the current set of eigenvectors
// R is the residual
RCP<MV> X_, KX_, MX_, KV_, MV_, R_, V_;
//
// Projected matrices
//
RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > KK_, ritzVecs_;
//
// auxiliary vectors
Teuchos::Array<RCP<const MV> > auxVecs_, MauxVecs_;
int numAuxVecs_;
//
// Number of iterations that have been performed.
int iter_;
//
// Current eigenvalues, residual norms
std::vector<MagnitudeType> theta_, Rnorms_, R2norms_;
//
// are the residual norms current with the residual?
bool Rnorms_current_, R2norms_current_;
// TraceMin specific variables
RCP<tracemin_ritz_op_type> ritzOp_; // Operator which incorporates Ritz shifts
enum SaddleSolType saddleSolType_; // Type of saddle point solver being used
bool previouslyLeveled_; // True if the trace already leveled off
MagnitudeType previousTrace_; // Trace of X'KX at the previous iteration
bool posSafeToShift_, negSafeToShift_; // Whether there are multiple clusters
MagnitudeType largestSafeShift_; // The largest shift considered to be safe - generally the biggest converged eigenvalue
int NEV_; // Number of eigenvalues we seek - used in computation of trace
std::vector<ScalarType> ritzShifts_; // Current Ritz shifts
// This is only used if we're using the Schur complement solver
RCP<MV> Z_;
// User provided TraceMin parameters
enum WhenToShiftType whenToShift_; // What triggers a Ritz shift
enum HowToShiftType howToShift_; // Strategy for choosing the Ritz shifts
bool useMultipleShifts_; // Whether to use one Ritz shift or many
bool considerClusters_; // Don't shift if there is only one cluster
bool projectAllVecs_; // Use all vectors in projected minres, or just 1
bool projectLockedVecs_; // Project locked vectors too in minres; does nothing if projectAllVecs = false
bool computeAllRes_; // Compute all residuals, or just blocksize ones - helps make Ritz shifts safer
bool useRHSR_; // Use -R as the RHS of projected minres rather than AX
bool useHarmonic_;
MagnitudeType traceThresh_;
MagnitudeType alpha_;
// Variables that are only used if we're shifting when the residual gets small
// TODO: These are currently unused
std::string shiftNorm_; // Measure 2-norm or M-norm of residual
MagnitudeType shiftThresh_; // How small must the residual be?
bool useRelShiftThresh_; // Are we scaling the shift threshold by the eigenvalues?
// TraceMin specific functions
// Returns the trace of KK = X'KX
ScalarType getTrace() const;
// Returns true if the change in trace is very small (or was very small at one point)
// TODO: Check whether I want to return true if the trace WAS small
bool traceLeveled();
// Get the residuals of each cluster of eigenvalues
// TODO: Figure out whether I want to use these for all eigenvalues or just the first
std::vector<ScalarType> getClusterResids();
// Computes the Ritz shifts, which is not a trivial task
// TODO: Make it safer for indefinite matrices maybe?
void computeRitzShifts(const std::vector<ScalarType>& clusterResids);
// Compute the tolerance for the inner solves
// TODO: Come back to this and make sure it does what I want it to
std::vector<ScalarType> computeTol();
// Solves a saddle point problem
void solveSaddlePointProblem(RCP<MV> Delta);
// Solves a saddle point problem by using unpreconditioned projected minres
void solveSaddleProj(RCP<MV> Delta) const;
// Solves a saddle point problem by using preconditioned projected...Krylov...something
// TODO: Fix this. Replace minres with gmres or something.
void solveSaddleProjPrec(RCP<MV> Delta) const;
// Solves a saddle point problem by explicitly forming the inexact Schur complement
void solveSaddleSchur (RCP<MV> Delta) const;
// Solves a saddle point problem with a block diagonal preconditioner
void solveSaddleBDPrec (RCP<MV> Delta) const;
// Solves a saddle point problem with a Hermitian/non-Hermitian splitting preconditioner
void solveSaddleHSSPrec (RCP<MV> Delta) const;
// Computes KK = X'KX
void computeKK();
// Computes the eigenpairs of KK
void computeRitzPairs();
// Computes X = V evecs
void computeX();
// Updates KX and MX without a matvec by MAGIC (or by multiplying KV and MV by evecs)
void updateKXMX();
// Updates the residual
void updateResidual();
// Adds Delta to the basis
// TraceMin and TraceMinDavidson each do this differently, which is why this is pure virtual
virtual void addToBasis(const RCP<const MV> Delta) =0;
virtual void harmonicAddToBasis(const RCP<const MV> Delta) =0;
};
//////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////
//
// Implementations
//
//////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////
// Constructor
// TODO: Allow the users to supply their own linear solver
// TODO: Add additional checking for logic errors (like trying to use gmres with multiple shifts)
template <class ScalarType, class MV, class OP>
TraceMinBase<ScalarType,MV,OP>::TraceMinBase(
const RCP<Eigenproblem<ScalarType,MV,OP> > &problem,
const RCP<SortManager<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> > &sorter,
const RCP<OutputManager<ScalarType> > &printer,
const RCP<StatusTest<ScalarType,MV,OP> > &tester,
const RCP<MatOrthoManager<ScalarType,MV,OP> > &ortho,
Teuchos::ParameterList ¶ms
) :
ONE(Teuchos::ScalarTraits<MagnitudeType>::one()),
ZERO(Teuchos::ScalarTraits<MagnitudeType>::zero()),
NANVAL(Teuchos::ScalarTraits<MagnitudeType>::nan()),
// problem, tools
problem_(problem),
sm_(sorter),
om_(printer),
tester_(tester),
orthman_(ortho),
// timers, counters
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
timerOp_(Teuchos::TimeMonitor::getNewTimer("Anasazi: TraceMinBase::Operation Op*x")),
timerMOp_(Teuchos::TimeMonitor::getNewTimer("Anasazi: TraceMinBase::Operation M*x")),
timerSaddle_(Teuchos::TimeMonitor::getNewTimer("Anasazi: TraceMinBase::Solving saddle point problem")),
timerSortEval_(Teuchos::TimeMonitor::getNewTimer("Anasazi: TraceMinBase::Sorting eigenvalues")),
timerDS_(Teuchos::TimeMonitor::getNewTimer("Anasazi: TraceMinBase::Direct solve")),
timerLocal_(Teuchos::TimeMonitor::getNewTimer("Anasazi: TraceMinBase::Local update")),
timerCompRes_(Teuchos::TimeMonitor::getNewTimer("Anasazi: TraceMinBase::Computing residuals")),
timerOrtho_(Teuchos::TimeMonitor::getNewTimer("Anasazi: TraceMinBase::Orthogonalization")),
timerInit_(Teuchos::TimeMonitor::getNewTimer("Anasazi: TraceMinBase::Initialization")),
#endif
count_ApplyOp_(0),
count_ApplyM_(0),
// internal data
blockSize_(0),
numBlocks_(0),
initialized_(false),
curDim_(0),
auxVecs_( Teuchos::Array<RCP<const MV> >(0) ),
MauxVecs_( Teuchos::Array<RCP<const MV> >(0) ),
numAuxVecs_(0),
iter_(0),
Rnorms_current_(false),
R2norms_current_(false),
// TraceMin variables
previouslyLeveled_(false),
previousTrace_(ZERO),
posSafeToShift_(false),
negSafeToShift_(false),
largestSafeShift_(ZERO),
Z_(Teuchos::null)
{
TEUCHOS_TEST_FOR_EXCEPTION(problem_ == Teuchos::null,std::invalid_argument,
"Anasazi::TraceMinBase::constructor: user passed null problem pointer.");
TEUCHOS_TEST_FOR_EXCEPTION(sm_ == Teuchos::null,std::invalid_argument,
"Anasazi::TraceMinBase::constructor: user passed null sort manager pointer.");
TEUCHOS_TEST_FOR_EXCEPTION(om_ == Teuchos::null,std::invalid_argument,
"Anasazi::TraceMinBase::constructor: user passed null output manager pointer.");
TEUCHOS_TEST_FOR_EXCEPTION(tester_ == Teuchos::null,std::invalid_argument,
"Anasazi::TraceMinBase::constructor: user passed null status test pointer.");
TEUCHOS_TEST_FOR_EXCEPTION(orthman_ == Teuchos::null,std::invalid_argument,
"Anasazi::TraceMinBase::constructor: user passed null orthogonalization manager pointer.");
TEUCHOS_TEST_FOR_EXCEPTION(problem_->isHermitian() == false, std::invalid_argument,
"Anasazi::TraceMinBase::constructor: problem is not hermitian.");
// get the problem operators
Op_ = problem_->getOperator();
MOp_ = problem_->getM();
Prec_ = problem_->getPrec();
hasM_ = (MOp_ != Teuchos::null);
// Set the saddle point solver parameters
saddleSolType_ = params.get("Saddle Solver Type", PROJECTED_KRYLOV_SOLVER);
TEUCHOS_TEST_FOR_EXCEPTION(saddleSolType_ != PROJECTED_KRYLOV_SOLVER && saddleSolType_ != SCHUR_COMPLEMENT_SOLVER && saddleSolType_ != BD_PREC_MINRES && saddleSolType_ != HSS_PREC_GMRES, std::invalid_argument,
"Anasazi::TraceMin::constructor: Invalid value for \"Saddle Solver Type\"; valid options are PROJECTED_KRYLOV_SOLVER, SCHUR_COMPLEMENT_SOLVER, and BD_PREC_MINRES.");
// Set the Ritz shift parameters
whenToShift_ = params.get("When To Shift", ALWAYS_SHIFT);
TEUCHOS_TEST_FOR_EXCEPTION(whenToShift_ != NEVER_SHIFT && whenToShift_ != SHIFT_WHEN_TRACE_LEVELS && whenToShift_ != SHIFT_WHEN_RESID_SMALL && whenToShift_ != ALWAYS_SHIFT, std::invalid_argument,
"Anasazi::TraceMin::constructor: Invalid value for \"When To Shift\"; valid options are \"NEVER_SHIFT\", \"SHIFT_WHEN_TRACE_LEVELS\", \"SHIFT_WHEN_RESID_SMALL\", and \"ALWAYS_SHIFT\".");
traceThresh_ = params.get("Trace Threshold", 2e-2);
TEUCHOS_TEST_FOR_EXCEPTION(traceThresh_ < 0, std::invalid_argument,
"Anasazi::TraceMin::constructor: Invalid value for \"Trace Threshold\"; Must be positive.");
howToShift_ = params.get("How To Choose Shift", ADJUSTED_RITZ_SHIFT);
TEUCHOS_TEST_FOR_EXCEPTION(howToShift_ != LARGEST_CONVERGED_SHIFT && howToShift_ != ADJUSTED_RITZ_SHIFT && howToShift_ != RITZ_VALUES_SHIFT, std::invalid_argument,
"Anasazi::TraceMin::constructor: Invalid value for \"How To Choose Shift\"; valid options are \"LARGEST_CONVERGED_SHIFT\", \"ADJUSTED_RITZ_SHIFT\", \"RITZ_VALUES_SHIFT\".");
useMultipleShifts_ = params.get("Use Multiple Shifts", true);
shiftThresh_ = params.get("Shift Threshold", 1e-2);
useRelShiftThresh_ = params.get("Relative Shift Threshold", true);
shiftNorm_ = params.get("Shift Norm", "2");
TEUCHOS_TEST_FOR_EXCEPTION(shiftNorm_ != "2" && shiftNorm_ != "M", std::invalid_argument,
"Anasazi::TraceMin::constructor: Invalid value for \"Shift Norm\"; valid options are \"2\", \"M\".");
considerClusters_ = params.get("Consider Clusters", true);
projectAllVecs_ = params.get("Project All Vectors", true);
projectLockedVecs_ = params.get("Project Locked Vectors", true);
useRHSR_ = params.get("Use Residual as RHS", true);
useHarmonic_ = params.get("Use Harmonic Ritz Values", false);
computeAllRes_ = params.get("Compute All Residuals", true);
// set the block size and allocate data
int bs = params.get("Block Size", problem_->getNEV());
int nb = params.get("Num Blocks", 1);
setSize(bs,nb);
NEV_ = problem_->getNEV();
// Create the Ritz shift operator
ritzOp_ = rcp (new tracemin_ritz_op_type (Op_, MOp_, Prec_));
// Set the maximum number of inner iterations
const int innerMaxIts = params.get ("Maximum Krylov Iterations", 200);
ritzOp_->setMaxIts (innerMaxIts);
alpha_ = params.get ("HSS: alpha", ONE);
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Destructor
template <class ScalarType, class MV, class OP>
TraceMinBase<ScalarType,MV,OP>::~TraceMinBase() {}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Set the block size
// This simply calls setSize(), modifying the block size while retaining the number of blocks.
template <class ScalarType, class MV, class OP>
void TraceMinBase<ScalarType,MV,OP>::setBlockSize (int blockSize)
{
TEUCHOS_TEST_FOR_EXCEPTION(blockSize < 1, std::invalid_argument, "Anasazi::TraceMinBase::setSize(blocksize,numblocks): blocksize must be strictly positive.");
setSize(blockSize,numBlocks_);
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Return the current auxiliary vectors
template <class ScalarType, class MV, class OP>
Teuchos::Array<RCP<const MV> > TraceMinBase<ScalarType,MV,OP>::getAuxVecs() const {
return auxVecs_;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// return the current block size
template <class ScalarType, class MV, class OP>
int TraceMinBase<ScalarType,MV,OP>::getBlockSize() const {
return(blockSize_);
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// return eigenproblem
template <class ScalarType, class MV, class OP>
const Eigenproblem<ScalarType,MV,OP>& TraceMinBase<ScalarType,MV,OP>::getProblem() const {
return(*problem_);
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// return max subspace dim
template <class ScalarType, class MV, class OP>
int TraceMinBase<ScalarType,MV,OP>::getMaxSubspaceDim() const {
return blockSize_*numBlocks_;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// return current subspace dim
template <class ScalarType, class MV, class OP>
int TraceMinBase<ScalarType,MV,OP>::getCurSubspaceDim() const {
if (!initialized_) return 0;
return curDim_;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// return ritz residual 2-norms
template <class ScalarType, class MV, class OP>
std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType>
TraceMinBase<ScalarType,MV,OP>::getRitzRes2Norms() {
return getRes2Norms();
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// return ritz index
template <class ScalarType, class MV, class OP>
std::vector<int> TraceMinBase<ScalarType,MV,OP>::getRitzIndex() {
std::vector<int> ret(curDim_,0);
return ret;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// return ritz values
template <class ScalarType, class MV, class OP>
std::vector<Value<ScalarType> > TraceMinBase<ScalarType,MV,OP>::getRitzValues() {
std::vector<Value<ScalarType> > ret(curDim_);
for (int i=0; i<curDim_; ++i) {
ret[i].realpart = theta_[i];
ret[i].imagpart = ZERO;
}
return ret;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// return pointer to ritz vectors
template <class ScalarType, class MV, class OP>
RCP<const MV> TraceMinBase<ScalarType,MV,OP>::getRitzVectors() {
return X_;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// reset number of iterations
template <class ScalarType, class MV, class OP>
void TraceMinBase<ScalarType,MV,OP>::resetNumIters() {
iter_=0;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// return number of iterations
template <class ScalarType, class MV, class OP>
int TraceMinBase<ScalarType,MV,OP>::getNumIters() const {
return(iter_);
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// return state pointers
template <class ScalarType, class MV, class OP>
TraceMinBaseState<ScalarType,MV> TraceMinBase<ScalarType,MV,OP>::getState() const {
TraceMinBaseState<ScalarType,MV> state;
state.curDim = curDim_;
state.V = V_;
state.X = X_;
if (Op_ != Teuchos::null) {
state.KV = KV_;
state.KX = KX_;
}
else {
state.KV = Teuchos::null;
state.KX = Teuchos::null;
}
if (hasM_) {
state.MopV = MV_;
state.MX = MX_;
}
else {
state.MopV = Teuchos::null;
state.MX = Teuchos::null;
}
state.R = R_;
state.KK = KK_;
state.RV = ritzVecs_;
if (curDim_ > 0) {
state.T = rcp(new std::vector<MagnitudeType>(theta_.begin(),theta_.begin()+curDim_) );
} else {
state.T = rcp(new std::vector<MagnitudeType>(0));
}
state.ritzShifts = rcp(new std::vector<MagnitudeType>(ritzShifts_.begin(),ritzShifts_.begin()+blockSize_) );
state.isOrtho = true;
state.largestSafeShift = largestSafeShift_;
return state;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Perform TraceMinBase iterations until the StatusTest tells us to stop.
template <class ScalarType, class MV, class OP>
void TraceMinBase<ScalarType,MV,OP>::iterate ()
{
if(useHarmonic_)
{
harmonicIterate();
return;
}
//
// Initialize solver state
if (initialized_ == false) {
initialize();
}
// as a data member, this would be redundant and require synchronization with
// blockSize_ and numBlocks_; we'll use a constant here.
const int searchDim = blockSize_*numBlocks_;
// Update obtained from solving saddle point problem
RCP<MV> Delta = MVT::Clone(*X_,blockSize_);
////////////////////////////////////////////////////////////////
// iterate until the status test tells us to stop.
// also break if our basis is full
while (tester_->checkStatus(this) != Passed && (numBlocks_ == 1 || curDim_ < searchDim)) {
// Print information on current iteration
if (om_->isVerbosity(Debug)) {
currentStatus( om_->stream(Debug) );
}
else if (om_->isVerbosity(IterationDetails)) {
currentStatus( om_->stream(IterationDetails) );
}
++iter_;
// Solve the saddle point problem
solveSaddlePointProblem(Delta);
// Insert Delta at the end of V
addToBasis(Delta);
if (om_->isVerbosity( Debug ) ) {
// Check almost everything here
CheckList chk;
chk.checkV = true;
om_->print( Debug, accuracyCheck(chk, ": after addToBasis(Delta)") );
}
// Compute KK := V'KV
computeKK();
if (om_->isVerbosity( Debug ) ) {
// Check almost everything here
CheckList chk;
chk.checkKK = true;
om_->print( Debug, accuracyCheck(chk, ": after computeKK()") );
}
// Compute the Ritz pairs
computeRitzPairs();
// Compute X := V RitzVecs
computeX();
if (om_->isVerbosity( Debug ) ) {
// Check almost everything here
CheckList chk;
chk.checkX = true;
om_->print( Debug, accuracyCheck(chk, ": after computeX()") );
}
// Compute KX := KV RitzVecs and MX := MV RitzVecs (if necessary)
updateKXMX();
if (om_->isVerbosity( Debug ) ) {
// Check almost everything here
CheckList chk;
chk.checkKX = true;
chk.checkMX = true;
om_->print( Debug, accuracyCheck(chk, ": after updateKXMX()") );
}
// Update the residual vectors
updateResidual();
} // end while (statusTest == false)
} // end of iterate()
//////////////////////////////////////////////////////////////////////////////////////////////////
// Perform TraceMinBase iterations until the StatusTest tells us to stop.
template <class ScalarType, class MV, class OP>
void TraceMinBase<ScalarType,MV,OP>::harmonicIterate ()
{
//
// Initialize solver state
if (initialized_ == false) {
initialize();
}
// as a data member, this would be redundant and require synchronization with
// blockSize_ and numBlocks_; we'll use a constant here.
const int searchDim = blockSize_*numBlocks_;
// Update obtained from solving saddle point problem
RCP<MV> Delta = MVT::Clone(*X_,blockSize_);
////////////////////////////////////////////////////////////////
// iterate until the status test tells us to stop.
// also break if our basis is full
while (tester_->checkStatus(this) != Passed && (numBlocks_ == 1 || curDim_ < searchDim)) {
// Print information on current iteration
if (om_->isVerbosity(Debug)) {
currentStatus( om_->stream(Debug) );
}
else if (om_->isVerbosity(IterationDetails)) {
currentStatus( om_->stream(IterationDetails) );
}
++iter_;
// Solve the saddle point problem
solveSaddlePointProblem(Delta);
// Insert Delta at the end of V
harmonicAddToBasis(Delta);
if (om_->isVerbosity( Debug ) ) {
// Check almost everything here
CheckList chk;
chk.checkV = true;
om_->print( Debug, accuracyCheck(chk, ": after addToBasis(Delta)") );
}
// Compute KK := V'KV
computeKK();
if (om_->isVerbosity( Debug ) ) {
// Check almost everything here
CheckList chk;
chk.checkKK = true;
om_->print( Debug, accuracyCheck(chk, ": after computeKK()") );
}
// Compute the Ritz pairs
computeRitzPairs();
// Compute X := V RitzVecs
computeX();
// Get norm of each vector in X
int nvecs;
if(computeAllRes_)
nvecs = curDim_;
else
nvecs = blockSize_;
std::vector<int> dimind(nvecs);
for(int i=0; i<nvecs; i++)
dimind[i] = i;
RCP<MV> lclX = MVT::CloneViewNonConst(*X_,dimind);
std::vector<ScalarType> normvec(nvecs);
orthman_->normMat(*lclX,normvec);
// Scale X
for(int i=0; i<nvecs; i++)
normvec[i] = ONE/normvec[i];
MVT::MvScale(*lclX,normvec);
// Scale eigenvalues
for(int i=0; i<nvecs; i++)
{
theta_[i] = theta_[i] * normvec[i] * normvec[i];
}
if (om_->isVerbosity( Debug ) ) {
// Check almost everything here
CheckList chk;
chk.checkX = true;
om_->print( Debug, accuracyCheck(chk, ": after computeX()") );
}
// Compute KX := KV RitzVecs and MX := MV RitzVecs (if necessary)
updateKXMX();
// Scale KX and MX
if(Op_ != Teuchos::null)
{
RCP<MV> lclKX = MVT::CloneViewNonConst(*KX_,dimind);
MVT::MvScale(*lclKX,normvec);
}
if(hasM_)
{
RCP<MV> lclMX = MVT::CloneViewNonConst(*MX_,dimind);
MVT::MvScale(*lclMX,normvec);
}
if (om_->isVerbosity( Debug ) ) {
// Check almost everything here
CheckList chk;
chk.checkKX = true;
chk.checkMX = true;
om_->print( Debug, accuracyCheck(chk, ": after updateKXMX()") );
}
// Update the residual vectors
updateResidual();
} // end while (statusTest == false)
} // end of harmonicIterate()
//////////////////////////////////////////////////////////////////////////////////////////////////
// initialize the solver with default state
template <class ScalarType, class MV, class OP>
void TraceMinBase<ScalarType,MV,OP>::initialize()
{
TraceMinBaseState<ScalarType,MV> empty;
initialize(empty);
}
//////////////////////////////////////////////////////////////////////////////////////////////////
/* Initialize the state of the solver
*
* POST-CONDITIONS:
*
* V_ is orthonormal, orthogonal to auxVecs_, for first curDim_ vectors
* theta_ contains Ritz w.r.t. V_(1:curDim_)
* X is Ritz vectors w.r.t. V_(1:curDim_)
* KX = Op*X
* MX = M*X if hasM_
* R = KX - MX*diag(theta_)
*
*/
template <class ScalarType, class MV, class OP>
void TraceMinBase<ScalarType,MV,OP>::initialize(TraceMinBaseState<ScalarType,MV>& newstate)
{
// TODO: Check for bad input
// NOTE: memory has been allocated by setBlockSize(). Use setBlock below; do not Clone
// NOTE: Overall time spent in this routine is counted to timerInit_; portions will also be counted towards other primitives
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor inittimer( *timerInit_ );
#endif
previouslyLeveled_ = false;
if(useHarmonic_)
{
harmonicInitialize(newstate);
return;
}
std::vector<int> bsind(blockSize_);
for (int i=0; i<blockSize_; ++i) bsind[i] = i;
// in TraceMinBase, V is primary
// the order of dependence follows like so.
// --init-> V,KK
// --ritz analysis-> theta,X
// --op apply-> KX,MX
// --compute-> R
//
// if the user specifies all data for a level, we will accept it.
// otherwise, we will generate the whole level, and all subsequent levels.
//
// the data members are ordered based on dependence, and the levels are
// partitioned according to the amount of work required to produce the
// items in a level.
//
// inconsistent multivectors widths and lengths will not be tolerated, and
// will be treated with exceptions.
//
// for multivector pointers in newstate which point directly (as opposed to indirectly, via a view) to
// multivectors in the solver, the copy will not be affected.
// set up V and KK: get them from newstate if user specified them
// otherwise, set them manually
RCP<MV> lclV, lclKV, lclMV;
RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > lclKK, lclRV;
// If V was supplied by the user...
if (newstate.V != Teuchos::null) {
om_->stream(Debug) << "Copying V from the user\n";
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetGlobalLength(*newstate.V) != MVT::GetGlobalLength(*V_), std::invalid_argument,
"Anasazi::TraceMinBase::initialize(newstate): Vector length of V not correct." );
TEUCHOS_TEST_FOR_EXCEPTION( newstate.curDim < blockSize_, std::invalid_argument,
"Anasazi::TraceMinBase::initialize(newstate): Rank of new state must be at least blockSize().");
TEUCHOS_TEST_FOR_EXCEPTION( newstate.curDim > blockSize_*numBlocks_, std::invalid_argument,
"Anasazi::TraceMinBase::initialize(newstate): Rank of new state must be less than getMaxSubspaceDim().");
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetNumberVecs(*newstate.V) < newstate.curDim, std::invalid_argument,
"Anasazi::TraceMinBase::initialize(newstate): Multivector for basis in new state must be as large as specified state rank.");
curDim_ = newstate.curDim;
// pick an integral amount
curDim_ = (int)(curDim_ / blockSize_)*blockSize_;
TEUCHOS_TEST_FOR_EXCEPTION( curDim_ != newstate.curDim, std::invalid_argument,
"Anasazi::TraceMinBase::initialize(newstate): Rank of new state must be a multiple of getBlockSize().");
// put data in V
std::vector<int> nevind(curDim_);
for (int i=0; i<curDim_; ++i) nevind[i] = i;
if (newstate.V != V_) {
if (curDim_ < MVT::GetNumberVecs(*newstate.V)) {
newstate.V = MVT::CloneView(*newstate.V,nevind);
}
MVT::SetBlock(*newstate.V,nevind,*V_);
}
lclV = MVT::CloneViewNonConst(*V_,nevind);
} // end if user specified V
else
{
// get vectors from problem or generate something, projectAndNormalize
RCP<const MV> ivec = problem_->getInitVec();
TEUCHOS_TEST_FOR_EXCEPTION(ivec == Teuchos::null,std::invalid_argument,
"Anasazi::TraceMinBase::initialize(newstate): Eigenproblem did not specify initial vectors to clone from.");
// clear newstate so we won't use any data from it below
newstate.X = Teuchos::null;
newstate.MX = Teuchos::null;
newstate.KX = Teuchos::null;
newstate.R = Teuchos::null;
newstate.T = Teuchos::null;
newstate.RV = Teuchos::null;
newstate.KK = Teuchos::null;
newstate.KV = Teuchos::null;
newstate.MopV = Teuchos::null;
newstate.isOrtho = false;
// If the user did not specify a current dimension, use that of the initial vectors they provided
if(newstate.curDim > 0)
curDim_ = newstate.curDim;
else
curDim_ = MVT::GetNumberVecs(*ivec);
// pick the largest multiple of blockSize_
curDim_ = (int)(curDim_ / blockSize_)*blockSize_;
if (curDim_ > blockSize_*numBlocks_) {
// user specified too many vectors... truncate
// this produces a full subspace, but that is okay
curDim_ = blockSize_*numBlocks_;
}
bool userand = false;
if (curDim_ == 0) {
// we need at least blockSize_ vectors
// use a random multivec: ignore everything from InitVec
userand = true;
curDim_ = blockSize_;
}
std::vector<int> nevind(curDim_);
for (int i=0; i<curDim_; ++i) nevind[i] = i;
// get a pointer into V
// lclV has curDim vectors
//
// get pointer to first curDim vectors in V_
lclV = MVT::CloneViewNonConst(*V_,nevind);
if (userand)
{
// generate random vector data
MVT::MvRandom(*lclV);
}
else
{
if(newstate.curDim > 0)
{
if(MVT::GetNumberVecs(*newstate.V) > curDim_) {
RCP<const MV> helperMV = MVT::CloneView(*newstate.V,nevind);
MVT::SetBlock(*helperMV,nevind,*lclV);
}
// assign ivec to first part of lclV
MVT::SetBlock(*newstate.V,nevind,*lclV);
}
else
{
if(MVT::GetNumberVecs(*ivec) > curDim_) {
ivec = MVT::CloneView(*ivec,nevind);
}
// assign ivec to first part of lclV
MVT::SetBlock(*ivec,nevind,*lclV);
}
}
} // end if user did not specify V
// A vector of relevant indices
std::vector<int> dimind(curDim_);
for (int i=0; i<curDim_; ++i) dimind[i] = i;
// Compute MV if necessary
if(hasM_ && newstate.MopV == Teuchos::null)
{
om_->stream(Debug) << "Computing MV\n";
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor lcltimer( *timerMOp_ );
#endif
count_ApplyM_+= curDim_;
newstate.isOrtho = false;
// Get a pointer to the relevant parts of MV
lclMV = MVT::CloneViewNonConst(*MV_,dimind);
OPT::Apply(*MOp_,*lclV,*lclMV);
}
// Copy MV if necessary
else if(hasM_)
{
om_->stream(Debug) << "Copying MV\n";
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetGlobalLength(*newstate.MopV) != MVT::GetGlobalLength(*MV_), std::invalid_argument,
"Anasazi::TraceMinBase::initialize(newstate): Vector length of MV not correct." );
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetNumberVecs(*newstate.MopV) < curDim_, std::invalid_argument,
"Anasazi::TraceMinBase::initialize(newstate): Number of vectors in MV not correct.");
if(newstate.MopV != MV_) {
if(curDim_ < MVT::GetNumberVecs(*newstate.MopV)) {
newstate.MopV = MVT::CloneView(*newstate.MopV,dimind);
}
MVT::SetBlock(*newstate.MopV,dimind,*MV_);
}
lclMV = MVT::CloneViewNonConst(*MV_,dimind);
}
// There is no M, so there is no MV
else
{
om_->stream(Debug) << "There is no MV\n";
lclMV = lclV;
MV_ = V_;
}
// Project and normalize so that V'V = I and Q'V=0
if(newstate.isOrtho == false)
{
om_->stream(Debug) << "Project and normalize\n";
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor lcltimer( *timerOrtho_ );
#endif
// These things are now invalid
newstate.X = Teuchos::null;
newstate.MX = Teuchos::null;
newstate.KX = Teuchos::null;
newstate.R = Teuchos::null;
newstate.T = Teuchos::null;
newstate.RV = Teuchos::null;
newstate.KK = Teuchos::null;
newstate.KV = Teuchos::null;
int rank;
if(auxVecs_.size() > 0)
{
rank = orthman_->projectAndNormalizeMat(*lclV, auxVecs_,
Teuchos::tuple(RCP< Teuchos::SerialDenseMatrix< int, ScalarType > >(Teuchos::null)),
Teuchos::null, lclMV, MauxVecs_);
}
else
{
rank = orthman_->normalizeMat(*lclV,Teuchos::null,lclMV);
}
TEUCHOS_TEST_FOR_EXCEPTION(rank != curDim_,TraceMinBaseInitFailure,
"Anasazi::TraceMinBase::initialize(): Couldn't generate initial basis of full rank.");
}
// Compute KV
if(Op_ != Teuchos::null && newstate.KV == Teuchos::null)
{
om_->stream(Debug) << "Computing KV\n";
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor lcltimer( *timerOp_ );
#endif
count_ApplyOp_+= curDim_;
// These things are now invalid
newstate.X = Teuchos::null;
newstate.MX = Teuchos::null;
newstate.KX = Teuchos::null;
newstate.R = Teuchos::null;
newstate.T = Teuchos::null;
newstate.RV = Teuchos::null;
newstate.KK = Teuchos::null;
newstate.KV = Teuchos::null;
lclKV = MVT::CloneViewNonConst(*KV_,dimind);
OPT::Apply(*Op_,*lclV,*lclKV);
}
// Copy KV
else if(Op_ != Teuchos::null)
{
om_->stream(Debug) << "Copying MV\n";
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetGlobalLength(*newstate.KV) != MVT::GetGlobalLength(*KV_), std::invalid_argument,
"Anasazi::TraceMinBase::initialize(newstate): Vector length of MV not correct." );
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetNumberVecs(*newstate.KV) < curDim_, std::invalid_argument,
"Anasazi::TraceMinBase::initialize(newstate): Number of vectors in KV not correct.");
if (newstate.KV != KV_) {
if (curDim_ < MVT::GetNumberVecs(*newstate.KV)) {
newstate.KV = MVT::CloneView(*newstate.KV,dimind);
}
MVT::SetBlock(*newstate.KV,dimind,*KV_);
}
lclKV = MVT::CloneViewNonConst(*KV_,dimind);
}
else
{
om_->stream(Debug) << "There is no KV\n";
lclKV = lclV;
KV_ = V_;
}
// Compute KK
if(newstate.KK == Teuchos::null)
{
om_->stream(Debug) << "Computing KK\n";
// These things are now invalid
newstate.X = Teuchos::null;
newstate.MX = Teuchos::null;
newstate.KX = Teuchos::null;
newstate.R = Teuchos::null;
newstate.T = Teuchos::null;
newstate.RV = Teuchos::null;
// Note: there used to be a bug here.
// We can't just call computeKK because it only computes the new parts of KK
// Get a pointer to the part of KK we're interested in
lclKK = rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(Teuchos::View,*KK_,curDim_,curDim_) );
// KK := V'KV
MVT::MvTransMv(ONE,*lclV,*lclKV,*lclKK);
}
// Copy KK
else
{
om_->stream(Debug) << "Copying KK\n";
// check size of KK
TEUCHOS_TEST_FOR_EXCEPTION( newstate.KK->numRows() < curDim_ || newstate.KK->numCols() < curDim_, std::invalid_argument,
"Anasazi::TraceMinBase::initialize(newstate): Projected matrix in new state must be as large as specified state rank.");
// put data into KK_
lclKK = rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(Teuchos::View,*KK_,curDim_,curDim_) );
if (newstate.KK != KK_) {
if (newstate.KK->numRows() > curDim_ || newstate.KK->numCols() > curDim_) {
newstate.KK = rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(Teuchos::View,*newstate.KK,curDim_,curDim_) );
}
lclKK->assign(*newstate.KK);
}
}
// Compute Ritz pairs
if(newstate.T == Teuchos::null || newstate.RV == Teuchos::null)
{
om_->stream(Debug) << "Computing Ritz pairs\n";
// These things are now invalid
newstate.X = Teuchos::null;
newstate.MX = Teuchos::null;
newstate.KX = Teuchos::null;
newstate.R = Teuchos::null;
newstate.T = Teuchos::null;
newstate.RV = Teuchos::null;
computeRitzPairs();
}
// Copy Ritz pairs
else
{
om_->stream(Debug) << "Copying Ritz pairs\n";
TEUCHOS_TEST_FOR_EXCEPTION((signed int)(newstate.T->size()) != curDim_,
std::invalid_argument, "Anasazi::TraceMinBase::initialize(newstate): Size of T must be consistent with dimension of V.");
TEUCHOS_TEST_FOR_EXCEPTION( newstate.RV->numRows() < curDim_ || newstate.RV->numCols() < curDim_, std::invalid_argument,
"Anasazi::TraceMinBase::initialize(newstate): Ritz vectors in new state must be as large as specified state rank.");
std::copy(newstate.T->begin(),newstate.T->end(),theta_.begin());
lclRV = rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(Teuchos::View,*ritzVecs_,curDim_,curDim_) );
if (newstate.RV != ritzVecs_) {
if (newstate.RV->numRows() > curDim_ || newstate.RV->numCols() > curDim_) {
newstate.RV = rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(Teuchos::View,*newstate.RV,curDim_,curDim_) );
}
lclRV->assign(*newstate.RV);
}
}
// Compute X
if(newstate.X == Teuchos::null)
{
om_->stream(Debug) << "Computing X\n";
// These things are now invalid
newstate.MX = Teuchos::null;
newstate.KX = Teuchos::null;
newstate.R = Teuchos::null;
computeX();
}
// Copy X
else
{
om_->stream(Debug) << "Copying X\n";
if(computeAllRes_ == false)
{
TEUCHOS_TEST_FOR_EXCEPTION(MVT::GetNumberVecs(*newstate.X) != blockSize_ || MVT::GetGlobalLength(*newstate.X) != MVT::GetGlobalLength(*X_),
std::invalid_argument, "Anasazi::TraceMinBase::initialize(newstate): Size of X must be consistent with block size and length of V.");
if(newstate.X != X_) {
MVT::SetBlock(*newstate.X,bsind,*X_);
}
}
else
{
TEUCHOS_TEST_FOR_EXCEPTION(MVT::GetNumberVecs(*newstate.X) != curDim_ || MVT::GetGlobalLength(*newstate.X) != MVT::GetGlobalLength(*X_),
std::invalid_argument, "Anasazi::TraceMinBase::initialize(newstate): Size of X must be consistent with current dimension and length of V.");
if(newstate.X != X_) {
MVT::SetBlock(*newstate.X,dimind,*X_);
}
}
}
// Compute KX and MX if necessary
// TODO: These technically should be separate; it won't matter much in terms of running time though
if((Op_ != Teuchos::null && newstate.KX == Teuchos::null) || (hasM_ && newstate.MX == Teuchos::null))
{
om_->stream(Debug) << "Computing KX and MX\n";
// These things are now invalid
newstate.R = Teuchos::null;
updateKXMX();
}
// Copy KX and MX if necessary
else
{
om_->stream(Debug) << "Copying KX and MX\n";
if(Op_ != Teuchos::null)
{
if(computeAllRes_ == false)
{
TEUCHOS_TEST_FOR_EXCEPTION(MVT::GetNumberVecs(*newstate.KX) != blockSize_ || MVT::GetGlobalLength(*newstate.KX) != MVT::GetGlobalLength(*KX_),
std::invalid_argument, "Anasazi::TraceMinBase::initialize(newstate): Size of KX must be consistent with block size and length of V.");
if(newstate.KX != KX_) {
MVT::SetBlock(*newstate.KX,bsind,*KX_);
}
}
else
{
TEUCHOS_TEST_FOR_EXCEPTION(MVT::GetNumberVecs(*newstate.KX) != curDim_ || MVT::GetGlobalLength(*newstate.KX) != MVT::GetGlobalLength(*KX_),
std::invalid_argument, "Anasazi::TraceMinBase::initialize(newstate): Size of KX must be consistent with current dimension and length of V.");
if (newstate.KX != KX_) {
MVT::SetBlock(*newstate.KX,dimind,*KX_);
}
}
}
if(hasM_)
{
if(computeAllRes_ == false)
{
TEUCHOS_TEST_FOR_EXCEPTION(MVT::GetNumberVecs(*newstate.MX) != blockSize_ || MVT::GetGlobalLength(*newstate.MX) != MVT::GetGlobalLength(*MX_),
std::invalid_argument, "Anasazi::TraceMinBase::initialize(newstate): Size of MX must be consistent with block size and length of V.");
if (newstate.MX != MX_) {
MVT::SetBlock(*newstate.MX,bsind,*MX_);
}
}
else
{
TEUCHOS_TEST_FOR_EXCEPTION(MVT::GetNumberVecs(*newstate.MX) != curDim_ || MVT::GetGlobalLength(*newstate.MX) != MVT::GetGlobalLength(*MX_),
std::invalid_argument, "Anasazi::TraceMinBase::initialize(newstate): Size of MX must be consistent with current dimension and length of V.");
if (newstate.MX != MX_) {
MVT::SetBlock(*newstate.MX,dimind,*MX_);
}
}
}
}
// Compute R
if(newstate.R == Teuchos::null)
{
om_->stream(Debug) << "Computing R\n";
updateResidual();
}
// Copy R
else
{
om_->stream(Debug) << "Copying R\n";
if(computeAllRes_ == false)
{
TEUCHOS_TEST_FOR_EXCEPTION(MVT::GetGlobalLength(*newstate.R) != MVT::GetGlobalLength(*X_),
std::invalid_argument, "Anasazi::TraceMinBase::initialize(newstate): vector length of newstate.R not correct." );
TEUCHOS_TEST_FOR_EXCEPTION(MVT::GetNumberVecs(*newstate.R) != blockSize_,
std::invalid_argument, "Anasazi::TraceMinBase::initialize(newstate): newstate.R must have at least block size vectors." );
if (newstate.R != R_) {
MVT::SetBlock(*newstate.R,bsind,*R_);
}
}
else
{
TEUCHOS_TEST_FOR_EXCEPTION(MVT::GetGlobalLength(*newstate.R) != MVT::GetGlobalLength(*X_),
std::invalid_argument, "Anasazi::TraceMinBase::initialize(newstate): vector length of newstate.R not correct." );
TEUCHOS_TEST_FOR_EXCEPTION(MVT::GetNumberVecs(*newstate.R) != curDim_,
std::invalid_argument, "Anasazi::TraceMinBase::initialize(newstate): newstate.R must have at least curDim vectors." );
if (newstate.R != R_) {
MVT::SetBlock(*newstate.R,dimind,*R_);
}
}
}
// R has been updated; mark the norms as out-of-date
Rnorms_current_ = false;
R2norms_current_ = false;
// Set the largest safe shift
largestSafeShift_ = newstate.largestSafeShift;
// Copy over the Ritz shifts
if(newstate.ritzShifts != Teuchos::null)
{
om_->stream(Debug) << "Copying Ritz shifts\n";
std::copy(newstate.ritzShifts->begin(),newstate.ritzShifts->end(),ritzShifts_.begin());
}
else
{
om_->stream(Debug) << "Setting Ritz shifts to 0\n";
for(size_t i=0; i<ritzShifts_.size(); i++)
ritzShifts_[i] = ZERO;
}
for(size_t i=0; i<ritzShifts_.size(); i++)
om_->stream(Debug) << "Ritz shifts[" << i << "] = " << ritzShifts_[i] << std::endl;
// finally, we are initialized
initialized_ = true;
if (om_->isVerbosity( Debug ) ) {
// Check almost everything here
CheckList chk;
chk.checkV = true;
chk.checkX = true;
chk.checkKX = true;
chk.checkMX = true;
chk.checkQ = true;
chk.checkKK = true;
om_->print( Debug, accuracyCheck(chk, ": after initialize()") );
}
// Print information on current status
if (om_->isVerbosity(Debug)) {
currentStatus( om_->stream(Debug) );
}
else if (om_->isVerbosity(IterationDetails)) {
currentStatus( om_->stream(IterationDetails) );
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////
/* Initialize the state of the solver
*
* POST-CONDITIONS:
*
* V_ is orthonormal, orthogonal to auxVecs_, for first curDim_ vectors
* theta_ contains Ritz w.r.t. V_(1:curDim_)
* X is Ritz vectors w.r.t. V_(1:curDim_)
* KX = Op*X
* MX = M*X if hasM_
* R = KX - MX*diag(theta_)
*
*/
template <class ScalarType, class MV, class OP>
void TraceMinBase<ScalarType,MV,OP>::harmonicInitialize(TraceMinBaseState<ScalarType,MV> newstate)
{
// TODO: Check for bad input
// NOTE: memory has been allocated by setBlockSize(). Use setBlock below; do not Clone
// NOTE: Overall time spent in this routine is counted to timerInit_; portions will also be counted towards other primitives
std::vector<int> bsind(blockSize_);
for (int i=0; i<blockSize_; ++i) bsind[i] = i;
// in TraceMinBase, V is primary
// the order of dependence follows like so.
// --init-> V,KK
// --ritz analysis-> theta,X
// --op apply-> KX,MX
// --compute-> R
//
// if the user specifies all data for a level, we will accept it.
// otherwise, we will generate the whole level, and all subsequent levels.
//
// the data members are ordered based on dependence, and the levels are
// partitioned according to the amount of work required to produce the
// items in a level.
//
// inconsistent multivectors widths and lengths will not be tolerated, and
// will be treated with exceptions.
//
// for multivector pointers in newstate which point directly (as opposed to indirectly, via a view) to
// multivectors in the solver, the copy will not be affected.
// set up V and KK: get them from newstate if user specified them
// otherwise, set them manually
RCP<MV> lclV, lclKV, lclMV;
RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > lclKK, lclRV;
// If V was supplied by the user...
if (newstate.V != Teuchos::null) {
om_->stream(Debug) << "Copying V from the user\n";
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetGlobalLength(*newstate.V) != MVT::GetGlobalLength(*V_), std::invalid_argument,
"Anasazi::TraceMinBase::initialize(newstate): Vector length of V not correct." );
TEUCHOS_TEST_FOR_EXCEPTION( newstate.curDim < blockSize_, std::invalid_argument,
"Anasazi::TraceMinBase::initialize(newstate): Rank of new state must be at least blockSize().");
TEUCHOS_TEST_FOR_EXCEPTION( newstate.curDim > blockSize_*numBlocks_, std::invalid_argument,
"Anasazi::TraceMinBase::initialize(newstate): Rank of new state must be less than getMaxSubspaceDim().");
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetNumberVecs(*newstate.V) < newstate.curDim, std::invalid_argument,
"Anasazi::TraceMinBase::initialize(newstate): Multivector for basis in new state must be as large as specified state rank.");
curDim_ = newstate.curDim;
// pick an integral amount
curDim_ = (int)(curDim_ / blockSize_)*blockSize_;
TEUCHOS_TEST_FOR_EXCEPTION( curDim_ != newstate.curDim, std::invalid_argument,
"Anasazi::TraceMinBase::initialize(newstate): Rank of new state must be a multiple of getBlockSize().");
// put data in V
std::vector<int> nevind(curDim_);
for (int i=0; i<curDim_; ++i) nevind[i] = i;
if (newstate.V != V_) {
if (curDim_ < MVT::GetNumberVecs(*newstate.V)) {
newstate.V = MVT::CloneView(*newstate.V,nevind);
}
MVT::SetBlock(*newstate.V,nevind,*V_);
}
lclV = MVT::CloneViewNonConst(*V_,nevind);
} // end if user specified V
else
{
// get vectors from problem or generate something, projectAndNormalize
RCP<const MV> ivec = problem_->getInitVec();
TEUCHOS_TEST_FOR_EXCEPTION(ivec == Teuchos::null,std::invalid_argument,
"Anasazi::TraceMinBase::initialize(newstate): Eigenproblem did not specify initial vectors to clone from.");
// clear newstate so we won't use any data from it below
newstate.X = Teuchos::null;
newstate.MX = Teuchos::null;
newstate.KX = Teuchos::null;
newstate.R = Teuchos::null;
newstate.T = Teuchos::null;
newstate.RV = Teuchos::null;
newstate.KK = Teuchos::null;
newstate.KV = Teuchos::null;
newstate.MopV = Teuchos::null;
newstate.isOrtho = false;
// If the user did not specify a current dimension, use that of the initial vectors they provided
if(newstate.curDim > 0)
curDim_ = newstate.curDim;
else
curDim_ = MVT::GetNumberVecs(*ivec);
// pick the largest multiple of blockSize_
curDim_ = (int)(curDim_ / blockSize_)*blockSize_;
if (curDim_ > blockSize_*numBlocks_) {
// user specified too many vectors... truncate
// this produces a full subspace, but that is okay
curDim_ = blockSize_*numBlocks_;
}
bool userand = false;
if (curDim_ == 0) {
// we need at least blockSize_ vectors
// use a random multivec: ignore everything from InitVec
userand = true;
curDim_ = blockSize_;
}
std::vector<int> nevind(curDim_);
for (int i=0; i<curDim_; ++i) nevind[i] = i;
// get a pointer into V
// lclV has curDim vectors
//
// get pointer to first curDim vectors in V_
lclV = MVT::CloneViewNonConst(*V_,nevind);
if (userand)
{
// generate random vector data
MVT::MvRandom(*lclV);
}
else
{
if(newstate.curDim > 0)
{
if(MVT::GetNumberVecs(*newstate.V) > curDim_) {
RCP<const MV> helperMV = MVT::CloneView(*newstate.V,nevind);
MVT::SetBlock(*helperMV,nevind,*lclV);
}
// assign ivec to first part of lclV
MVT::SetBlock(*newstate.V,nevind,*lclV);
}
else
{
if(MVT::GetNumberVecs(*ivec) > curDim_) {
ivec = MVT::CloneView(*ivec,nevind);
}
// assign ivec to first part of lclV
MVT::SetBlock(*ivec,nevind,*lclV);
}
}
} // end if user did not specify V
// Nuke everything from orbit
// This is a temporary measure due to a bug in the code that I have not found yet
// It adds a minimal amount of work
newstate.X = Teuchos::null;
newstate.MX = Teuchos::null;
newstate.KX = Teuchos::null;
newstate.R = Teuchos::null;
newstate.T = Teuchos::null;
newstate.RV = Teuchos::null;
newstate.KK = Teuchos::null;
newstate.KV = Teuchos::null;
newstate.MopV = Teuchos::null;
newstate.isOrtho = false;
// A vector of relevant indices
std::vector<int> dimind(curDim_);
for (int i=0; i<curDim_; ++i) dimind[i] = i;
// Project the auxVecs out of V
if(auxVecs_.size() > 0)
orthman_->projectMat(*lclV,auxVecs_);
// Compute KV
if(Op_ != Teuchos::null && newstate.KV == Teuchos::null)
{
om_->stream(Debug) << "Computing KV\n";
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor lcltimer( *timerOp_ );
#endif
count_ApplyOp_+= curDim_;
// These things are now invalid
newstate.X = Teuchos::null;
newstate.MX = Teuchos::null;
newstate.KX = Teuchos::null;
newstate.R = Teuchos::null;
newstate.T = Teuchos::null;
newstate.RV = Teuchos::null;
newstate.KK = Teuchos::null;
lclKV = MVT::CloneViewNonConst(*KV_,dimind);
OPT::Apply(*Op_,*lclV,*lclKV);
}
// Copy KV
else if(Op_ != Teuchos::null)
{
om_->stream(Debug) << "Copying KV\n";
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetGlobalLength(*newstate.KV) != MVT::GetGlobalLength(*KV_), std::invalid_argument,
"Anasazi::TraceMinBase::initialize(newstate): Vector length of KV not correct." );
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetNumberVecs(*newstate.KV) < curDim_, std::invalid_argument,
"Anasazi::TraceMinBase::initialize(newstate): Number of vectors in KV not correct.");
if (newstate.KV != KV_) {
if (curDim_ < MVT::GetNumberVecs(*newstate.KV)) {
newstate.KV = MVT::CloneView(*newstate.KV,dimind);
}
MVT::SetBlock(*newstate.KV,dimind,*KV_);
}
lclKV = MVT::CloneViewNonConst(*KV_,dimind);
}
else
{
om_->stream(Debug) << "There is no KV\n";
lclKV = lclV;
KV_ = V_;
}
// Project and normalize so that V'V = I and Q'V=0
if(newstate.isOrtho == false)
{
om_->stream(Debug) << "Project and normalize\n";
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor lcltimer( *timerOrtho_ );
#endif
// These things are now invalid
newstate.MopV = Teuchos::null;
newstate.X = Teuchos::null;
newstate.MX = Teuchos::null;
newstate.KX = Teuchos::null;
newstate.R = Teuchos::null;
newstate.T = Teuchos::null;
newstate.RV = Teuchos::null;
newstate.KK = Teuchos::null;
// Normalize lclKV
RCP< Teuchos::SerialDenseMatrix<int,ScalarType> > gamma = rcp(new Teuchos::SerialDenseMatrix<int,ScalarType>(curDim_,curDim_));
int rank = orthman_->normalizeMat(*lclKV,gamma);
// lclV = lclV/gamma
Teuchos::SerialDenseSolver<int,ScalarType> SDsolver;
SDsolver.setMatrix(gamma);
SDsolver.invert();
RCP<MV> tempMV = MVT::CloneCopy(*lclV);
MVT::MvTimesMatAddMv(ONE,*tempMV,*gamma,ZERO,*lclV);
TEUCHOS_TEST_FOR_EXCEPTION(rank != curDim_,TraceMinBaseInitFailure,
"Anasazi::TraceMinBase::initialize(): Couldn't generate initial basis of full rank.");
}
// Compute MV if necessary
if(hasM_ && newstate.MopV == Teuchos::null)
{
om_->stream(Debug) << "Computing MV\n";
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor lcltimer( *timerMOp_ );
#endif
count_ApplyM_+= curDim_;
// Get a pointer to the relevant parts of MV
lclMV = MVT::CloneViewNonConst(*MV_,dimind);
OPT::Apply(*MOp_,*lclV,*lclMV);
}
// Copy MV if necessary
else if(hasM_)
{
om_->stream(Debug) << "Copying MV\n";
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetGlobalLength(*newstate.MopV) != MVT::GetGlobalLength(*MV_), std::invalid_argument,
"Anasazi::TraceMinBase::initialize(newstate): Vector length of MV not correct." );
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetNumberVecs(*newstate.MopV) < curDim_, std::invalid_argument,
"Anasazi::TraceMinBase::initialize(newstate): Number of vectors in MV not correct.");
if(newstate.MopV != MV_) {
if(curDim_ < MVT::GetNumberVecs(*newstate.MopV)) {
newstate.MopV = MVT::CloneView(*newstate.MopV,dimind);
}
MVT::SetBlock(*newstate.MopV,dimind,*MV_);
}
lclMV = MVT::CloneViewNonConst(*MV_,dimind);
}
// There is no M, so there is no MV
else
{
om_->stream(Debug) << "There is no MV\n";
lclMV = lclV;
MV_ = V_;
}
// Compute KK
if(newstate.KK == Teuchos::null)
{
om_->stream(Debug) << "Computing KK\n";
// These things are now invalid
newstate.X = Teuchos::null;
newstate.MX = Teuchos::null;
newstate.KX = Teuchos::null;
newstate.R = Teuchos::null;
newstate.T = Teuchos::null;
newstate.RV = Teuchos::null;
// Note: there used to be a bug here.
// We can't just call computeKK because it only computes the new parts of KK
// Get a pointer to the part of KK we're interested in
lclKK = rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(Teuchos::View,*KK_,curDim_,curDim_) );
// KK := V'KV
MVT::MvTransMv(ONE,*lclV,*lclKV,*lclKK);
}
// Copy KK
else
{
om_->stream(Debug) << "Copying KK\n";
// check size of KK
TEUCHOS_TEST_FOR_EXCEPTION( newstate.KK->numRows() < curDim_ || newstate.KK->numCols() < curDim_, std::invalid_argument,
"Anasazi::TraceMinBase::initialize(newstate): Projected matrix in new state must be as large as specified state rank.");
// put data into KK_
lclKK = rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(Teuchos::View,*KK_,curDim_,curDim_) );
if (newstate.KK != KK_) {
if (newstate.KK->numRows() > curDim_ || newstate.KK->numCols() > curDim_) {
newstate.KK = rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(Teuchos::View,*newstate.KK,curDim_,curDim_) );
}
lclKK->assign(*newstate.KK);
}
}
// Compute Ritz pairs
if(newstate.T == Teuchos::null || newstate.RV == Teuchos::null)
{
om_->stream(Debug) << "Computing Ritz pairs\n";
// These things are now invalid
newstate.X = Teuchos::null;
newstate.MX = Teuchos::null;
newstate.KX = Teuchos::null;
newstate.R = Teuchos::null;
newstate.T = Teuchos::null;
newstate.RV = Teuchos::null;
computeRitzPairs();
}
// Copy Ritz pairs
else
{
om_->stream(Debug) << "Copying Ritz pairs\n";
TEUCHOS_TEST_FOR_EXCEPTION((signed int)(newstate.T->size()) != curDim_,
std::invalid_argument, "Anasazi::TraceMinBase::initialize(newstate): Size of T must be consistent with dimension of V.");
TEUCHOS_TEST_FOR_EXCEPTION( newstate.RV->numRows() < curDim_ || newstate.RV->numCols() < curDim_, std::invalid_argument,
"Anasazi::TraceMinBase::initialize(newstate): Ritz vectors in new state must be as large as specified state rank.");
std::copy(newstate.T->begin(),newstate.T->end(),theta_.begin());
lclRV = rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(Teuchos::View,*ritzVecs_,curDim_,curDim_) );
if (newstate.RV != ritzVecs_) {
if (newstate.RV->numRows() > curDim_ || newstate.RV->numCols() > curDim_) {
newstate.RV = rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(Teuchos::View,*newstate.RV,curDim_,curDim_) );
}
lclRV->assign(*newstate.RV);
}
}
// Compute X
if(newstate.X == Teuchos::null)
{
om_->stream(Debug) << "Computing X\n";
// These things are now invalid
newstate.MX = Teuchos::null;
newstate.KX = Teuchos::null;
newstate.R = Teuchos::null;
computeX();
}
// Copy X
else
{
om_->stream(Debug) << "Copying X\n";
if(computeAllRes_ == false)
{
TEUCHOS_TEST_FOR_EXCEPTION(MVT::GetNumberVecs(*newstate.X) != blockSize_ || MVT::GetGlobalLength(*newstate.X) != MVT::GetGlobalLength(*X_),
std::invalid_argument, "Anasazi::TraceMinBase::initialize(newstate): Size of X must be consistent with block size and length of V.");
if(newstate.X != X_) {
MVT::SetBlock(*newstate.X,bsind,*X_);
}
}
else
{
TEUCHOS_TEST_FOR_EXCEPTION(MVT::GetNumberVecs(*newstate.X) != curDim_ || MVT::GetGlobalLength(*newstate.X) != MVT::GetGlobalLength(*X_),
std::invalid_argument, "Anasazi::TraceMinBase::initialize(newstate): Size of X must be consistent with current dimension and length of V.");
if(newstate.X != X_) {
MVT::SetBlock(*newstate.X,dimind,*X_);
}
}
}
// Compute KX and MX if necessary
// TODO: These technically should be separate; it won't matter much in terms of running time though
if((Op_ != Teuchos::null && newstate.KX == Teuchos::null) || (hasM_ && newstate.MX == Teuchos::null))
{
om_->stream(Debug) << "Computing KX and MX\n";
// These things are now invalid
newstate.R = Teuchos::null;
updateKXMX();
}
// Copy KX and MX if necessary
else
{
om_->stream(Debug) << "Copying KX and MX\n";
if(Op_ != Teuchos::null)
{
if(computeAllRes_ == false)
{
TEUCHOS_TEST_FOR_EXCEPTION(MVT::GetNumberVecs(*newstate.KX) != blockSize_ || MVT::GetGlobalLength(*newstate.KX) != MVT::GetGlobalLength(*KX_),
std::invalid_argument, "Anasazi::TraceMinBase::initialize(newstate): Size of KX must be consistent with block size and length of V.");
if(newstate.KX != KX_) {
MVT::SetBlock(*newstate.KX,bsind,*KX_);
}
}
else
{
TEUCHOS_TEST_FOR_EXCEPTION(MVT::GetNumberVecs(*newstate.KX) != curDim_ || MVT::GetGlobalLength(*newstate.KX) != MVT::GetGlobalLength(*KX_),
std::invalid_argument, "Anasazi::TraceMinBase::initialize(newstate): Size of KX must be consistent with current dimension and length of V.");
if (newstate.KX != KX_) {
MVT::SetBlock(*newstate.KX,dimind,*KX_);
}
}
}
if(hasM_)
{
if(computeAllRes_ == false)
{
TEUCHOS_TEST_FOR_EXCEPTION(MVT::GetNumberVecs(*newstate.MX) != blockSize_ || MVT::GetGlobalLength(*newstate.MX) != MVT::GetGlobalLength(*MX_),
std::invalid_argument, "Anasazi::TraceMinBase::initialize(newstate): Size of MX must be consistent with block size and length of V.");
if (newstate.MX != MX_) {
MVT::SetBlock(*newstate.MX,bsind,*MX_);
}
}
else
{
TEUCHOS_TEST_FOR_EXCEPTION(MVT::GetNumberVecs(*newstate.MX) != curDim_ || MVT::GetGlobalLength(*newstate.MX) != MVT::GetGlobalLength(*MX_),
std::invalid_argument, "Anasazi::TraceMinBase::initialize(newstate): Size of MX must be consistent with current dimension and length of V.");
if (newstate.MX != MX_) {
MVT::SetBlock(*newstate.MX,dimind,*MX_);
}
}
}
}
// Scale X so each vector is of length 1
{
// Get norm of each vector in X
const int nvecs = computeAllRes_ ? curDim_ : blockSize_;
Teuchos::Range1D dimind2 (0, nvecs-1);
RCP<MV> lclX = MVT::CloneViewNonConst(*X_, dimind2);
std::vector<ScalarType> normvec(nvecs);
orthman_->normMat(*lclX,normvec);
// Scale X, KX, and MX accordingly
for (int i = 0; i < nvecs; ++i) {
normvec[i] = ONE / normvec[i];
}
MVT::MvScale (*lclX, normvec);
if (Op_ != Teuchos::null) {
RCP<MV> lclKX = MVT::CloneViewNonConst (*KX_, dimind2);
MVT::MvScale (*lclKX, normvec);
}
if (hasM_) {
RCP<MV> lclMX = MVT::CloneViewNonConst (*MX_, dimind2);
MVT::MvScale (*lclMX, normvec);
}
// Scale eigenvalues
for (int i = 0; i < nvecs; ++i) {
theta_[i] = theta_[i] * normvec[i] * normvec[i];
}
}
// Compute R
if(newstate.R == Teuchos::null)
{
om_->stream(Debug) << "Computing R\n";
updateResidual();
}
// Copy R
else
{
om_->stream(Debug) << "Copying R\n";
if(computeAllRes_ == false)
{
TEUCHOS_TEST_FOR_EXCEPTION(MVT::GetGlobalLength(*newstate.R) != MVT::GetGlobalLength(*X_),
std::invalid_argument, "Anasazi::TraceMinBase::initialize(newstate): vector length of newstate.R not correct." );
TEUCHOS_TEST_FOR_EXCEPTION(MVT::GetNumberVecs(*newstate.R) != blockSize_,
std::invalid_argument, "Anasazi::TraceMinBase::initialize(newstate): newstate.R must have at least block size vectors." );
if (newstate.R != R_) {
MVT::SetBlock(*newstate.R,bsind,*R_);
}
}
else
{
TEUCHOS_TEST_FOR_EXCEPTION(MVT::GetGlobalLength(*newstate.R) != MVT::GetGlobalLength(*X_),
std::invalid_argument, "Anasazi::TraceMinBase::initialize(newstate): vector length of newstate.R not correct." );
TEUCHOS_TEST_FOR_EXCEPTION(MVT::GetNumberVecs(*newstate.R) != curDim_,
std::invalid_argument, "Anasazi::TraceMinBase::initialize(newstate): newstate.R must have at least curDim vectors." );
if (newstate.R != R_) {
MVT::SetBlock(*newstate.R,dimind,*R_);
}
}
}
// R has been updated; mark the norms as out-of-date
Rnorms_current_ = false;
R2norms_current_ = false;
// Set the largest safe shift
largestSafeShift_ = newstate.largestSafeShift;
// Copy over the Ritz shifts
if(newstate.ritzShifts != Teuchos::null)
{
om_->stream(Debug) << "Copying Ritz shifts\n";
std::copy(newstate.ritzShifts->begin(),newstate.ritzShifts->end(),ritzShifts_.begin());
}
else
{
om_->stream(Debug) << "Setting Ritz shifts to 0\n";
for(size_t i=0; i<ritzShifts_.size(); i++)
ritzShifts_[i] = ZERO;
}
for(size_t i=0; i<ritzShifts_.size(); i++)
om_->stream(Debug) << "Ritz shifts[" << i << "] = " << ritzShifts_[i] << std::endl;
// finally, we are initialized
initialized_ = true;
if (om_->isVerbosity( Debug ) ) {
// Check almost everything here
CheckList chk;
chk.checkV = true;
chk.checkX = true;
chk.checkKX = true;
chk.checkMX = true;
chk.checkQ = true;
chk.checkKK = true;
om_->print( Debug, accuracyCheck(chk, ": after initialize()") );
}
// Print information on current status
if (om_->isVerbosity(Debug)) {
currentStatus( om_->stream(Debug) );
}
else if (om_->isVerbosity(IterationDetails)) {
currentStatus( om_->stream(IterationDetails) );
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Return initialized state
template <class ScalarType, class MV, class OP>
bool TraceMinBase<ScalarType,MV,OP>::isInitialized() const { return initialized_; }
//////////////////////////////////////////////////////////////////////////////////////////////////
// Set the block size and make necessary adjustments.
template <class ScalarType, class MV, class OP>
void TraceMinBase<ScalarType,MV,OP>::setSize (int blockSize, int numBlocks)
{
// This routine only allocates space; it doesn't not perform any computation
// any change in size will invalidate the state of the solver.
TEUCHOS_TEST_FOR_EXCEPTION(blockSize < 1, std::invalid_argument, "Anasazi::TraceMinBase::setSize(blocksize,numblocks): blocksize must be strictly positive.");
if (blockSize == blockSize_ && numBlocks == numBlocks_) {
// do nothing
return;
}
blockSize_ = blockSize;
numBlocks_ = numBlocks;
RCP<const MV> tmp;
// grab some Multivector to Clone
// in practice, getInitVec() should always provide this, but it is possible to use a
// Eigenproblem with nothing in getInitVec() by manually initializing with initialize();
// in case of that strange scenario, we will try to Clone from X_ first, then resort to getInitVec()
if (X_ != Teuchos::null) { // this is equivalent to blockSize_ > 0
tmp = X_;
}
else {
tmp = problem_->getInitVec();
TEUCHOS_TEST_FOR_EXCEPTION(tmp == Teuchos::null,std::invalid_argument,
"Anasazi::TraceMinBase::setSize(): eigenproblem did not specify initial vectors to clone from.");
}
TEUCHOS_TEST_FOR_EXCEPTION(numAuxVecs_+blockSize*static_cast<ptrdiff_t>(numBlocks) > MVT::GetGlobalLength(*tmp),std::invalid_argument,
"Anasazi::TraceMinBase::setSize(): max subspace dimension and auxilliary subspace too large. Potentially impossible orthogonality constraints.");
// New subspace dimension
int newsd = blockSize_*numBlocks_;
//////////////////////////////////
// blockSize dependent
//
ritzShifts_.resize(blockSize_,ZERO);
if(computeAllRes_ == false)
{
// grow/allocate vectors
Rnorms_.resize(blockSize_,NANVAL);
R2norms_.resize(blockSize_,NANVAL);
//
// clone multivectors off of tmp
//
// free current allocation first, to make room for new allocation
X_ = Teuchos::null;
KX_ = Teuchos::null;
MX_ = Teuchos::null;
R_ = Teuchos::null;
V_ = Teuchos::null;
KV_ = Teuchos::null;
MV_ = Teuchos::null;
om_->print(Debug," >> Allocating X_\n");
X_ = MVT::Clone(*tmp,blockSize_);
if(Op_ != Teuchos::null) {
om_->print(Debug," >> Allocating KX_\n");
KX_ = MVT::Clone(*tmp,blockSize_);
}
else {
KX_ = X_;
}
if (hasM_) {
om_->print(Debug," >> Allocating MX_\n");
MX_ = MVT::Clone(*tmp,blockSize_);
}
else {
MX_ = X_;
}
om_->print(Debug," >> Allocating R_\n");
R_ = MVT::Clone(*tmp,blockSize_);
}
else
{
// grow/allocate vectors
Rnorms_.resize(newsd,NANVAL);
R2norms_.resize(newsd,NANVAL);
//
// clone multivectors off of tmp
//
// free current allocation first, to make room for new allocation
X_ = Teuchos::null;
KX_ = Teuchos::null;
MX_ = Teuchos::null;
R_ = Teuchos::null;
V_ = Teuchos::null;
KV_ = Teuchos::null;
MV_ = Teuchos::null;
om_->print(Debug," >> Allocating X_\n");
X_ = MVT::Clone(*tmp,newsd);
if(Op_ != Teuchos::null) {
om_->print(Debug," >> Allocating KX_\n");
KX_ = MVT::Clone(*tmp,newsd);
}
else {
KX_ = X_;
}
if (hasM_) {
om_->print(Debug," >> Allocating MX_\n");
MX_ = MVT::Clone(*tmp,newsd);
}
else {
MX_ = X_;
}
om_->print(Debug," >> Allocating R_\n");
R_ = MVT::Clone(*tmp,newsd);
}
//////////////////////////////////
// blockSize*numBlocks dependent
//
theta_.resize(newsd,NANVAL);
om_->print(Debug," >> Allocating V_\n");
V_ = MVT::Clone(*tmp,newsd);
KK_ = rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(newsd,newsd) );
ritzVecs_ = rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(newsd,newsd) );
if(Op_ != Teuchos::null) {
om_->print(Debug," >> Allocating KV_\n");
KV_ = MVT::Clone(*tmp,newsd);
}
else {
KV_ = V_;
}
if (hasM_) {
om_->print(Debug," >> Allocating MV_\n");
MV_ = MVT::Clone(*tmp,newsd);
}
else {
MV_ = V_;
}
om_->print(Debug," >> done allocating.\n");
initialized_ = false;
curDim_ = 0;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Set the auxiliary vectors
template <class ScalarType, class MV, class OP>
void TraceMinBase<ScalarType,MV,OP>::setAuxVecs(const Teuchos::Array<RCP<const MV> > &auxvecs) {
typedef typename Teuchos::Array<RCP<const MV> >::iterator tarcpmv;
// set new auxiliary vectors
auxVecs_ = auxvecs;
if(hasM_)
MauxVecs_.resize(0);
numAuxVecs_ = 0;
for (tarcpmv i=auxVecs_.begin(); i != auxVecs_.end(); ++i) {
numAuxVecs_ += MVT::GetNumberVecs(**i);
if(hasM_)
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor lcltimer( *timerMOp_ );
#endif
count_ApplyM_+= MVT::GetNumberVecs(**i);
RCP<MV> helperMV = MVT::Clone(**i,MVT::GetNumberVecs(**i));
OPT::Apply(*MOp_,**i,*helperMV);
MauxVecs_.push_back(helperMV);
}
}
// If the solver has been initialized, V is not necessarily orthogonal to new auxiliary vectors
if (numAuxVecs_ > 0 && initialized_) {
initialized_ = false;
}
if (om_->isVerbosity( Debug ) ) {
// Check almost everything here
CheckList chk;
chk.checkQ = true;
om_->print( Debug, accuracyCheck(chk, ": after setAuxVecs()") );
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// compute/return residual M-norms
template <class ScalarType, class MV, class OP>
std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType>
TraceMinBase<ScalarType,MV,OP>::getResNorms() {
if (Rnorms_current_ == false) {
// Update the residual norms
if(computeAllRes_)
{
std::vector<int> curind(curDim_);
for(int i=0; i<curDim_; i++)
curind[i] = i;
RCP<const MV> locR = MVT::CloneView(*R_,curind);
std::vector<ScalarType> locNorms(curDim_);
orthman_->norm(*locR,locNorms);
for(int i=0; i<curDim_; i++)
Rnorms_[i] = locNorms[i];
for(int i=curDim_+1; i<blockSize_*numBlocks_; i++)
Rnorms_[i] = NANVAL;
Rnorms_current_ = true;
locNorms.resize(blockSize_);
return locNorms;
}
else
orthman_->norm(*R_,Rnorms_);
Rnorms_current_ = true;
}
else if(computeAllRes_)
{
std::vector<ScalarType> locNorms(blockSize_);
for(int i=0; i<blockSize_; i++)
locNorms[i] = Rnorms_[i];
return locNorms;
}
return Rnorms_;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// compute/return residual 2-norms
template <class ScalarType, class MV, class OP>
std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType>
TraceMinBase<ScalarType,MV,OP>::getRes2Norms() {
if (R2norms_current_ == false) {
// Update the residual 2-norms
if(computeAllRes_)
{
std::vector<int> curind(curDim_);
for(int i=0; i<curDim_; i++)
curind[i] = i;
RCP<const MV> locR = MVT::CloneView(*R_,curind);
std::vector<ScalarType> locNorms(curDim_);
MVT::MvNorm(*locR,locNorms);
for(int i=0; i<curDim_; i++)
{
R2norms_[i] = locNorms[i];
}
for(int i=curDim_+1; i<blockSize_*numBlocks_; i++)
R2norms_[i] = NANVAL;
R2norms_current_ = true;
locNorms.resize(blockSize_);
return locNorms;
}
else
MVT::MvNorm(*R_,R2norms_);
R2norms_current_ = true;
}
else if(computeAllRes_)
{
std::vector<ScalarType> locNorms(blockSize_);
for(int i=0; i<blockSize_; i++)
locNorms[i] = R2norms_[i];
return locNorms;
}
return R2norms_;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Set a new StatusTest for the solver.
template <class ScalarType, class MV, class OP>
void TraceMinBase<ScalarType,MV,OP>::setStatusTest(RCP<StatusTest<ScalarType,MV,OP> > test) {
TEUCHOS_TEST_FOR_EXCEPTION(test == Teuchos::null,std::invalid_argument,
"Anasazi::TraceMinBase::setStatusTest() was passed a null StatusTest.");
tester_ = test;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Get the current StatusTest used by the solver.
template <class ScalarType, class MV, class OP>
RCP<StatusTest<ScalarType,MV,OP> > TraceMinBase<ScalarType,MV,OP>::getStatusTest() const {
return tester_;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Print the current status of the solver
template <class ScalarType, class MV, class OP>
void
TraceMinBase<ScalarType,MV,OP>::currentStatus(std::ostream &os)
{
using std::endl;
os.setf(std::ios::scientific, std::ios::floatfield);
os.precision(6);
os <<endl;
os <<"================================================================================" << endl;
os << endl;
os <<" TraceMinBase Solver Status" << endl;
os << endl;
os <<"The solver is "<<(initialized_ ? "initialized." : "not initialized.") << endl;
os <<"The number of iterations performed is " <<iter_<<endl;
os <<"The block size is " << blockSize_<<endl;
os <<"The number of blocks is " << numBlocks_<<endl;
os <<"The current basis size is " << curDim_<<endl;
os <<"The number of auxiliary vectors is "<< numAuxVecs_ << endl;
os <<"The number of operations Op*x is "<<count_ApplyOp_<<endl;
os <<"The number of operations M*x is "<<count_ApplyM_<<endl;
os.setf(std::ios_base::right, std::ios_base::adjustfield);
if (initialized_) {
os << endl;
os <<"CURRENT EIGENVALUE ESTIMATES "<<endl;
os << std::setw(20) << "Eigenvalue"
<< std::setw(20) << "Residual(M)"
<< std::setw(20) << "Residual(2)"
<< endl;
os <<"--------------------------------------------------------------------------------"<<endl;
for (int i=0; i<blockSize_; ++i) {
os << std::setw(20) << theta_[i];
if (Rnorms_current_) os << std::setw(20) << Rnorms_[i];
else os << std::setw(20) << "not current";
if (R2norms_current_) os << std::setw(20) << R2norms_[i];
else os << std::setw(20) << "not current";
os << endl;
}
}
os <<"================================================================================" << endl;
os << endl;
}
/////////////////////////////////////////////////////////////////////////////////////////////////
template <class ScalarType, class MV, class OP>
ScalarType TraceMinBase<ScalarType,MV,OP>::getTrace() const
{
ScalarType currentTrace = ZERO;
for(int i=0; i < blockSize_; i++)
currentTrace += theta_[i];
return currentTrace;
}
/////////////////////////////////////////////////////////////////////////////////////////////////
template <class ScalarType, class MV, class OP>
bool TraceMinBase<ScalarType,MV,OP>::traceLeveled()
{
ScalarType ratioOfChange = traceThresh_;
if(previouslyLeveled_)
{
om_->stream(Debug) << "The trace already leveled, so we're not going to check it again\n";
return true;
}
ScalarType currentTrace = getTrace();
om_->stream(Debug) << "The current trace is " << currentTrace << std::endl;
// Compute the ratio of the change
// We seek the point where the trace has leveled off
// It should be reasonably safe to shift at this point
if(previousTrace_ != ZERO)
{
om_->stream(Debug) << "The previous trace was " << previousTrace_ << std::endl;
ratioOfChange = std::abs(previousTrace_-currentTrace)/std::abs(previousTrace_);
om_->stream(Debug) << "The ratio of change is " << ratioOfChange << std::endl;
}
previousTrace_ = currentTrace;
if(ratioOfChange < traceThresh_)
{
previouslyLeveled_ = true;
return true;
}
return false;
}
/////////////////////////////////////////////////////////////////////////////////////////////////
// Compute the residual of each CLUSTER of eigenvalues
// This is important for selecting the Ritz shifts
template <class ScalarType, class MV, class OP>
std::vector<ScalarType> TraceMinBase<ScalarType,MV,OP>::getClusterResids()
{
int nvecs;
if(computeAllRes_)
nvecs = curDim_;
else
nvecs = blockSize_;
getRes2Norms();
std::vector<ScalarType> clusterResids(nvecs);
std::vector<int> clusterIndices;
for(int i=0; i < nvecs; i++)
{
// test for cluster
if(clusterIndices.empty() || (theta_[i-1] + R2norms_[i-1] >= theta_[i] - R2norms_[i]))
{
// Add to cluster
if(!clusterIndices.empty()) om_->stream(Debug) << theta_[i-1] << " is in a cluster with " << theta_[i] << " because " << theta_[i-1] + R2norms_[i-1] << " >= " << theta_[i] - R2norms_[i] << std::endl;
clusterIndices.push_back(i);
}
// Cluster completed
else
{
om_->stream(Debug) << theta_[i-1] << " is NOT in a cluster with " << theta_[i] << " because " << theta_[i-1] + R2norms_[i-1] << " < " << theta_[i] - R2norms_[i] << std::endl;
ScalarType totalRes = ZERO;
for(size_t j=0; j < clusterIndices.size(); j++)
totalRes += (R2norms_[clusterIndices[j]]*R2norms_[clusterIndices[j]]);
// If the smallest magnitude value of this sign is in a cluster with the
// largest magnitude cluster of this sign, it is not safe for the smallest
// eigenvalue to use a shift
if(theta_[clusterIndices[0]] < 0 && theta_[i] < 0)
negSafeToShift_ = true;
else if(theta_[clusterIndices[0]] > 0 && theta_[i] > 0)
posSafeToShift_ = true;
for(size_t j=0; j < clusterIndices.size(); j++)
clusterResids[clusterIndices[j]] = sqrt(totalRes);
clusterIndices.clear();
clusterIndices.push_back(i);
}
}
// Handle last cluster
ScalarType totalRes = ZERO;
for(size_t j=0; j < clusterIndices.size(); j++)
totalRes += R2norms_[clusterIndices[j]];
for(size_t j=0; j < clusterIndices.size(); j++)
clusterResids[clusterIndices[j]] = totalRes;
return clusterResids;
}
/////////////////////////////////////////////////////////////////////////////////////////////////
// Compute the Ritz shifts based on the Ritz values and residuals
// A note on shifting: if the matrix is indefinite, you NEED to use a large block size
// TODO: resids[i] on its own is unsafe for the generalized EVP
// See "A Parallel Implementation of the Trace Minimization Eigensolver"
// by Eloy Romero and Jose E. Roman
template <class ScalarType, class MV, class OP>
void TraceMinBase<ScalarType,MV,OP>::computeRitzShifts(const std::vector<ScalarType>& clusterResids)
{
std::vector<ScalarType> thetaMag(theta_);
bool traceHasLeveled = traceLeveled();
// Compute the magnitude of the eigenvalues
for(int i=0; i<blockSize_; i++)
thetaMag[i] = std::abs(thetaMag[i]);
// Test whether it is safe to shift
// TODO: Add residual shift option
// Note: If you choose single shift with an indefinite matrix, you're gonna have a bad time...
// Note: This is not safe for indefinite matrices, and I don't even know that it CAN be made safe.
// There just isn't any theoretical reason it should work.
// TODO: It feels like this should be different for TraceMin-Base; we should be able to use all eigenvalues in the current subspace to determine whether we have a cluster
if(whenToShift_ == ALWAYS_SHIFT || (whenToShift_ == SHIFT_WHEN_TRACE_LEVELS && traceHasLeveled))
{
// Set the shift to the largest safe shift
if(howToShift_ == LARGEST_CONVERGED_SHIFT)
{
for(int i=0; i<blockSize_; i++)
ritzShifts_[i] = largestSafeShift_;
}
// Set the shifts to the Ritz values
else if(howToShift_ == RITZ_VALUES_SHIFT)
{
ritzShifts_[0] = theta_[0];
// If we're using mulitple shifts, set them to EACH Ritz value.
// Otherwise, only use the smallest
if(useMultipleShifts_)
{
for(int i=1; i<blockSize_; i++)
ritzShifts_[i] = theta_[i];
}
else
{
for(int i=1; i<blockSize_; i++)
ritzShifts_[i] = ritzShifts_[0];
}
}
// Use Dr. Sameh's original shifting strategy
else if(howToShift_ == ADJUSTED_RITZ_SHIFT)
{
om_->stream(Debug) << "\nSeeking a shift for theta[0]=" << thetaMag[0] << std::endl;
// This is my adjustment. If all eigenvalues are in a single cluster, it's probably a bad idea to shift the smallest one.
// If all of your eigenvalues are in one cluster, it's either way to early to shift or your subspace is too small
if((theta_[0] > 0 && posSafeToShift_) || (theta_[0] < 0 && negSafeToShift_) || considerClusters_ == false)
{
// Initialize with a conservative shift, either the biggest safe shift or the eigenvalue adjusted by its cluster's residual
ritzShifts_[0] = std::max(largestSafeShift_,thetaMag[0]-clusterResids[0]);
om_->stream(Debug) << "Initializing with a conservative shift, either the most positive converged eigenvalue ("
<< largestSafeShift_ << ") or the eigenvalue adjusted by the residual (" << thetaMag[0] << "-"
<< clusterResids[0] << ").\n";
// If this eigenvalue is NOT in a cluster, do an aggressive shift
if(R2norms_[0] == clusterResids[0])
{
ritzShifts_[0] = thetaMag[0];
om_->stream(Debug) << "Since this eigenvalue is NOT in a cluster, we can use the eigenvalue itself as a shift: ritzShifts[0]=" << ritzShifts_[0] << std::endl;
}
else
om_->stream(Debug) << "This eigenvalue is in a cluster, so it would not be safe to use the eigenvalue itself as a shift\n";
}
else
{
if(largestSafeShift_ > std::abs(ritzShifts_[0]))
{
om_->stream(Debug) << "Initializing with a conservative shift...the most positive converged eigenvalue: " << largestSafeShift_ << std::endl;
ritzShifts_[0] = largestSafeShift_;
}
else
om_->stream(Debug) << "Using the previous value of ritzShifts[0]=" << ritzShifts_[0];
}
om_->stream(Debug) << "ritzShifts[0]=" << ritzShifts_[0] << std::endl;
if(useMultipleShifts_)
{
/////////////////////////////////////////////////////////////////////////////////////////
// Compute shifts for other eigenvalues
for(int i=1; i < blockSize_; i++)
{
om_->stream(Debug) << "\nSeeking a shift for theta[" << i << "]=" << thetaMag[i] << std::endl;
// If the previous shift was aggressive and we are not in a cluster, do an aggressive shift
if(ritzShifts_[i-1] == thetaMag[i-1] && i < blockSize_-1 && thetaMag[i] < thetaMag[i+1] - clusterResids[i+1])
{
ritzShifts_[i] = thetaMag[i];
om_->stream(Debug) << "Using an aggressive shift: ritzShifts_[" << i << "]=" << ritzShifts_[i] << std::endl;
}
else
{
if(ritzShifts_[0] > std::abs(ritzShifts_[i]))
{
om_->stream(Debug) << "It was unsafe to use the aggressive shift. Choose the shift used by theta[0]="
<< thetaMag[0] << ": ritzShifts[0]=" << ritzShifts_[0] << std::endl;
// Choose a conservative shift, that of the smallest positive eigenvalue
ritzShifts_[i] = ritzShifts_[0];
}
else
om_->stream(Debug) << "It was unsafe to use the aggressive shift. We will use the shift from the previous iteration: " << ritzShifts_[i] << std::endl;
om_->stream(Debug) << "Check whether any less conservative shifts would work (such as the biggest eigenvalue outside of the cluster, namely theta[ell] < "
<< thetaMag[i] << "-" << clusterResids[i] << " (" << thetaMag[i] - clusterResids[i] << ")\n";
// If possible, choose a less conservative shift, that of the biggest eigenvalue outside of the cluster
for(int ell=0; ell < i; ell++)
{
if(thetaMag[ell] < thetaMag[i] - clusterResids[i])
{
ritzShifts_[i] = thetaMag[ell];
om_->stream(Debug) << "ritzShifts_[" << i << "]=" << ritzShifts_[i] << " is valid\n";
}
else
break;
}
} // end else
om_->stream(Debug) << "ritzShifts[" << i << "]=" << ritzShifts_[i] << std::endl;
} // end for
} // end if(useMultipleShifts_)
else
{
for(int i=1; i<blockSize_; i++)
ritzShifts_[i] = ritzShifts_[0];
}
} // end if(howToShift_ == "Adjusted Ritz Values")
} // end if(whenToShift_ == "Always" || (whenToShift_ == "After Trace Levels" && traceHasLeveled))
// Set the correct sign
for(int i=0; i<blockSize_; i++)
{
if(theta_[i] < 0)
ritzShifts_[i] = -abs(ritzShifts_[i]);
else
ritzShifts_[i] = abs(ritzShifts_[i]);
}
}
/////////////////////////////////////////////////////////////////////////////////////////////////
template <class ScalarType, class MV, class OP>
std::vector<ScalarType> TraceMinBase<ScalarType,MV,OP>::computeTol()
{
ScalarType temp1, temp2;
int nvecs = ritzShifts_.size();
std::vector<ScalarType> tolerances;
for(int i=0; i < nvecs; i++)
{
if(std::abs(theta_[0]) != std::abs(ritzShifts_[i]))
temp1 = std::abs(theta_[i]-ritzShifts_[i])/std::abs(std::abs(theta_[0])-std::abs(ritzShifts_[i]));
else
temp1 = ZERO;
temp2 = pow(2.0,-iter_);
// TODO: The min and max tolerances should not be hard coded
// Neither should the maximum number of iterations
tolerances.push_back(std::max(std::min(temp1*temp1,temp2),1e-8));
}
if(nvecs > 1)
tolerances[nvecs-1] = tolerances[nvecs-2];
return tolerances;
}
/////////////////////////////////////////////////////////////////////////////////////////////////
template <class ScalarType, class MV, class OP>
void TraceMinBase<ScalarType,MV,OP>::solveSaddlePointProblem(RCP<MV> Delta)
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor lcltimer( *timerSaddle_ );
#endif
// This case can arise when looking for the largest eigenpairs
if(Op_ == Teuchos::null)
{
// dense solver
Teuchos::SerialDenseSolver<int,ScalarType> My_Solver;
// Schur complement
RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > lclS = rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(blockSize_,blockSize_) );
if(computeAllRes_)
{
// Get the valid indices of X
std::vector<int> curind(blockSize_);
for(int i=0; i<blockSize_; i++)
curind[i] = i;
// Get a view of MX
RCP<const MV> lclMX = MVT::CloneView(*MX_, curind);
// form S = X' M^2 X
MVT::MvTransMv(ONE,*lclMX,*lclMX,*lclS);
// compute the inverse of S
My_Solver.setMatrix(lclS);
My_Solver.invert();
// Delta = X - MX/S
RCP<const MV> lclX = MVT::CloneView(*X_, curind);
MVT::Assign(*lclX,*Delta);
MVT::MvTimesMatAddMv( -ONE, *lclMX, *lclS, ONE, *Delta);
}
else
{
// form S = X' M^2 X
MVT::MvTransMv(ONE,*MX_,*MX_,*lclS);
// compute the inverse of S
My_Solver.setMatrix(lclS);
My_Solver.invert();
// Delta = X - MX/S
MVT::Assign(*X_,*Delta);
MVT::MvTimesMatAddMv( -ONE, *MX_, *lclS, ONE, *Delta);
}
}
else
{
std::vector<int> order(curDim_);
std::vector<ScalarType> tempvec(blockSize_);
// RCP<BasicSort<MagnitudeType> > sorter = rcp( new BasicSort<MagnitudeType>("SR") );
// Stores the residual of each CLUSTER of eigenvalues
std::vector<ScalarType> clusterResids;
/* // Sort the eigenvalues in ascending order for the Ritz shift selection
sorter->sort(theta_, Teuchos::rcpFromRef(order), curDim_); // don't catch exception
// Apply the same ordering to the residual norms
getRes2Norms();
for (int i=0; i<blockSize_; i++)
tempvec[i] = R2norms_[order[i]];
R2norms_ = tempvec;*/
// Compute the residual of each CLUSTER of eigenvalues
// This is important for selecting the Ritz shifts
clusterResids = getClusterResids();
/* // Sort the eigenvalues based on what the user wanted
sm_->sort(theta_, Teuchos::rcpFromRef(order), blockSize_);
// Apply the same ordering to the residual norms and cluster residuals
for (int i=0; i<blockSize_; i++)
tempvec[i] = R2norms_[order[i]];
R2norms_ = tempvec;
for (int i=0; i<blockSize_; i++)
tempvec[i] = clusterResids[order[i]];
clusterResids = tempvec;*/
// Compute the Ritz shifts
computeRitzShifts(clusterResids);
// Compute the tolerances for the inner solves
std::vector<ScalarType> tolerances = computeTol();
for(int i=0; i<blockSize_; i++)
{
om_->stream(IterationDetails) << "Choosing Ritz shifts...theta[" << i << "]="
<< theta_[i] << ", resids[" << i << "]=" << R2norms_[i] << ", clusterResids[" << i << "]=" << clusterResids[i]
<< ", ritzShifts[" << i << "]=" << ritzShifts_[i] << ", and tol[" << i << "]=" << tolerances[i] << std::endl;
}
// Set the Ritz shifts for the solver
ritzOp_->setRitzShifts(ritzShifts_);
// Set the inner stopping tolerance
// This uses the Ritz values to determine when to stop
ritzOp_->setInnerTol(tolerances);
// Solve the saddle point problem
if(saddleSolType_ == PROJECTED_KRYLOV_SOLVER)
{
if(Prec_ != Teuchos::null)
solveSaddleProjPrec(Delta);
else
solveSaddleProj(Delta);
}
else if(saddleSolType_ == SCHUR_COMPLEMENT_SOLVER)
{
if(Z_ == Teuchos::null || MVT::GetNumberVecs(*Z_) != blockSize_)
{
// We do NOT want Z to be 0, because that could result in stagnation
// I know it's tempting to take out the MvRandom, but seriously, don't do it.
Z_ = MVT::Clone(*X_,blockSize_);
MVT::MvRandom(*Z_);
}
solveSaddleSchur(Delta);
}
else if(saddleSolType_ == BD_PREC_MINRES)
{
solveSaddleBDPrec(Delta);
// Delta->describe(*(Teuchos::VerboseObjectBase::getDefaultOStream()),Teuchos::VERB_EXTREME);
}
else if(saddleSolType_ == HSS_PREC_GMRES)
{
solveSaddleHSSPrec(Delta);
}
else
std::cout << "Invalid saddle solver type\n";
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Solve the saddle point problem using projected minres
// TODO: We should be able to choose KX or -R as RHS.
template <class ScalarType, class MV, class OP>
void TraceMinBase<ScalarType,MV,OP>::solveSaddleProj (RCP<MV> Delta) const
{
RCP<TraceMinProjRitzOp<ScalarType,MV,OP> > projOp;
if(computeAllRes_)
{
// Get the valid indices of X
std::vector<int> curind(blockSize_);
for(int i=0; i<blockSize_; i++)
curind[i] = i;
RCP<const MV> locMX = MVT::CloneView(*MX_, curind);
// We should really project out the converged eigenvectors too
if(projectAllVecs_)
{
if(projectLockedVecs_ && numAuxVecs_ > 0)
projOp = rcp( new TraceMinProjRitzOp<ScalarType,MV,OP>(ritzOp_,locMX,orthman_,auxVecs_) );
else
projOp = rcp( new TraceMinProjRitzOp<ScalarType,MV,OP>(ritzOp_,locMX,orthman_) );
}
else
projOp = rcp( new TraceMinProjRitzOp<ScalarType,MV,OP>(ritzOp_,locMX) );
// Remember, Delta0 must equal 0
// This ensures B-orthogonality between Delta and X
MVT::MvInit(*Delta);
if(useRHSR_)
{
RCP<const MV> locR = MVT::CloneView(*R_, curind);
projOp->ApplyInverse(*locR, *Delta);
}
else
{
RCP<const MV> locKX = MVT::CloneView(*KX_, curind);
projOp->ApplyInverse(*locKX, *Delta);
}
}
else
{
// We should really project out the converged eigenvectors too
if(projectAllVecs_)
{
if(projectLockedVecs_ && numAuxVecs_ > 0)
projOp = rcp( new TraceMinProjRitzOp<ScalarType,MV,OP>(ritzOp_,MX_,orthman_,auxVecs_) );
else
projOp = rcp( new TraceMinProjRitzOp<ScalarType,MV,OP>(ritzOp_,MX_,orthman_) );
}
else
projOp = rcp( new TraceMinProjRitzOp<ScalarType,MV,OP>(ritzOp_,MX_) );
// Remember, Delta0 must equal 0
// This ensures B-orthogonality between Delta and X
MVT::MvInit(*Delta);
if(useRHSR_) {
projOp->ApplyInverse(*R_, *Delta);
}
else {
projOp->ApplyInverse(*KX_, *Delta);
}
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// TODO: Fix preconditioning
template <class ScalarType, class MV, class OP>
void TraceMinBase<ScalarType,MV,OP>::solveSaddleProjPrec (RCP<MV> Delta) const
{
// If we don't have Belos installed, we can't use TraceMinProjRitzOpWithPrec
// Of course, this problem will be detected in the constructor and an exception will be thrown
// This is only here to make sure the code compiles properly
#ifdef HAVE_ANASAZI_BELOS
RCP<TraceMinProjRitzOpWithPrec<ScalarType,MV,OP> > projOp;
if(computeAllRes_)
{
int dimension;
if(projectAllVecs_)
dimension = curDim_;
else
dimension = blockSize_;
// Get the valid indices of X
std::vector<int> curind(dimension);
for(int i=0; i<dimension; i++)
curind[i] = i;
RCP<const MV> locMX = MVT::CloneView(*MX_, curind);
// We should really project out the converged eigenvectors too
if(projectAllVecs_)
{
if(projectLockedVecs_ && numAuxVecs_ > 0)
projOp = rcp( new TraceMinProjRitzOpWithPrec<ScalarType,MV,OP>(ritzOp_,locMX,orthman_,auxVecs_) );
else
projOp = rcp( new TraceMinProjRitzOpWithPrec<ScalarType,MV,OP>(ritzOp_,locMX,orthman_) );
}
else
projOp = rcp( new TraceMinProjRitzOpWithPrec<ScalarType,MV,OP>(ritzOp_,locMX) );
// Remember, Delta0 must equal 0
// This ensures B-orthogonality between Delta and X
MVT::MvInit(*Delta);
std::vector<int> dimind(blockSize_);
for(int i=0; i<blockSize_; i++)
dimind[i] = i;
if(useRHSR_)
{
RCP<const MV> locR = MVT::CloneView(*R_, dimind);
projOp->ApplyInverse(*locR, *Delta);
MVT::MvScale(*Delta, -ONE);
}
else
{
RCP<const MV> locKX = MVT::CloneView(*KX_, dimind);
projOp->ApplyInverse(*locKX, *Delta);
}
}
else
{
// We should really project out the converged eigenvectors too
if(projectAllVecs_)
{
if(projectLockedVecs_ && numAuxVecs_ > 0)
projOp = rcp( new TraceMinProjRitzOpWithPrec<ScalarType,MV,OP>(ritzOp_,MX_,orthman_,auxVecs_) );
else
projOp = rcp( new TraceMinProjRitzOpWithPrec<ScalarType,MV,OP>(ritzOp_,MX_,orthman_) );
}
else
projOp = rcp( new TraceMinProjRitzOpWithPrec<ScalarType,MV,OP>(ritzOp_,MX_) );
// Remember, Delta0 must equal 0
// This ensures B-orthogonality between Delta and X
MVT::MvInit(*Delta);
if(useRHSR_)
{
projOp->ApplyInverse(*R_, *Delta);
MVT::MvScale(*Delta,-ONE);
}
else
projOp->ApplyInverse(*KX_, *Delta);
}
#endif
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// TODO: We can hold the Schur complement constant in later iterations
// TODO: Make sure we're using the preconditioner correctly
template <class ScalarType, class MV, class OP>
void TraceMinBase<ScalarType,MV,OP>::solveSaddleSchur (RCP<MV> Delta) const
{
// dense solver
Teuchos::SerialDenseSolver<int,ScalarType> My_Solver;
RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > lclL;
RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > lclS = rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(blockSize_,blockSize_) );
if(computeAllRes_)
{
// Get the valid indices of X
std::vector<int> curind(blockSize_);
for(int i=0; i<blockSize_; i++)
curind[i] = i;
// Z = K \ MX
// Why would I have wanted to set Z <- X? I want to leave Z's previous value alone...
RCP<const MV> lclMX = MVT::CloneView(*MX_, curind);
#ifdef USE_APPLY_INVERSE
Op_->ApplyInverse(*lclMX,*Z_);
#else
ritzOp_->ApplyInverse(*lclMX,*Z_);
#endif
// form S = X' M Z
MVT::MvTransMv(ONE,*Z_,*lclMX,*lclS);
// solve S L = I
My_Solver.setMatrix(lclS);
My_Solver.invert();
lclL = lclS;
// Delta = X - Z L
RCP<const MV> lclX = MVT::CloneView(*X_, curind);
MVT::Assign(*lclX,*Delta);
MVT::MvTimesMatAddMv( -ONE, *Z_, *lclL, ONE, *Delta);
}
else
{
// Z = K \ MX
#ifdef USE_APPLY_INVERSE
Op_->ApplyInverse(*MX_,*Z_);
#else
ritzOp_->ApplyInverse(*MX_,*Z_);
#endif
// form S = X' M Z
MVT::MvTransMv(ONE,*Z_,*MX_,*lclS);
// solve S L = I
My_Solver.setMatrix(lclS);
My_Solver.invert();
lclL = lclS;
// Delta = X - Z L
MVT::Assign(*X_,*Delta);
MVT::MvTimesMatAddMv( -ONE, *Z_, *lclL, ONE, *Delta);
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// TODO: We can hold the Schur complement constant in later iterations
template <class ScalarType, class MV, class OP>
void TraceMinBase<ScalarType,MV,OP>::solveSaddleBDPrec (RCP<MV> Delta) const
{
RCP<MV> locKX, locMX;
if(computeAllRes_)
{
std::vector<int> curind(blockSize_);
for(int i=0; i<blockSize_; i++)
curind[i] = i;
locKX = MVT::CloneViewNonConst(*KX_, curind);
locMX = MVT::CloneViewNonConst(*MX_, curind);
}
else
{
locKX = KX_;
locMX = MX_;
}
// Create the operator [A BX; X'B 0]
RCP<saddle_op_type> sadOp = rcp(new saddle_op_type(ritzOp_,locMX));
// Create the RHS [AX; 0]
RCP<saddle_container_type> sadRHS = rcp(new saddle_container_type(locKX));
// locKX->describe(*(Teuchos::VerboseObjectBase::getDefaultOStream()),Teuchos::VERB_EXTREME);
// locMX->describe(*(Teuchos::VerboseObjectBase::getDefaultOStream()),Teuchos::VERB_EXTREME);
// Create the solution vector [Delta; L]
MVT::MvInit(*Delta);
RCP<saddle_container_type> sadSol = rcp(new saddle_container_type(Delta));
// Create a minres solver
RCP<PseudoBlockMinres<ScalarType,saddle_container_type,saddle_op_type > > sadSolver;
if(Prec_ != Teuchos::null)
{
RCP<saddle_op_type> sadPrec = rcp(new saddle_op_type(ritzOp_->getPrec(),locMX,BD_PREC));
sadSolver = rcp(new PseudoBlockMinres<ScalarType,saddle_container_type,saddle_op_type>(sadOp, sadPrec));
}
else {
sadSolver = rcp(new PseudoBlockMinres<ScalarType,saddle_container_type,saddle_op_type>(sadOp));
}
// Set the tolerance for the minres solver
std::vector<ScalarType> tol;
ritzOp_->getInnerTol(tol);
sadSolver->setTol(tol);
// Set the maximum number of iterations
sadSolver->setMaxIter(ritzOp_->getMaxIts());
// Set the solution vector
sadSolver->setSol(sadSol);
// Set the RHS
sadSolver->setRHS(sadRHS);
// Solve the saddle point problem
sadSolver->solve();
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// TODO: We can hold the Schur complement constant in later iterations
template <class ScalarType, class MV, class OP>
void TraceMinBase<ScalarType,MV,OP>::solveSaddleHSSPrec (RCP<MV> Delta) const
{
#ifdef HAVE_ANASAZI_BELOS
typedef Belos::LinearProblem<ScalarType,saddle_container_type,saddle_op_type> LP;
typedef Belos::PseudoBlockGmresSolMgr<ScalarType,saddle_container_type,saddle_op_type> GmresSolMgr;
RCP<MV> locKX, locMX;
if(computeAllRes_)
{
std::vector<int> curind(blockSize_);
for(int i=0; i<blockSize_; i++)
curind[i] = i;
locKX = MVT::CloneViewNonConst(*KX_, curind);
locMX = MVT::CloneViewNonConst(*MX_, curind);
}
else
{
locKX = KX_;
locMX = MX_;
}
// Create the operator [A BX; X'B 0]
RCP<saddle_op_type> sadOp = rcp(new saddle_op_type(ritzOp_,locMX,NONSYM));
// Create the RHS [AX; 0]
RCP<saddle_container_type> sadRHS = rcp(new saddle_container_type(locKX));
// Create the solution vector [Delta; L]
MVT::MvInit(*Delta);
RCP<saddle_container_type> sadSol = rcp(new saddle_container_type(Delta));
// Create a parameter list for the gmres solver
RCP<Teuchos::ParameterList> pl = rcp(new Teuchos::ParameterList());
// Set the tolerance for the gmres solver
std::vector<ScalarType> tol;
ritzOp_->getInnerTol(tol);
pl->set("Convergence Tolerance",tol[0]);
// Set the maximum number of iterations
// TODO: Come back to this
pl->set("Maximum Iterations", ritzOp_->getMaxIts());
pl->set("Num Blocks", ritzOp_->getMaxIts());
// Set the block size
// TODO: Come back to this
// TODO: This breaks the code right now, presumably because of a MVT cloneview issue.
pl->set("Block Size", blockSize_);
// Set the verbosity of gmres
// pl->set("Verbosity", Belos::IterationDetails + Belos::StatusTestDetails + Belos::Debug);
// pl->set("Output Frequency", 1);
// Create the linear problem
RCP<LP> problem = rcp(new LP(sadOp,sadSol,sadRHS));
// Set the preconditioner
if(Prec_ != Teuchos::null)
{
RCP<saddle_op_type> sadPrec = rcp(new saddle_op_type(ritzOp_->getPrec(),locMX,HSS_PREC,alpha_));
problem->setLeftPrec(sadPrec);
}
// Set the problem
problem->setProblem();
// Create a minres solver
RCP<GmresSolMgr> sadSolver = rcp(new GmresSolMgr(problem,pl)) ;
// Solve the saddle point problem
sadSolver->solve();
#else
std::cout << "No Belos. This is bad\n";
#endif
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Compute KK := V'KV
// We only compute the NEW elements
template <class ScalarType, class MV, class OP>
void TraceMinBase<ScalarType,MV,OP>::computeKK()
{
// Get the valid indices of V
std::vector<int> curind(curDim_);
for(int i=0; i<curDim_; i++)
curind[i] = i;
// Get a pointer to the valid parts of V
RCP<const MV> lclV = MVT::CloneView(*V_,curind);
// Get the valid indices of KV
curind.resize(blockSize_);
for(int i=0; i<blockSize_; i++)
curind[i] = curDim_-blockSize_+i;
RCP<const MV> lclKV = MVT::CloneView(*KV_,curind);
// Get a pointer to the valid part of KK
RCP< Teuchos::SerialDenseMatrix<int,ScalarType> > lclKK =
rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(Teuchos::View,*KK_,curDim_,blockSize_,0,curDim_-blockSize_) );
// KK := V'KV
MVT::MvTransMv(ONE,*lclV,*lclKV,*lclKK);
// We only constructed the upper triangular part of the matrix, but that's okay because KK is symmetric!
for(int r=0; r<curDim_; r++)
{
for(int c=0; c<r; c++)
{
(*KK_)(r,c) = (*KK_)(c,r);
}
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Compute the eigenpairs of KK, i.e. the Ritz pairs
template <class ScalarType, class MV, class OP>
void TraceMinBase<ScalarType,MV,OP>::computeRitzPairs()
{
// Get a pointer to the valid part of KK
RCP< Teuchos::SerialDenseMatrix<int,ScalarType> > lclKK =
rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(Teuchos::View,*KK_,curDim_,curDim_) );
// Get a pointer to the valid part of ritzVecs
RCP< Teuchos::SerialDenseMatrix<int,ScalarType> > lclRV =
rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(Teuchos::View,*ritzVecs_,curDim_,curDim_) );
// Compute Ritz pairs from KK
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor lcltimer( *timerDS_ );
#endif
int rank = curDim_;
Utils::directSolver(curDim_, *lclKK, Teuchos::null, *lclRV, theta_, rank, 10);
// we want all ritz values back
// TODO: This probably should not be an ortho failure
TEUCHOS_TEST_FOR_EXCEPTION(rank != curDim_,TraceMinBaseOrthoFailure,
"Anasazi::TraceMinBase::computeRitzPairs(): Failed to compute all eigenpairs of KK.");
}
// Sort ritz pairs
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor lcltimer( *timerSortEval_ );
#endif
std::vector<int> order(curDim_);
//
// sort the first curDim_ values in theta_
if(useHarmonic_)
{
Anasazi::BasicSort<ScalarType> sm;
sm.sort(theta_, Teuchos::rcpFromRef(order), curDim_);
}
else
{
sm_->sort(theta_, Teuchos::rcpFromRef(order), curDim_); // don't catch exception
}
//
// apply the same ordering to the primitive ritz vectors
Utils::permuteVectors(order,*lclRV);
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Compute X := V evecs
template <class ScalarType, class MV, class OP>
void TraceMinBase<ScalarType,MV,OP>::computeX()
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor lcltimer( *timerLocal_ );
#endif
// Get the valid indices of V
std::vector<int> curind(curDim_);
for(int i=0; i<curDim_; i++)
curind[i] = i;
// Get a pointer to the valid parts of V
RCP<const MV> lclV = MVT::CloneView(*V_,curind);
if(computeAllRes_)
{
// Capture the relevant eigenvectors
RCP< Teuchos::SerialDenseMatrix<int,ScalarType> > relevantEvecs =
rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(Teuchos::View,*ritzVecs_,curDim_,curDim_) );
// X <- lclV*S
RCP<MV> lclX = MVT::CloneViewNonConst(*X_,curind);
MVT::MvTimesMatAddMv( ONE, *lclV, *relevantEvecs, ZERO, *lclX );
}
else
{
// Capture the relevant eigenvectors
RCP< Teuchos::SerialDenseMatrix<int,ScalarType> > relevantEvecs =
rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(Teuchos::View,*ritzVecs_,curDim_,blockSize_) );
// X <- lclV*S
MVT::MvTimesMatAddMv( ONE, *lclV, *relevantEvecs, ZERO, *X_ );
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Compute KX := KV evecs and (if necessary) MX := MV evecs
template <class ScalarType, class MV, class OP>
void TraceMinBase<ScalarType,MV,OP>::updateKXMX()
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor lcltimer( *timerLocal_ );
#endif
// Get the valid indices of V
std::vector<int> curind(curDim_);
for(int i=0; i<curDim_; i++)
curind[i] = i;
// Get pointers to the valid parts of V, KV, and MV (if necessary)
RCP<const MV> lclV = MVT::CloneView(*V_,curind);
RCP<const MV> lclKV = MVT::CloneView(*KV_,curind);
if(computeAllRes_)
{
// Capture the relevant eigenvectors
RCP< Teuchos::SerialDenseMatrix<int,ScalarType> > relevantEvecs =
rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(Teuchos::View,*ritzVecs_,curDim_,curDim_) );
// Update KX and MX
RCP<MV> lclKX = MVT::CloneViewNonConst(*KX_,curind);
MVT::MvTimesMatAddMv( ONE, *lclKV, *relevantEvecs, ZERO, *lclKX );
if(hasM_)
{
RCP<const MV> lclMV = MVT::CloneView(*MV_,curind);
RCP<MV> lclMX = MVT::CloneViewNonConst(*MX_,curind);
MVT::MvTimesMatAddMv( ONE, *lclMV, *relevantEvecs, ZERO, *lclMX );
}
}
else
{
// Capture the relevant eigenvectors
RCP< Teuchos::SerialDenseMatrix<int,ScalarType> > relevantEvecs =
rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(Teuchos::View,*ritzVecs_,curDim_,blockSize_) );
// Update KX and MX
MVT::MvTimesMatAddMv( ONE, *lclKV, *relevantEvecs, ZERO, *KX_ );
if(hasM_)
{
RCP<const MV> lclMV = MVT::CloneView(*MV_,curind);
MVT::MvTimesMatAddMv( ONE, *lclMV, *relevantEvecs, ZERO, *MX_ );
}
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Update the residual R := KX - MX*T
template <class ScalarType, class MV, class OP>
void TraceMinBase<ScalarType,MV,OP>::updateResidual () {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor lcltimer( *timerCompRes_ );
#endif
if(computeAllRes_)
{
// Get the valid indices of X
std::vector<int> curind(curDim_);
for(int i=0; i<curDim_; i++)
curind[i] = i;
// Holds MX*T
RCP<MV> MXT = MVT::CloneCopy(*MX_,curind);
// Holds the relevant part of theta
std::vector<ScalarType> locTheta(curDim_);
for(int i=0; i<curDim_; i++)
locTheta[i] = theta_[i];
// Compute MX*T
MVT::MvScale(*MXT,locTheta);
// form R <- KX - MX*T
RCP<const MV> locKX = MVT::CloneView(*KX_,curind);
RCP<MV> locR = MVT::CloneViewNonConst(*R_,curind);
MVT::MvAddMv(ONE,*locKX,-ONE,*MXT,*locR);
}
else
{
// Holds MX*T
RCP<MV> MXT = MVT::CloneCopy(*MX_);
// Holds the relevant part of theta
std::vector<ScalarType> locTheta(blockSize_);
for(int i=0; i<blockSize_; i++)
locTheta[i] = theta_[i];
// Compute MX*T
MVT::MvScale(*MXT,locTheta);
// form R <- KX - MX*T
MVT::MvAddMv(ONE,*KX_,-ONE,*MXT,*R_);
}
// R has been updated; mark the norms as out-of-date
Rnorms_current_ = false;
R2norms_current_ = false;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Check accuracy, orthogonality, and other debugging stuff
//
// bools specify which tests we want to run (instead of running more than we actually care about)
//
// we don't bother checking the following because they are computed explicitly:
// H == Prec*R
// KH == K*H
//
//
// checkV : V orthonormal
// orthogonal to auxvecs
// checkX : X orthonormal
// orthogonal to auxvecs
// checkMX: check MX == M*X
// checkKX: check KX == K*X
// checkH : H orthonormal
// orthogonal to V and H and auxvecs
// checkMH: check MH == M*H
// checkR : check R orthogonal to X
// checkQ : check that auxiliary vectors are actually orthonormal
// checkKK: check that KK is symmetric in memory
//
// TODO:
// add checkTheta
//
template <class ScalarType, class MV, class OP>
std::string TraceMinBase<ScalarType,MV,OP>::accuracyCheck( const CheckList &chk, const std::string &where ) const
{
using std::endl;
std::stringstream os;
os.precision(2);
os.setf(std::ios::scientific, std::ios::floatfield);
os << " Debugging checks: iteration " << iter_ << where << endl;
// V and friends
std::vector<int> lclind(curDim_);
for (int i=0; i<curDim_; ++i) lclind[i] = i;
RCP<const MV> lclV;
if (initialized_) {
lclV = MVT::CloneView(*V_,lclind);
}
if (chk.checkV && initialized_) {
MagnitudeType err = orthman_->orthonormError(*lclV);
os << " >> Error in V^H M V == I : " << err << endl;
for (Array_size_type i=0; i<auxVecs_.size(); ++i) {
err = orthman_->orthogError(*lclV,*auxVecs_[i]);
os << " >> Error in V^H M Q[" << i << "] == 0 : " << err << endl;
}
}
// X and friends
RCP<const MV> lclX;
if(initialized_)
{
if(computeAllRes_)
lclX = MVT::CloneView(*X_,lclind);
else
lclX = X_;
}
if (chk.checkX && initialized_) {
MagnitudeType err = orthman_->orthonormError(*lclX);
os << " >> Error in X^H M X == I : " << err << endl;
for (Array_size_type i=0; i<auxVecs_.size(); ++i) {
err = orthman_->orthogError(*lclX,*auxVecs_[i]);
os << " >> Error in X^H M Q[" << i << "] == 0 : " << err << endl;
}
}
if (chk.checkMX && hasM_ && initialized_) {
RCP<const MV> lclMX;
if(computeAllRes_)
lclMX = MVT::CloneView(*MX_,lclind);
else
lclMX = MX_;
MagnitudeType err = Utils::errorEquality(*lclX, *lclMX, MOp_);
os << " >> Error in MX == M*X : " << err << endl;
}
if (Op_ != Teuchos::null && chk.checkKX && initialized_) {
RCP<const MV> lclKX;
if(computeAllRes_)
lclKX = MVT::CloneView(*KX_,lclind);
else
lclKX = KX_;
MagnitudeType err = Utils::errorEquality(*lclX, *lclKX, Op_);
os << " >> Error in KX == K*X : " << err << endl;
}
// KK
if (chk.checkKK && initialized_) {
Teuchos::SerialDenseMatrix<int,ScalarType> curKK(curDim_,curDim_);
if(Op_ != Teuchos::null) {
RCP<MV> lclKV = MVT::Clone(*V_,curDim_);
OPT::Apply(*Op_,*lclV,*lclKV);
MVT::MvTransMv(ONE,*lclV,*lclKV,curKK);
}
else {
MVT::MvTransMv(ONE,*lclV,*lclV,curKK);
}
Teuchos::SerialDenseMatrix<int,ScalarType> subKK(Teuchos::View,*KK_,curDim_,curDim_);
curKK -= subKK;
os << " >> Error in V^H K V == KK : " << curKK.normFrobenius() << endl;
Teuchos::SerialDenseMatrix<int,ScalarType> SDMerr(curDim_,curDim_);
for (int j=0; j<curDim_; ++j) {
for (int i=0; i<curDim_; ++i) {
SDMerr(i,j) = subKK(i,j) - SCT::conjugate(subKK(j,i));
}
}
os << " >> Error in KK - KK^H == 0 : " << SDMerr.normFrobenius() << endl;
}
// Q
if (chk.checkQ) {
for (Array_size_type i=0; i<auxVecs_.size(); ++i) {
MagnitudeType err = orthman_->orthonormError(*auxVecs_[i]);
os << " >> Error in Q[" << i << "]^H M Q[" << i << "] == I : " << err << endl;
for (Array_size_type j=i+1; j<auxVecs_.size(); ++j) {
err = orthman_->orthogError(*auxVecs_[i],*auxVecs_[j]);
os << " >> Error in Q[" << i << "]^H M Q[" << j << "] == 0 : " << err << endl;
}
}
}
os << endl;
return os.str();
}
}} // End of namespace Anasazi
#endif
// End of file AnasaziTraceMinBase.hpp
|