/usr/include/trilinos/BelosBlockGmresIter.hpp is in libtrilinos-belos-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 | //@HEADER
// ************************************************************************
//
// Belos: Block Linear Solvers Package
// Copyright 2004 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
#ifndef BELOS_BLOCK_GMRES_ITER_HPP
#define BELOS_BLOCK_GMRES_ITER_HPP
/*! \file BelosBlockGmresIter.hpp
\brief Belos concrete class for performing the block GMRES iteration.
*/
#include "BelosConfigDefs.hpp"
#include "BelosTypes.hpp"
#include "BelosGmresIteration.hpp"
#include "BelosLinearProblem.hpp"
#include "BelosMatOrthoManager.hpp"
#include "BelosOutputManager.hpp"
#include "BelosStatusTest.hpp"
#include "BelosOperatorTraits.hpp"
#include "BelosMultiVecTraits.hpp"
#include "Teuchos_BLAS.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"
#include "Teuchos_SerialDenseVector.hpp"
#include "Teuchos_ScalarTraits.hpp"
#include "Teuchos_ParameterList.hpp"
#include "Teuchos_TimeMonitor.hpp"
/*!
\class Belos::BlockGmresIter
\brief This class implements the block GMRES iteration, where a
block Krylov subspace is constructed. The QR decomposition of
block, upper Hessenberg matrix is performed each iteration to update
the least squares system and give the current linear system residuals.
\ingroup belos_solver_framework
\author Teri Barth and Heidi Thornquist
*/
namespace Belos {
template<class ScalarType, class MV, class OP>
class BlockGmresIter : virtual public GmresIteration<ScalarType,MV,OP> {
public:
//
// Convenience typedefs
//
typedef MultiVecTraits<ScalarType,MV> MVT;
typedef OperatorTraits<ScalarType,MV,OP> OPT;
typedef Teuchos::ScalarTraits<ScalarType> SCT;
typedef typename SCT::magnitudeType MagnitudeType;
//! @name Constructors/Destructor
//@{
/*! \brief %BlockGmresIter constructor with linear problem, solver utilities, and parameter list of solver options.
*
* This constructor takes pointers required by the linear solver, in addition
* to a parameter list of options for the linear solver. These options include the following:
* - "Block Size" - an \c int specifying the block size used by the algorithm. This can also be specified using the setBlockSize() method. Default: 1
* - "Num Blocks" - an \c int specifying the maximum number of blocks allocated for the solver basis. Default: 25
* - "Restart Timers" = a \c bool specifying whether the timers should be restarted each time iterate() is called. Default: false
* - "Keep Hessenberg" = a \c bool specifying whether the upper Hessenberg should be stored separately from the least squares system. Default: false
*/
BlockGmresIter( const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem,
const Teuchos::RCP<OutputManager<ScalarType> > &printer,
const Teuchos::RCP<StatusTest<ScalarType,MV,OP> > &tester,
const Teuchos::RCP<MatOrthoManager<ScalarType,MV,OP> > &ortho,
Teuchos::ParameterList ¶ms );
//! Destructor.
virtual ~BlockGmresIter() {};
//@}
//! @name Solver methods
//@{
/*! \brief This method performs block Gmres iterations until the status
* test indicates the need to stop or an error occurs (in which case, an
* std::exception is thrown).
*
* iterate() will first determine whether the solver is inintialized; if
* not, it will call initialize() using default arguments. After
* initialization, the solver performs block Gmres iterations until the
* status test evaluates as ::Passed, at which point the method returns to
* the caller.
*
* The block Gmres iteration proceeds as follows:
* -# The operator problem->applyOp() is applied to the newest \c blockSize vectors in the Krylov basis.
* -# The resulting vectors are orthogonalized against the previous basis vectors, and made orthonormal.
* -# The Hessenberg matrix is updated.
* -# The least squares system is updated.
*
* The status test is queried at the beginning of the iteration.
*
* Possible exceptions thrown include the GmresIterationOrthoFailure.
*
*/
void iterate();
/*! \brief Initialize the solver to an iterate, providing a complete state.
*
* The %BlockGmresIter contains a certain amount of state, consisting of the current
* Krylov basis and the associated Hessenberg matrix.
*
* initialize() gives the user the opportunity to manually set these,
* although this must be done with caution, abiding by the rules given
* below. All notions of orthogonality and orthonormality are derived from
* the inner product specified by the orthogonalization manager.
*
* \post
* <li>isInitialized() == \c true (see post-conditions of isInitialize())
*
* The user has the option of specifying any component of the state using
* initialize(). However, these arguments are assumed to match the
* post-conditions specified under isInitialized(). Any necessary component of the
* state not given to initialize() will be generated.
*
* \note For any pointer in \c newstate which directly points to the multivectors in
* the solver, the data is not copied.
*/
void initializeGmres(GmresIterationState<ScalarType,MV>& newstate);
/*! \brief Initialize the solver with the initial vectors from the linear problem
* or random data.
*/
void initialize()
{
GmresIterationState<ScalarType,MV> empty;
initializeGmres(empty);
}
/*! \brief Get the current state of the linear solver.
*
* The data is only valid if isInitialized() == \c true.
*
* \returns A GmresIterationState object containing const pointers to the current
* solver state.
*/
GmresIterationState<ScalarType,MV> getState() const {
GmresIterationState<ScalarType,MV> state;
state.curDim = curDim_;
state.V = V_;
state.H = H_;
state.R = R_;
state.z = z_;
return state;
}
//@}
//! @name Status methods
//@{
//! \brief Get the current iteration count.
int getNumIters() const { return iter_; }
//! \brief Reset the iteration count.
void resetNumIters( int iter = 0 ) { iter_ = iter; }
//! Get the norms of the residuals native to the solver.
//! \return A std::vector of length blockSize containing the native residuals.
Teuchos::RCP<const MV> getNativeResiduals( std::vector<MagnitudeType> *norms ) const;
//! Get the current update to the linear system.
/*! \note Some solvers, like GMRES, do not compute updates to the solution every iteration.
This method forces its computation. Other solvers, like CG, update the solution
each iteration, so this method will return a zero std::vector indicating that the linear
problem contains the current solution.
*/
Teuchos::RCP<MV> getCurrentUpdate() const;
//! Method for updating QR factorization of upper Hessenberg matrix
/*! \note If \c dim >= \c getCurSubspaceDim() and \c dim < \c getMaxSubspaceDim(), then
the \c dim-th equations of the least squares problem will be updated.
*/
void updateLSQR( int dim = -1 );
//! Get the dimension of the search subspace used to generate the current solution to the linear problem.
int getCurSubspaceDim() const {
if (!initialized_) return 0;
return curDim_;
};
//! Get the maximum dimension allocated for the search subspace.
int getMaxSubspaceDim() const { return blockSize_*numBlocks_; }
//@}
//! @name Accessor methods
//@{
//! Get a constant reference to the linear problem.
const LinearProblem<ScalarType,MV,OP>& getProblem() const { return *lp_; }
//! Get the blocksize to be used by the iterative solver in solving this linear problem.
int getBlockSize() const { return blockSize_; }
//! \brief Set the blocksize.
void setBlockSize(int blockSize) { setSize( blockSize, numBlocks_ ); }
//! Get the maximum number of blocks used by the iterative solver in solving this linear problem.
int getNumBlocks() const { return numBlocks_; }
//! \brief Set the maximum number of blocks used by the iterative solver.
void setNumBlocks(int numBlocks) { setSize( blockSize_, numBlocks ); }
/*! \brief Set the blocksize and number of blocks to be used by the
* iterative solver in solving this linear problem.
*
* Changing either the block size or the number of blocks will reset the
* solver to an uninitialized state.
*/
void setSize(int blockSize, int numBlocks);
//! States whether the solver has been initialized or not.
bool isInitialized() { return initialized_; }
//@}
private:
//
// Internal methods
//
//! Method for initalizing the state storage needed by block GMRES.
void setStateSize();
//
// Classes inputed through constructor that define the linear problem to be solved.
//
const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > lp_;
const Teuchos::RCP<OutputManager<ScalarType> > om_;
const Teuchos::RCP<StatusTest<ScalarType,MV,OP> > stest_;
const Teuchos::RCP<OrthoManager<ScalarType,MV> > ortho_;
//
// Algorithmic parameters
//
// blockSize_ is the solver block size.
// It controls the number of vectors added to the basis on each iteration.
int blockSize_;
// numBlocks_ is the size of the allocated space for the Krylov basis, in blocks.
int numBlocks_;
// Storage for QR factorization of the least squares system.
Teuchos::SerialDenseVector<int,ScalarType> beta, sn;
Teuchos::SerialDenseVector<int,MagnitudeType> cs;
//
// Current solver state
//
// initialized_ specifies that the basis vectors have been initialized and the iterate() routine
// is capable of running; _initialize is controlled by the initialize() member method
// For the implications of the state of initialized_, please see documentation for initialize()
bool initialized_;
// stateStorageInitialized_ specifies that the state storage has be initialized to the current
// blockSize_ and numBlocks_. This initialization may be postponed if the linear problem was
// generated without the right-hand side or solution vectors.
bool stateStorageInitialized_;
// keepHessenberg_ specifies that the iteration must keep the Hessenberg matrix formed via the
// Arnoldi factorization and the upper triangular matrix that is the Hessenberg matrix reduced via
// QR factorization separate.
bool keepHessenberg_;
// initHessenberg_ specifies that the iteration should reinitialize the Hessenberg matrix by zeroing
// out all entries before an iteration is started.
bool initHessenberg_;
// Current subspace dimension, and number of iterations performed.
int curDim_, iter_;
//
// State Storage
//
Teuchos::RCP<MV> V_;
//
// Projected matrices
// H_ : Projected matrix from the Krylov factorization AV = VH + FE^T
//
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > H_;
//
// QR decomposition of Projected matrices for solving the least squares system HY = B.
// R_: Upper triangular reduction of H
// z_: Q applied to right-hand side of the least squares system
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > R_;
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > z_;
};
//////////////////////////////////////////////////////////////////////////////////////////////////
// Constructor.
template<class ScalarType, class MV, class OP>
BlockGmresIter<ScalarType,MV,OP>::BlockGmresIter(const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem,
const Teuchos::RCP<OutputManager<ScalarType> > &printer,
const Teuchos::RCP<StatusTest<ScalarType,MV,OP> > &tester,
const Teuchos::RCP<MatOrthoManager<ScalarType,MV,OP> > &ortho,
Teuchos::ParameterList ¶ms ):
lp_(problem),
om_(printer),
stest_(tester),
ortho_(ortho),
blockSize_(0),
numBlocks_(0),
initialized_(false),
stateStorageInitialized_(false),
keepHessenberg_(false),
initHessenberg_(false),
curDim_(0),
iter_(0)
{
// Find out whether we are saving the Hessenberg matrix.
keepHessenberg_ = params.get("Keep Hessenberg", false);
// Find out whether we are initializing the Hessenberg matrix.
initHessenberg_ = params.get("Initialize Hessenberg", false);
// Get the maximum number of blocks allowed for this Krylov subspace
TEUCHOS_TEST_FOR_EXCEPTION(!params.isParameter("Num Blocks"), std::invalid_argument,
"Belos::BlockGmresIter::constructor: mandatory parameter 'Num Blocks' is not specified.");
int nb = Teuchos::getParameter<int>(params, "Num Blocks");
// Set the block size and allocate data
int bs = params.get("Block Size", 1);
setSize( bs, nb );
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Set the block size and make necessary adjustments.
template <class ScalarType, class MV, class OP>
void BlockGmresIter<ScalarType,MV,OP>::setSize (int blockSize, int numBlocks)
{
// This routine only allocates space; it doesn't not perform any computation
// any change in size will invalidate the state of the solver.
TEUCHOS_TEST_FOR_EXCEPTION(numBlocks <= 0 || blockSize <= 0, std::invalid_argument, "Belos::BlockGmresIter::setSize was passed a non-positive argument.");
if (blockSize == blockSize_ && numBlocks == numBlocks_) {
// do nothing
return;
}
if (blockSize!=blockSize_ || numBlocks!=numBlocks_)
stateStorageInitialized_ = false;
blockSize_ = blockSize;
numBlocks_ = numBlocks;
initialized_ = false;
curDim_ = 0;
// Use the current blockSize_ and numBlocks_ to initialize the state storage.
setStateSize();
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Setup the state storage.
template <class ScalarType, class MV, class OP>
void BlockGmresIter<ScalarType,MV,OP>::setStateSize ()
{
if (!stateStorageInitialized_) {
// Check if there is any multivector to clone from.
Teuchos::RCP<const MV> lhsMV = lp_->getLHS();
Teuchos::RCP<const MV> rhsMV = lp_->getRHS();
if (lhsMV == Teuchos::null && rhsMV == Teuchos::null) {
stateStorageInitialized_ = false;
return;
}
else {
//////////////////////////////////
// blockSize*numBlocks dependent
//
int newsd = blockSize_*(numBlocks_+1);
if (blockSize_==1) {
cs.resize( newsd );
sn.resize( newsd );
}
else {
beta.resize( newsd );
}
// Initialize the state storage
TEUCHOS_TEST_FOR_EXCEPTION(blockSize_*static_cast<ptrdiff_t>(numBlocks_) > MVT::GetGlobalLength(*rhsMV),std::invalid_argument,
"Belos::BlockGmresIter::setStateSize(): Cannot generate a Krylov basis with dimension larger the operator!");
// If the subspace has not be initialized before, generate it using the LHS or RHS from lp_.
if (V_ == Teuchos::null) {
// Get the multivector that is not null.
Teuchos::RCP<const MV> tmp = ( (rhsMV!=Teuchos::null)? rhsMV: lhsMV );
TEUCHOS_TEST_FOR_EXCEPTION(tmp == Teuchos::null,std::invalid_argument,
"Belos::BlockGmresIter::setStateSize(): linear problem does not specify multivectors to clone from.");
V_ = MVT::Clone( *tmp, newsd );
}
else {
// Generate V_ by cloning itself ONLY if more space is needed.
if (MVT::GetNumberVecs(*V_) < newsd) {
Teuchos::RCP<const MV> tmp = V_;
V_ = MVT::Clone( *tmp, newsd );
}
}
// Generate R_ only if it doesn't exist, otherwise resize it.
if (R_ == Teuchos::null) {
R_ = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>() );
}
if (initHessenberg_) {
R_->shape( newsd, newsd-blockSize_ );
}
else {
if (R_->numRows() < newsd || R_->numCols() < newsd-blockSize_) {
R_->shapeUninitialized( newsd, newsd-blockSize_ );
}
}
// Generate H_ only if it doesn't exist, and we are keeping the upper Hessenberg matrix.
if (keepHessenberg_) {
if (H_ == Teuchos::null) {
H_ = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>() );
}
if (initHessenberg_) {
H_->shape( newsd, newsd-blockSize_ );
}
else {
if (H_->numRows() < newsd || H_->numCols() < newsd-blockSize_) {
H_->shapeUninitialized( newsd, newsd-blockSize_ );
}
}
}
else {
// Point H_ and R_ at the same object.
H_ = R_;
}
// Generate z_ only if it doesn't exist, otherwise resize it.
if (z_ == Teuchos::null) {
z_ = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>() );
}
if (z_-> numRows() < newsd || z_->numCols() < blockSize_) {
z_->shapeUninitialized( newsd, blockSize_ );
}
// State storage has now been initialized.
stateStorageInitialized_ = true;
}
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Get the current update from this subspace.
template <class ScalarType, class MV, class OP>
Teuchos::RCP<MV> BlockGmresIter<ScalarType,MV,OP>::getCurrentUpdate() const
{
//
// If this is the first iteration of the Arnoldi factorization,
// there is no update, so return Teuchos::null.
//
Teuchos::RCP<MV> currentUpdate = Teuchos::null;
if (curDim_==0) {
return currentUpdate;
} else {
const ScalarType one = Teuchos::ScalarTraits<ScalarType>::one();
const ScalarType zero = Teuchos::ScalarTraits<ScalarType>::zero();
Teuchos::BLAS<int,ScalarType> blas;
currentUpdate = MVT::Clone( *V_, blockSize_ );
//
// Make a view and then copy the RHS of the least squares problem. DON'T OVERWRITE IT!
//
Teuchos::SerialDenseMatrix<int,ScalarType> y( Teuchos::Copy, *z_, curDim_, blockSize_ );
//
// Solve the least squares problem.
//
blas.TRSM( Teuchos::LEFT_SIDE, Teuchos::UPPER_TRI, Teuchos::NO_TRANS,
Teuchos::NON_UNIT_DIAG, curDim_, blockSize_, one,
R_->values(), R_->stride(), y.values(), y.stride() );
//
// Compute the current update.
//
std::vector<int> index(curDim_);
for ( int i=0; i<curDim_; i++ ) {
index[i] = i;
}
Teuchos::RCP<const MV> Vjp1 = MVT::CloneView( *V_, index );
MVT::MvTimesMatAddMv( one, *Vjp1, y, zero, *currentUpdate );
}
return currentUpdate;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Get the native residuals stored in this iteration.
// Note: No residual std::vector will be returned by Gmres.
template <class ScalarType, class MV, class OP>
Teuchos::RCP<const MV> BlockGmresIter<ScalarType,MV,OP>::getNativeResiduals( std::vector<MagnitudeType> *norms ) const
{
//
// NOTE: Make sure the incoming std::vector is the correct size!
//
if ( norms && (int)norms->size() < blockSize_ )
norms->resize( blockSize_ );
if (norms) {
Teuchos::BLAS<int,ScalarType> blas;
for (int j=0; j<blockSize_; j++) {
(*norms)[j] = blas.NRM2( blockSize_, &(*z_)(curDim_, j), 1);
}
}
return Teuchos::null;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Initialize this iteration object
template <class ScalarType, class MV, class OP>
void BlockGmresIter<ScalarType,MV,OP>::initializeGmres(GmresIterationState<ScalarType,MV>& newstate)
{
// Initialize the state storage if it isn't already.
if (!stateStorageInitialized_)
setStateSize();
TEUCHOS_TEST_FOR_EXCEPTION(!stateStorageInitialized_,std::invalid_argument,
"Belos::BlockGmresIter::initialize(): Cannot initialize state storage!");
const ScalarType zero = Teuchos::ScalarTraits<ScalarType>::zero(), one = Teuchos::ScalarTraits<ScalarType>::one();
// NOTE: In BlockGmresIter, V and Z are required!!!
// inconsitent multivectors widths and lengths will not be tolerated, and
// will be treated with exceptions.
//
std::string errstr("Belos::BlockGmresIter::initialize(): Specified multivectors must have a consistent length and width.");
if (newstate.V != Teuchos::null && newstate.z != Teuchos::null) {
// initialize V_,z_, and curDim_
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetGlobalLength(*newstate.V) != MVT::GetGlobalLength(*V_),
std::invalid_argument, errstr );
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetNumberVecs(*newstate.V) < blockSize_,
std::invalid_argument, errstr );
TEUCHOS_TEST_FOR_EXCEPTION( newstate.curDim > blockSize_*(numBlocks_+1),
std::invalid_argument, errstr );
curDim_ = newstate.curDim;
int lclDim = MVT::GetNumberVecs(*newstate.V);
// check size of Z
TEUCHOS_TEST_FOR_EXCEPTION(newstate.z->numRows() < curDim_ || newstate.z->numCols() < blockSize_, std::invalid_argument, errstr);
// copy basis vectors from newstate into V
if (newstate.V != V_) {
// only copy over the first block and print a warning.
if (curDim_ == 0 && lclDim > blockSize_) {
om_->stream(Warnings) << "Belos::BlockGmresIter::initialize(): the solver was initialized with a kernel of " << lclDim << std::endl
<< "The block size however is only " << blockSize_ << std::endl
<< "The last " << lclDim - blockSize_ << " vectors will be discarded." << std::endl;
}
std::vector<int> nevind(curDim_+blockSize_);
for (int i=0; i<curDim_+blockSize_; i++) nevind[i] = i;
Teuchos::RCP<const MV> newV = MVT::CloneView( *newstate.V, nevind );
Teuchos::RCP<MV> lclV = MVT::CloneViewNonConst( *V_, nevind );
MVT::MvAddMv( one, *newV, zero, *newV, *lclV );
// done with local pointers
lclV = Teuchos::null;
}
// put data into z_, make sure old information is not still hanging around.
if (newstate.z != z_) {
z_->putScalar();
Teuchos::SerialDenseMatrix<int,ScalarType> newZ(Teuchos::View,*newstate.z,curDim_+blockSize_,blockSize_);
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > lclZ;
lclZ = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(Teuchos::View,*z_,curDim_+blockSize_,blockSize_) );
lclZ->assign(newZ);
// done with local pointers
lclZ = Teuchos::null;
}
}
else {
TEUCHOS_TEST_FOR_EXCEPTION(newstate.V == Teuchos::null,std::invalid_argument,
"Belos::BlockGmresIter::initialize(): BlockGmresStateIterState does not have initial kernel V_0.");
TEUCHOS_TEST_FOR_EXCEPTION(newstate.z == Teuchos::null,std::invalid_argument,
"Belos::BlockGmresIter::initialize(): BlockGmresStateIterState does not have initial norms z_0.");
}
// the solver is initialized
initialized_ = true;
/*
if (om_->isVerbosity( Debug ) ) {
// Check almost everything here
CheckList chk;
chk.checkV = true;
chk.checkArn = true;
chk.checkAux = true;
om_->print( Debug, accuracyCheck(chk, ": after initialize()") );
}
*/
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Iterate until the status test informs us we should stop.
template <class ScalarType, class MV, class OP>
void BlockGmresIter<ScalarType,MV,OP>::iterate()
{
//
// Allocate/initialize data structures
//
if (initialized_ == false) {
initialize();
}
// Compute the current search dimension.
int searchDim = blockSize_*numBlocks_;
////////////////////////////////////////////////////////////////
// iterate until the status test tells us to stop.
//
// also break if our basis is full
//
while (stest_->checkStatus(this) != Passed && curDim_+blockSize_ <= searchDim) {
iter_++;
// F can be found at the curDim_ block, but the next block is at curDim_ + blockSize_.
int lclDim = curDim_ + blockSize_;
// Get the current part of the basis.
std::vector<int> curind(blockSize_);
for (int i=0; i<blockSize_; i++) { curind[i] = lclDim + i; }
Teuchos::RCP<MV> Vnext = MVT::CloneViewNonConst(*V_,curind);
// Get a view of the previous vectors.
// This is used for orthogonalization and for computing V^H K H
for (int i=0; i<blockSize_; i++) { curind[i] = curDim_ + i; }
Teuchos::RCP<const MV> Vprev = MVT::CloneView(*V_,curind);
// Compute the next std::vector in the Krylov basis: Vnext = Op*Vprev
lp_->apply(*Vprev,*Vnext);
Vprev = Teuchos::null;
// Remove all previous Krylov basis vectors from Vnext
// Get a view of all the previous vectors
std::vector<int> prevind(lclDim);
for (int i=0; i<lclDim; i++) { prevind[i] = i; }
Vprev = MVT::CloneView(*V_,prevind);
Teuchos::Array<Teuchos::RCP<const MV> > AVprev(1, Vprev);
// Get a view of the part of the Hessenberg matrix needed to hold the ortho coeffs.
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> >
subH = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>
( Teuchos::View,*H_,lclDim,blockSize_,0,curDim_ ) );
Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > AsubH;
AsubH.append( subH );
// Get a view of the part of the Hessenberg matrix needed to hold the norm coeffs.
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> >
subH2 = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>
( Teuchos::View,*H_,blockSize_,blockSize_,lclDim,curDim_ ) );
subH2->putScalar(); // Initialize subdiagonal to zero
int rank = ortho_->projectAndNormalize(*Vnext,AsubH,subH2,AVprev);
// Copy over the coefficients if we are saving the upper Hessenberg matrix,
// just in case we run into an error.
if (keepHessenberg_) {
// Copy over the orthogonalization coefficients.
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> >
subR = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>
( Teuchos::View,*R_,lclDim,blockSize_,0,curDim_ ) );
subR->assign(*subH);
// Copy over the lower diagonal block of the Hessenberg matrix.
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> >
subR2 = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>
( Teuchos::View,*R_,blockSize_,blockSize_,lclDim,curDim_ ) );
subR2->assign(*subH2);
}
TEUCHOS_TEST_FOR_EXCEPTION(rank != blockSize_,GmresIterationOrthoFailure,
"Belos::BlockGmresIter::iterate(): couldn't generate basis of full rank.");
//
// V has been extended, and H has been extended.
//
// Update the QR factorization of the upper Hessenberg matrix
//
updateLSQR();
//
// Update basis dim and release all pointers.
//
Vnext = Teuchos::null;
curDim_ += blockSize_;
//
/*
// When required, monitor some orthogonalities
if (om_->isVerbosity( Debug ) ) {
// Check almost everything here
CheckList chk;
chk.checkV = true;
chk.checkArn = true;
om_->print( Debug, accuracyCheck(chk, ": after local update") );
}
else if (om_->isVerbosity( OrthoDetails ) ) {
CheckList chk;
chk.checkV = true;
om_->print( OrthoDetails, accuracyCheck(chk, ": after local update") );
}
*/
} // end while (statusTest == false)
}
template<class ScalarType, class MV, class OP>
void BlockGmresIter<ScalarType,MV,OP>::updateLSQR( int dim )
{
int i, j, maxidx;
ScalarType sigma, mu, vscale, maxelem;
const ScalarType zero = Teuchos::ScalarTraits<ScalarType>::zero(), one = Teuchos::ScalarTraits<ScalarType>::one();
// Get correct dimension based on input "dim"
// Remember that ortho failures result in an exit before updateLSQR() is called.
// Therefore, it is possible that dim == curDim_.
int curDim = curDim_;
if (dim >= curDim_ && dim < getMaxSubspaceDim()) {
curDim = dim;
}
Teuchos::BLAS<int, ScalarType> blas;
//
// Apply previous transformations and compute new transformation to reduce upper-Hessenberg
// system to upper-triangular form.
//
if (blockSize_ == 1) {
//
// QR factorization of Least-Squares system with Givens rotations
//
for (i=0; i<curDim; i++) {
//
// Apply previous Givens rotations to new column of Hessenberg matrix
//
blas.ROT( 1, &(*R_)(i,curDim), 1, &(*R_)(i+1, curDim), 1, &cs[i], &sn[i] );
}
//
// Calculate new Givens rotation
//
blas.ROTG( &(*R_)(curDim,curDim), &(*R_)(curDim+1,curDim), &cs[curDim], &sn[curDim] );
(*R_)(curDim+1,curDim) = zero;
//
// Update RHS w/ new transformation
//
blas.ROT( 1, &(*z_)(curDim,0), 1, &(*z_)(curDim+1,0), 1, &cs[curDim], &sn[curDim] );
}
else {
//
// QR factorization of Least-Squares system with Householder reflectors
//
for (j=0; j<blockSize_; j++) {
//
// Apply previous Householder reflectors to new block of Hessenberg matrix
//
for (i=0; i<curDim+j; i++) {
sigma = blas.DOT( blockSize_, &(*R_)(i+1,i), 1, &(*R_)(i+1,curDim+j), 1);
sigma += (*R_)(i,curDim+j);
sigma *= beta[i];
blas.AXPY(blockSize_, -sigma, &(*R_)(i+1,i), 1, &(*R_)(i+1,curDim+j), 1);
(*R_)(i,curDim+j) -= sigma;
}
//
// Compute new Householder reflector
//
maxidx = blas.IAMAX( blockSize_+1, &(*R_)(curDim+j,curDim+j), 1 );
maxelem = (*R_)(curDim+j+maxidx-1,curDim+j);
for (i=0; i<blockSize_+1; i++)
(*R_)(curDim+j+i,curDim+j) /= maxelem;
sigma = blas.DOT( blockSize_, &(*R_)(curDim+j+1,curDim+j), 1,
&(*R_)(curDim+j+1,curDim+j), 1 );
if (sigma == zero) {
beta[curDim + j] = zero;
} else {
mu = Teuchos::ScalarTraits<ScalarType>::squareroot((*R_)(curDim+j,curDim+j)*(*R_)(curDim+j,curDim+j)+sigma);
if ( Teuchos::ScalarTraits<ScalarType>::real((*R_)(curDim+j,curDim+j))
< Teuchos::ScalarTraits<MagnitudeType>::zero() ) {
vscale = (*R_)(curDim+j,curDim+j) - mu;
} else {
vscale = -sigma / ((*R_)(curDim+j,curDim+j) + mu);
}
beta[curDim+j] = Teuchos::as<ScalarType>(2)*one*vscale*vscale/(sigma + vscale*vscale);
(*R_)(curDim+j,curDim+j) = maxelem*mu;
for (i=0; i<blockSize_; i++)
(*R_)(curDim+j+1+i,curDim+j) /= vscale;
}
//
// Apply new Householder reflector to rhs
//
for (i=0; i<blockSize_; i++) {
sigma = blas.DOT( blockSize_, &(*R_)(curDim+j+1,curDim+j),
1, &(*z_)(curDim+j+1,i), 1);
sigma += (*z_)(curDim+j,i);
sigma *= beta[curDim+j];
blas.AXPY(blockSize_, -sigma, &(*R_)(curDim+j+1,curDim+j),
1, &(*z_)(curDim+j+1,i), 1);
(*z_)(curDim+j,i) -= sigma;
}
}
} // end if (blockSize_ == 1)
// If the least-squares problem is updated wrt "dim" then update the curDim_.
if (dim >= curDim_ && dim < getMaxSubspaceDim()) {
curDim_ = dim + blockSize_;
}
} // end updateLSQR()
} // end Belos namespace
#endif /* BELOS_BLOCK_GMRES_ITER_HPP */
|