/usr/include/trilinos/BelosLinearProblem.hpp is in libtrilinos-belos-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 | //@HEADER
// ************************************************************************
//
// Belos: Block Linear Solvers Package
// Copyright 2004 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
#ifndef BELOS_LINEAR_PROBLEM_HPP
#define BELOS_LINEAR_PROBLEM_HPP
/// \file BelosLinearProblem.hpp
/// \brief Class which describes the linear problem to be solved by
/// the iterative solver.
#include "BelosMultiVecTraits.hpp"
#include "BelosOperatorTraits.hpp"
#include "Teuchos_ParameterList.hpp"
#include "Teuchos_TimeMonitor.hpp"
namespace Belos {
//! @name LinearProblem Exceptions
//@{
/// \class LinearProblemError
/// \brief Exception thrown to signal error with the Belos::LinearProblem object.
class LinearProblemError : public BelosError {
public:
LinearProblemError (const std::string& what_arg) :
BelosError(what_arg) {}
};
//@}
/// \class LinearProblem
/// \brief A linear system to solve, and its associated information.
///
/// This class encapsulates the general information needed for
/// solving a linear system of equations using an iterative method.
///
/// \tparam ScalarType The type of the entries in the matrix and
/// vectors.
/// \tparam MV The (multi)vector type.
/// \tparam OP The operator type. (Operators are functions that
/// take a multivector as input and compute a multivector as
/// output.)
template <class ScalarType, class MV, class OP>
class LinearProblem {
public:
//! @name Constructors/Destructor
//@{
/// \brief Default constructor.
///
/// Creates an empty Belos::LinearProblem instance. The operator
/// A, left-hand-side X and right-hand-side B must be set using
/// the \c setOperator(), \c setLHS(), and \c setRHS() methods
/// respectively.
LinearProblem (void);
/// \brief Unpreconditioned linear system constructor.
///
/// Creates an unpreconditioned LinearProblem instance with the
/// operator (\c A), initial guess (\c X), and right hand side (\c
/// B). Preconditioners can be set using the \c setLeftPrec() and
/// \c setRightPrec() methods, and scaling can also be set using
/// the \c setLeftScale() and \c setRightScale() methods.
LinearProblem (const Teuchos::RCP<const OP> &A,
const Teuchos::RCP<MV> &X,
const Teuchos::RCP<const MV> &B);
/// \brief Copy constructor.
///
/// Makes a copy of an existing LinearProblem instance.
LinearProblem (const LinearProblem<ScalarType,MV,OP>& Problem);
//! Destructor (declared virtual for memory safety of derived classes).
virtual ~LinearProblem (void);
//@}
//! @name Set methods
//@{
/// \brief Set the operator A of the linear problem \f$AX = B\f$.
///
/// The operator is set by pointer; no copy of the operator is made.
void setOperator (const Teuchos::RCP<const OP> &A) {
A_ = A;
isSet_=false;
}
/// \brief Set left-hand-side X of linear problem \f$AX = B\f$.
///
/// Setting the "left-hand side" sets the starting vector (also
/// called "initial guess") of an iterative method. The
/// multivector is set by pointer; no copy of the object is made.
/// Belos' solvers will modify this multivector in place.
void setLHS (const Teuchos::RCP<MV> &X) {
X_ = X;
isSet_=false;
}
/// \brief Set right-hand-side B of linear problem \f$AX = B\f$.
///
/// The multivector is set by pointer; no copy of the object is
/// made.
void setRHS (const Teuchos::RCP<const MV> &B) {
B_ = B;
isSet_=false;
}
/// \brief Set left preconditioner (\c LP) of linear problem \f$AX = B\f$.
///
/// The operator is set by pointer; no copy of the operator is made.
void setLeftPrec(const Teuchos::RCP<const OP> &LP) { LP_ = LP; }
/// \brief Set right preconditioner (\c RP) of linear problem \f$AX = B\f$.
///
/// The operator is set by pointer; no copy of the operator is made.
void setRightPrec(const Teuchos::RCP<const OP> &RP) { RP_ = RP; }
/// Tell the linear problem that the solver is finished with the current linear system.
///
/// \note This method is <b>only</b> to be used by the solver to
/// inform the linear problem that it is finished with the
/// current block of linear systems. The next time that
/// Curr{RHS, LHS}Vec() is called, the next linear system will
/// be returned. Computing the next linear system isn't done in
/// this method in case the block size is changed.
void setCurrLS ();
/// \brief Tell the linear problem which linear system(s) need to be solved next.
///
/// Any calls to get the current RHS/LHS vectors after this method
/// is called will return the new linear system(s) indicated by \c
/// index. The length of \c index is assumed to be the blocksize.
/// Entries of \c index must be between 0 and the number of
/// vectors in the RHS/LHS multivector. An entry of \c index may
/// also be -1, which means this column of the linear system is
/// augmented using a random vector.
void setLSIndex (const std::vector<int>& index);
/// \brief Tell the linear problem that the (preconditioned) operator is Hermitian.
///
/// This knowledge may allow the operator to take advantage of the
/// linear problem's symmetry. However, this method should not be
/// called if the preconditioned operator is not Hermitian (or
/// symmetric in real arithmetic).
///
/// We make no attempt to detect the symmetry of the operators, so
/// we cannot check whether this method has been called
/// incorrectly.
void setHermitian( bool isSym = true ) { isHermitian_ = isSym; }
/// \brief Set the label prefix used by the timers in this object.
///
/// The default label prefix is "Belos". The timers are created
/// during the call to \c setProblem(). If they have already been
/// created and this label is different than the current one, then
/// this method will generate a new timer.
void setLabel (const std::string& label);
/// \brief Compute the new solution to the linear system using the
/// given update vector.
///
/// Let \f$\delta\f$ be the update vector, \f$\alpha\f$ the scale
/// factor, and \f$x\f$ the current solution. If there is a right
/// preconditioner \f$M_R^{-1}\f$, then we compute the new
/// solution as \f$x + \alpha M_R^{-1} \delta\f$. Otherwise, if
/// there is no right preconditioner, we compute the new solution
/// as \f$x + \alpha \delta\f$.
///
/// This method always returns the new solution. If updateLP is
/// false, it computes the new solution as a deep copy, without
/// modifying the internally stored current solution. If updateLP
/// is true, it computes the new solution in place, and returns a
/// pointer to the internally stored solution.
///
/// \param update [in/out] The solution update vector. If null,
/// this method returns a pointer to the new solution.
///
/// \param updateLP [in] This is ignored if the update vector is
/// null. Otherwise, if updateLP is true, the following things
/// happen: (a) this LinearProblem's stored solution is updated
/// in place, and (b) the next time \c GetCurrResVecs() is
/// called, a new residual will be computed. If updateLP is
/// false, then the new solution is computed and returned as a
/// copy, without modifying this LinearProblem's stored current
/// solution.
///
/// \param scale [in] The factor \f$\alpha\f$ by which to multiply
/// the solution update vector when computing the update. This
/// is ignored if the update vector is null.
///
/// \return A pointer to the new solution. This is freshly
/// allocated if updateLP is false, otherwise it is a view of
/// the LinearProblem's stored current solution.
///
Teuchos::RCP<MV>
updateSolution (const Teuchos::RCP<MV>& update = Teuchos::null,
bool updateLP = false,
ScalarType scale = Teuchos::ScalarTraits<ScalarType>::one());
/// \brief Compute the new solution to the linear system using the
/// given update vector.
///
/// This method does the same thing as calling the three-argument
/// version of updateSolution() with updateLP = false. It does
/// not update the linear problem or change the linear problem's
/// state in any way.
///
/// \param update [in/out] The solution update vector. If null,
/// this method returns a pointer to the new solution.
///
/// \param scale [in] The factor \f$\alpha\f$ by which to multiply
/// the solution update vector when computing the update. This
/// is ignored if the update vector is null.
///
/// \return A pointer to the new solution.
///
Teuchos::RCP<MV> updateSolution( const Teuchos::RCP<MV>& update = Teuchos::null,
ScalarType scale = Teuchos::ScalarTraits<ScalarType>::one() ) const
{ return const_cast<LinearProblem<ScalarType,MV,OP> *>(this)->updateSolution( update, false, scale ); }
//@}
//! @name Set / Reset method
//@{
/// \brief Set up the linear problem manager.
///
/// Call this method if you want to solve the linear system with a
/// different left- or right-hand side, or if you want to prepare
/// the linear problem to solve the linear system that was already
/// passed in. (In the latter case, call this method with the
/// default arguments.) The internal flags will be set as if the
/// linear system manager was just initialized, and the initial
/// residual will be computed.
///
/// Many of Belos' solvers require that this method has been
/// called on the linear problem, before they can solve it.
///
/// \param newX [in/out] If you want to solve the linear system
/// with a different left-hand side, pass it in here.
/// Otherwise, set this to null (the default value).
///
/// \param newB [in] If you want to solve the linear system with a
/// different right-hand side, pass it in here. Otherwise, set
/// this to null (the default value).
///
/// \return Whether the linear problem was successfully set up.
/// Successful setup requires at least that the matrix operator
/// A, the left-hand side X, and the right-hand side B all be
/// non-null.
bool
setProblem (const Teuchos::RCP<MV> &newX = Teuchos::null,
const Teuchos::RCP<const MV> &newB = Teuchos::null);
//@}
//! @name Accessor methods
//@{
//! A pointer to the (unpreconditioned) operator A.
Teuchos::RCP<const OP> getOperator() const { return(A_); }
//! A pointer to the left-hand side X.
Teuchos::RCP<MV> getLHS() const { return(X_); }
//! A pointer to the right-hand side B.
Teuchos::RCP<const MV> getRHS() const { return(B_); }
//! A pointer to the initial unpreconditioned residual vector.
Teuchos::RCP<const MV> getInitResVec() const { return(R0_); }
/// \brief A pointer to the preconditioned initial residual vector.
///
/// \note This is the preconditioned residual if the linear system
/// is left preconditioned.
Teuchos::RCP<const MV> getInitPrecResVec() const { return(PR0_); }
/// \brief Get a pointer to the current left-hand side (solution) of the linear system.
///
/// This method is called by the solver or any method that is
/// interested in the current linear system being solved.
/// - If the solution has been updated by the solver, then this
/// vector is current ( see \c isSolutionUpdated() ).
/// - If there is no linear system to solve, this method returns
/// a null pointer.
///
/// This method is <i>not</i> the same thing as \c getLHS(). The
/// \c getLHS() method just returns a pointer to the original
/// left-hand side vector. This method only returns a valid
/// vector if the current subset of right-hand side(s) to solve
/// has been set (via the \c setLSIndex() method).
Teuchos::RCP<MV> getCurrLHSVec();
/// \brief Get a pointer to the current right-hand side of the linear system.
///
/// This method is called by the solver or any method that is
/// interested in the current linear system being solved.
/// - If the solution has been updated by the solver, then this
/// vector is current ( see \c isSolutionUpdated() ).
/// - If there is no linear system to solve, this method returns
/// a null pointer.
///
/// This method is <i>not</i> the same thing as \c getRHS(). The
/// \c getRHS() method just returns a pointer to the original
/// right-hand side vector. This method only returns a valid
/// vector if the current subset of right-hand side(s) to solve
/// has been set (via the \c setLSIndex() method).
Teuchos::RCP<const MV> getCurrRHSVec();
//! Get a pointer to the left preconditioner.
Teuchos::RCP<const OP> getLeftPrec() const { return(LP_); };
//! Get a pointer to the right preconditioner.
Teuchos::RCP<const OP> getRightPrec() const { return(RP_); };
/// \brief (Zero-based) indices of the linear system(s) currently being solved.
///
/// Since the block size is independent of the number of
/// right-hand sides for some solvers (GMRES, CG, etc.), it is
/// important to know which linear systems are being solved. That
/// may mean you need to update the information about the norms of
/// your initial residual vector for weighting purposes. This
/// information can help you avoid querying the solver for
/// information that rarely changes.
///
/// \note The length of the returned index vector is the number of
/// right-hand sides currently being solved. If an entry of the
/// index vector is -1, then the corresponding linear system is
/// an augmented linear system and doesn't need to be considered
/// for convergence.
///
/// \note The index vector returned from this method can only be
/// nonempty if \c setLSIndex() has been called with a nonempty
/// index vector argument, or if this linear problem was
/// constructed via the copy constructor of a linear problem
/// with a nonempty index vector.
const std::vector<int> getLSIndex() const { return(rhsIndex_); }
/// \brief The number of linear systems that have been set.
///
/// This can be used by status test classes to determine if the
/// solver manager has advanced and is solving another linear
/// system. This is incremented by one every time that \c
/// setLSIndex() completes successfully.
int getLSNumber() const { return(lsNum_); }
/*! \brief The timers for this object.
*
* The timers are ordered as follows:
* - time spent applying operator
* - time spent applying preconditioner
*/
Teuchos::Array<Teuchos::RCP<Teuchos::Time> > getTimers() const {
return Teuchos::tuple(timerOp_,timerPrec_);
}
//@}
//! @name State methods
//@{
/// \brief Has the current approximate solution been updated?
///
/// This only means that the current linear system for which the
/// solver is solving (as obtained by getCurr{LHS, RHS}Vec()) has
/// been updated by the solver. This will be true every iteration
/// for solvers like CG, but not true for solvers like GMRES until
/// the solver restarts.
bool isSolutionUpdated() const { return(solutionUpdated_); }
//! Whether the problem has been set.
bool isProblemSet() const { return(isSet_); }
/// \brief Whether the (preconditioned) operator is Hermitian.
///
/// If preconditioner(s) are defined and this method returns true,
/// then the entire preconditioned operator is Hermitian (or
/// symmetric in real arithmetic).
bool isHermitian() const { return(isHermitian_); }
//! Whether the linear system is being preconditioned on the left.
bool isLeftPrec() const { return(LP_!=Teuchos::null); }
//! Whether the linear system is being preconditioned on the right.
bool isRightPrec() const { return(RP_!=Teuchos::null); }
//@}
//! @name Apply / Compute methods
//@{
//! Apply the composite operator of this linear problem to \c x, returning \c y.
/*! This application is the composition of the left/right preconditioner and operator.
Most Krylov methods will use this application method within their code.
Precondition:<ul>
<li><tt>getOperator().get()!=NULL</tt>
</ul>
*/
void apply( const MV& x, MV& y ) const;
/// \brief Apply ONLY the operator to \c x, returning \c y.
///
/// This method only applies the linear problem's operator,
/// without any preconditioners that may have been defined.
/// Flexible variants of Krylov methods will use this method. If
/// no operator has been defined, this method just copies x into
/// y.
void applyOp( const MV& x, MV& y ) const;
/// \brief Apply ONLY the left preconditioner to \c x, returning \c y.
///
/// This method only applies the left preconditioner. This may be
/// required for flexible variants of Krylov methods. If no left
/// preconditioner has been defined, this method just copies x
/// into y.
void applyLeftPrec( const MV& x, MV& y ) const;
/// \brief Apply ONLY the right preconditioner to \c x, returning \c y.
///
/// This method only applies the right preconditioner. This may
/// be required for flexible variants of Krylov methods. If no
/// right preconditioner has been defined, this method just copies
/// x into y.
void applyRightPrec( const MV& x, MV& y ) const;
//! Compute a residual \c R for this operator given a solution \c X, and right-hand side \c B.
/*! This method will compute the residual for the current linear system if \c X and \c B are null pointers.
The result will be returned into R. Otherwise <tt>R = OP(A)X - B</tt> will be computed and returned.
\note This residual will not be preconditioned if the system has a left preconditioner.
*/
void computeCurrResVec( MV* R , const MV* X = 0, const MV* B = 0 ) const;
//! Compute a residual \c R for this operator given a solution \c X, and right-hand side \c B.
/*! This method will compute the residual for the current linear system if \c X and \c B are null pointers.
The result will be returned into R. Otherwise <tt>R = OP(A)X - B</tt> will be computed and returned.
\note This residual will be preconditioned if the system has a left preconditioner.
*/
void computeCurrPrecResVec( MV* R, const MV* X = 0, const MV* B = 0 ) const;
//@}
private:
//! Operator of linear system.
Teuchos::RCP<const OP> A_;
//! Solution vector of linear system.
Teuchos::RCP<MV> X_;
//! Current solution vector of the linear system.
Teuchos::RCP<MV> curX_;
//! Right-hand side of linear system.
Teuchos::RCP<const MV> B_;
//! Current right-hand side of the linear system.
Teuchos::RCP<const MV> curB_;
//! Initial residual of the linear system.
Teuchos::RCP<MV> R0_;
//! Preconditioned initial residual of the linear system.
Teuchos::RCP<MV> PR0_;
//! Left preconditioning operator of linear system
Teuchos::RCP<const OP> LP_;
//! Right preconditioning operator of linear system
Teuchos::RCP<const OP> RP_;
//! Timers
mutable Teuchos::RCP<Teuchos::Time> timerOp_, timerPrec_;
//! Current block size of linear system.
int blocksize_;
//! Number of linear systems that are currently being solver for ( <= blocksize_ )
int num2Solve_;
//! Indices of current linear systems being solver for.
std::vector<int> rhsIndex_;
//! Number of linear systems that have been loaded in this linear problem object.
int lsNum_;
//! @name Booleans to keep track of linear problem attributes and status.
//@{
//! Is there a left scaling?
bool Left_Scale_;
//! Is there a right scaling?
bool Right_Scale_;
//! Has the linear problem to solve been set?
bool isSet_;
/// Whether the operator A is symmetric (in real arithmetic, or
/// Hermitian in complex arithmetic).
bool isHermitian_;
//! Has the current approximate solution been updated?
bool solutionUpdated_;
//@}
//! Linear problem label that prefixes the timer labels.
std::string label_;
typedef MultiVecTraits<ScalarType,MV> MVT;
typedef OperatorTraits<ScalarType,MV,OP> OPT;
};
//--------------------------------------------
// Constructor Implementations
//--------------------------------------------
template <class ScalarType, class MV, class OP>
LinearProblem<ScalarType,MV,OP>::LinearProblem(void) :
blocksize_(0),
num2Solve_(0),
rhsIndex_(0),
lsNum_(0),
Left_Scale_(false),
Right_Scale_(false),
isSet_(false),
isHermitian_(false),
solutionUpdated_(false),
label_("Belos")
{
}
template <class ScalarType, class MV, class OP>
LinearProblem<ScalarType,MV,OP>::LinearProblem(const Teuchos::RCP<const OP> &A,
const Teuchos::RCP<MV> &X,
const Teuchos::RCP<const MV> &B
) :
A_(A),
X_(X),
B_(B),
blocksize_(0),
num2Solve_(0),
rhsIndex_(0),
lsNum_(0),
Left_Scale_(false),
Right_Scale_(false),
isSet_(false),
isHermitian_(false),
solutionUpdated_(false),
label_("Belos")
{
}
template <class ScalarType, class MV, class OP>
LinearProblem<ScalarType,MV,OP>::LinearProblem(const LinearProblem<ScalarType,MV,OP>& Problem) :
A_(Problem.A_),
X_(Problem.X_),
curX_(Problem.curX_),
B_(Problem.B_),
curB_(Problem.curB_),
R0_(Problem.R0_),
PR0_(Problem.PR0_),
LP_(Problem.LP_),
RP_(Problem.RP_),
timerOp_(Problem.timerOp_),
timerPrec_(Problem.timerPrec_),
blocksize_(Problem.blocksize_),
num2Solve_(Problem.num2Solve_),
rhsIndex_(Problem.rhsIndex_),
lsNum_(Problem.lsNum_),
Left_Scale_(Problem.Left_Scale_),
Right_Scale_(Problem.Right_Scale_),
isSet_(Problem.isSet_),
isHermitian_(Problem.isHermitian_),
solutionUpdated_(Problem.solutionUpdated_),
label_(Problem.label_)
{
}
template <class ScalarType, class MV, class OP>
LinearProblem<ScalarType,MV,OP>::~LinearProblem(void)
{}
template <class ScalarType, class MV, class OP>
void LinearProblem<ScalarType,MV,OP>::setLSIndex(const std::vector<int>& index)
{
// Set new linear systems using the indices in index.
rhsIndex_ = index;
// Compute the new block linear system.
// ( first clean up old linear system )
curB_ = Teuchos::null;
curX_ = Teuchos::null;
// Create indices for the new linear system.
int validIdx = 0, ivalidIdx = 0;
blocksize_ = rhsIndex_.size();
std::vector<int> vldIndex( blocksize_ );
std::vector<int> newIndex( blocksize_ );
std::vector<int> iIndex( blocksize_ );
for (int i=0; i<blocksize_; ++i) {
if (rhsIndex_[i] > -1) {
vldIndex[validIdx] = rhsIndex_[i];
newIndex[validIdx] = i;
validIdx++;
}
else {
iIndex[ivalidIdx] = i;
ivalidIdx++;
}
}
vldIndex.resize(validIdx);
newIndex.resize(validIdx);
iIndex.resize(ivalidIdx);
num2Solve_ = validIdx;
// Create the new linear system using index
if (num2Solve_ != blocksize_) {
newIndex.resize(num2Solve_);
vldIndex.resize(num2Solve_);
//
// First create multivectors of blocksize.
// Fill the RHS with random vectors LHS with zero vectors.
curX_ = MVT::Clone( *X_, blocksize_ );
MVT::MvInit(*curX_);
Teuchos::RCP<MV> tmpCurB = MVT::Clone( *B_, blocksize_ );
MVT::MvRandom(*tmpCurB);
//
// Now put in the part of B into curB
Teuchos::RCP<const MV> tptr = MVT::CloneView( *B_, vldIndex );
MVT::SetBlock( *tptr, newIndex, *tmpCurB );
curB_ = tmpCurB;
//
// Now put in the part of X into curX
tptr = MVT::CloneView( *X_, vldIndex );
MVT::SetBlock( *tptr, newIndex, *curX_ );
//
solutionUpdated_ = false;
}
else {
curX_ = MVT::CloneViewNonConst( *X_, rhsIndex_ );
curB_ = MVT::CloneView( *B_, rhsIndex_ );
}
//
// Increment the number of linear systems that have been loaded into this object.
//
lsNum_++;
}
template <class ScalarType, class MV, class OP>
void LinearProblem<ScalarType,MV,OP>::setCurrLS()
{
//
// We only need to copy the solutions back if the linear systems of
// interest are less than the block size.
//
if (num2Solve_ < blocksize_) {
//
// Get a view of the current solutions and correction std::vector.
//
int validIdx = 0;
std::vector<int> newIndex( num2Solve_ );
std::vector<int> vldIndex( num2Solve_ );
for (int i=0; i<blocksize_; ++i) {
if ( rhsIndex_[i] > -1 ) {
vldIndex[validIdx] = rhsIndex_[i];
newIndex[validIdx] = i;
validIdx++;
}
}
Teuchos::RCP<MV> tptr = MVT::CloneViewNonConst( *curX_, newIndex );
MVT::SetBlock( *tptr, vldIndex, *X_ );
}
//
// Clear the current vectors of this linear system so that any future calls
// to get the vectors for this system return null pointers.
//
curX_ = Teuchos::null;
curB_ = Teuchos::null;
rhsIndex_.resize(0);
}
template <class ScalarType, class MV, class OP>
Teuchos::RCP<MV>
LinearProblem<ScalarType,MV,OP>::
updateSolution (const Teuchos::RCP<MV>& update,
bool updateLP,
ScalarType scale)
{
using Teuchos::RCP;
using Teuchos::null;
RCP<MV> newSoln;
if (update.is_null())
{ // The caller didn't supply an update vector, so we assume
// that the current solution curX_ is unchanged, and return a
// pointer to it.
newSoln = curX_;
}
else // the update vector is NOT null.
{
if (updateLP) // The caller wants us to update the linear problem.
{
if (RP_.is_null())
{ // There is no right preconditioner.
// curX_ := curX_ + scale * update.
MVT::MvAddMv( 1.0, *curX_, scale, *update, *curX_ );
}
else
{ // There is indeed a right preconditioner, so apply it
// before computing the new solution.
RCP<MV> rightPrecUpdate =
MVT::Clone (*update, MVT::GetNumberVecs (*update));
{
#ifdef BELOS_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor PrecTimer (*timerPrec_);
#endif
OPT::Apply( *RP_, *update, *rightPrecUpdate );
}
// curX_ := curX_ + scale * rightPrecUpdate.
MVT::MvAddMv( 1.0, *curX_, scale, *rightPrecUpdate, *curX_ );
}
solutionUpdated_ = true;
newSoln = curX_;
}
else
{ // Rather than updating our stored current solution curX_,
// we make a copy and compute the new solution in the
// copy, without modifying curX_.
newSoln = MVT::Clone (*update, MVT::GetNumberVecs (*update));
if (RP_.is_null())
{ // There is no right preconditioner.
// newSoln := curX_ + scale * update.
MVT::MvAddMv( 1.0, *curX_, scale, *update, *newSoln );
}
else
{ // There is indeed a right preconditioner, so apply it
// before computing the new solution.
RCP<MV> rightPrecUpdate =
MVT::Clone (*update, MVT::GetNumberVecs (*update));
{
#ifdef BELOS_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor PrecTimer(*timerPrec_);
#endif
OPT::Apply( *RP_, *update, *rightPrecUpdate );
}
// newSoln := curX_ + scale * rightPrecUpdate.
MVT::MvAddMv( 1.0, *curX_, scale, *rightPrecUpdate, *newSoln );
}
}
}
return newSoln;
}
template <class ScalarType, class MV, class OP>
void LinearProblem<ScalarType,MV,OP>::setLabel(const std::string& label)
{
if (label != label_) {
label_ = label;
// Create new timers if they have already been created.
if (timerOp_ != Teuchos::null) {
std::string opLabel = label_ + ": Operation Op*x";
#ifdef BELOS_TEUCHOS_TIME_MONITOR
timerOp_ = Teuchos::TimeMonitor::getNewCounter( opLabel );
#endif
}
if (timerPrec_ != Teuchos::null) {
std::string precLabel = label_ + ": Operation Prec*x";
#ifdef BELOS_TEUCHOS_TIME_MONITOR
timerPrec_ = Teuchos::TimeMonitor::getNewCounter( precLabel );
#endif
}
}
}
template <class ScalarType, class MV, class OP>
bool
LinearProblem<ScalarType,MV,OP>::
setProblem (const Teuchos::RCP<MV> &newX,
const Teuchos::RCP<const MV> &newB)
{
// Create timers if the haven't been created yet.
if (timerOp_ == Teuchos::null) {
std::string opLabel = label_ + ": Operation Op*x";
#ifdef BELOS_TEUCHOS_TIME_MONITOR
timerOp_ = Teuchos::TimeMonitor::getNewCounter( opLabel );
#endif
}
if (timerPrec_ == Teuchos::null) {
std::string precLabel = label_ + ": Operation Prec*x";
#ifdef BELOS_TEUCHOS_TIME_MONITOR
timerPrec_ = Teuchos::TimeMonitor::getNewCounter( precLabel );
#endif
}
// Set the linear system using the arguments newX and newB
if (newX != Teuchos::null)
X_ = newX;
if (newB != Teuchos::null)
B_ = newB;
// Invalidate the current linear system indices and multivectors.
rhsIndex_.resize(0);
curX_ = Teuchos::null;
curB_ = Teuchos::null;
// If we didn't set a matrix A, a left-hand side X, or a
// right-hand side B, then we didn't set the problem.
if (A_ == Teuchos::null || X_ == Teuchos::null || B_ == Teuchos::null) {
isSet_ = false;
return isSet_;
}
// Reset whether the solution has been updated. (We're just
// setting the problem now, so of course we haven't updated the
// solution yet.)
solutionUpdated_ = false;
// Compute the initial residuals.
if (R0_==Teuchos::null || MVT::GetNumberVecs( *R0_ )!=MVT::GetNumberVecs( *B_ )) {
R0_ = MVT::Clone( *B_, MVT::GetNumberVecs( *B_ ) );
}
computeCurrResVec( &*R0_, &*X_, &*B_ );
if (LP_!=Teuchos::null) {
if (PR0_==Teuchos::null || MVT::GetNumberVecs( *PR0_ )!=MVT::GetNumberVecs( *B_ )) {
PR0_ = MVT::Clone( *B_, MVT::GetNumberVecs( *B_ ) );
}
{
#ifdef BELOS_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor PrecTimer(*timerPrec_);
#endif
OPT::Apply( *LP_, *R0_, *PR0_ );
}
}
else {
PR0_ = R0_;
}
// The problem has been set and is ready for use.
isSet_ = true;
// Return isSet.
return isSet_;
}
template <class ScalarType, class MV, class OP>
Teuchos::RCP<MV> LinearProblem<ScalarType,MV,OP>::getCurrLHSVec()
{
if (isSet_) {
return curX_;
}
else {
return Teuchos::null;
}
}
template <class ScalarType, class MV, class OP>
Teuchos::RCP<const MV> LinearProblem<ScalarType,MV,OP>::getCurrRHSVec()
{
if (isSet_) {
return curB_;
}
else {
return Teuchos::null;
}
}
template <class ScalarType, class MV, class OP>
void LinearProblem<ScalarType,MV,OP>::apply( const MV& x, MV& y ) const
{
using Teuchos::null;
using Teuchos::RCP;
const bool leftPrec = LP_ != null;
const bool rightPrec = RP_ != null;
// We only need a temporary vector for intermediate results if
// there is a left or right preconditioner. We really should just
// keep this temporary vector around instead of allocating it each
// time.
RCP<MV> ytemp = (leftPrec || rightPrec) ? MVT::Clone (y, MVT::GetNumberVecs (y)) : null;
//
// No preconditioning.
//
if (!leftPrec && !rightPrec){
#ifdef BELOS_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor OpTimer(*timerOp_);
#endif
OPT::Apply( *A_, x, y );
}
//
// Preconditioning is being done on both sides
//
else if( leftPrec && rightPrec )
{
{
#ifdef BELOS_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor PrecTimer(*timerPrec_);
#endif
OPT::Apply( *RP_, x, y );
}
{
#ifdef BELOS_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor OpTimer(*timerOp_);
#endif
OPT::Apply( *A_, y, *ytemp );
}
{
#ifdef BELOS_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor PrecTimer(*timerPrec_);
#endif
OPT::Apply( *LP_, *ytemp, y );
}
}
//
// Preconditioning is only being done on the left side
//
else if( leftPrec )
{
{
#ifdef BELOS_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor OpTimer(*timerOp_);
#endif
OPT::Apply( *A_, x, *ytemp );
}
{
#ifdef BELOS_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor PrecTimer(*timerPrec_);
#endif
OPT::Apply( *LP_, *ytemp, y );
}
}
//
// Preconditioning is only being done on the right side
//
else
{
{
#ifdef BELOS_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor PrecTimer(*timerPrec_);
#endif
OPT::Apply( *RP_, x, *ytemp );
}
{
#ifdef BELOS_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor OpTimer(*timerOp_);
#endif
OPT::Apply( *A_, *ytemp, y );
}
}
}
template <class ScalarType, class MV, class OP>
void LinearProblem<ScalarType,MV,OP>::applyOp( const MV& x, MV& y ) const {
if (A_.get()) {
#ifdef BELOS_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor OpTimer(*timerOp_);
#endif
OPT::Apply( *A_,x, y);
}
else {
MVT::MvAddMv( Teuchos::ScalarTraits<ScalarType>::one(), x,
Teuchos::ScalarTraits<ScalarType>::zero(), x, y );
}
}
template <class ScalarType, class MV, class OP>
void LinearProblem<ScalarType,MV,OP>::applyLeftPrec( const MV& x, MV& y ) const {
if (LP_!=Teuchos::null) {
#ifdef BELOS_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor PrecTimer(*timerPrec_);
#endif
return ( OPT::Apply( *LP_,x, y) );
}
else {
MVT::MvAddMv( Teuchos::ScalarTraits<ScalarType>::one(), x,
Teuchos::ScalarTraits<ScalarType>::zero(), x, y );
}
}
template <class ScalarType, class MV, class OP>
void LinearProblem<ScalarType,MV,OP>::applyRightPrec( const MV& x, MV& y ) const {
if (RP_!=Teuchos::null) {
#ifdef BELOS_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor PrecTimer(*timerPrec_);
#endif
return ( OPT::Apply( *RP_,x, y) );
}
else {
MVT::MvAddMv( Teuchos::ScalarTraits<ScalarType>::one(), x,
Teuchos::ScalarTraits<ScalarType>::zero(), x, y );
}
}
template <class ScalarType, class MV, class OP>
void LinearProblem<ScalarType,MV,OP>::computeCurrPrecResVec( MV* R, const MV* X, const MV* B ) const {
if (R) {
if (X && B) // The entries are specified, so compute the residual of Op(A)X = B
{
if (LP_!=Teuchos::null)
{
Teuchos::RCP<MV> R_temp = MVT::Clone( *B, MVT::GetNumberVecs( *B ) );
{
#ifdef BELOS_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor OpTimer(*timerOp_);
#endif
OPT::Apply( *A_, *X, *R_temp );
}
MVT::MvAddMv( -1.0, *R_temp, 1.0, *B, *R_temp );
{
#ifdef BELOS_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor PrecTimer(*timerPrec_);
#endif
OPT::Apply( *LP_, *R_temp, *R );
}
}
else
{
{
#ifdef BELOS_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor OpTimer(*timerOp_);
#endif
OPT::Apply( *A_, *X, *R );
}
MVT::MvAddMv( -1.0, *R, 1.0, *B, *R );
}
}
else {
// The solution and right-hand side may not be specified, check and use which ones exist.
Teuchos::RCP<const MV> localB, localX;
if (B)
localB = Teuchos::rcp( B, false );
else
localB = curB_;
if (X)
localX = Teuchos::rcp( X, false );
else
localX = curX_;
if (LP_!=Teuchos::null)
{
Teuchos::RCP<MV> R_temp = MVT::Clone( *localB, MVT::GetNumberVecs( *localB ) );
{
#ifdef BELOS_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor OpTimer(*timerOp_);
#endif
OPT::Apply( *A_, *localX, *R_temp );
}
MVT::MvAddMv( -1.0, *R_temp, 1.0, *localB, *R_temp );
{
#ifdef BELOS_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor PrecTimer(*timerPrec_);
#endif
OPT::Apply( *LP_, *R_temp, *R );
}
}
else
{
{
#ifdef BELOS_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor OpTimer(*timerOp_);
#endif
OPT::Apply( *A_, *localX, *R );
}
MVT::MvAddMv( -1.0, *R, 1.0, *localB, *R );
}
}
}
}
template <class ScalarType, class MV, class OP>
void LinearProblem<ScalarType,MV,OP>::computeCurrResVec( MV* R, const MV* X, const MV* B ) const {
if (R) {
if (X && B) // The entries are specified, so compute the residual of Op(A)X = B
{
{
#ifdef BELOS_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor OpTimer(*timerOp_);
#endif
OPT::Apply( *A_, *X, *R );
}
MVT::MvAddMv( -1.0, *R, 1.0, *B, *R );
}
else {
// The solution and right-hand side may not be specified, check and use which ones exist.
Teuchos::RCP<const MV> localB, localX;
if (B)
localB = Teuchos::rcp( B, false );
else
localB = curB_;
if (X)
localX = Teuchos::rcp( X, false );
else
localX = curX_;
{
#ifdef BELOS_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor OpTimer(*timerOp_);
#endif
OPT::Apply( *A_, *localX, *R );
}
MVT::MvAddMv( -1.0, *R, 1.0, *localB, *R );
}
}
}
} // end Belos namespace
#endif /* BELOS_LINEAR_PROBLEM_HPP */
|