This file is indexed.

/usr/include/trilinos/BelosLinearProblem.hpp is in libtrilinos-belos-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
//@HEADER
// ************************************************************************
//
//                 Belos: Block Linear Solvers Package
//                  Copyright 2004 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER

#ifndef BELOS_LINEAR_PROBLEM_HPP
#define BELOS_LINEAR_PROBLEM_HPP

/// \file BelosLinearProblem.hpp 
/// \brief Class which describes the linear problem to be solved by
///   the iterative solver.
#include "BelosMultiVecTraits.hpp"
#include "BelosOperatorTraits.hpp"
#include "Teuchos_ParameterList.hpp"
#include "Teuchos_TimeMonitor.hpp"

namespace Belos {

  //! @name LinearProblem Exceptions
  //@{
  
  /// \class LinearProblemError
  /// \brief Exception thrown to signal error with the Belos::LinearProblem object.
  class LinearProblemError : public BelosError {
  public: 
    LinearProblemError (const std::string& what_arg) : 
      BelosError(what_arg) {}
  };
  
  //@}

  /// \class LinearProblem  
  /// \brief A linear system to solve, and its associated information.
  ///
  /// This class encapsulates the general information needed for
  /// solving a linear system of equations using an iterative method.
  ///
  /// \tparam ScalarType The type of the entries in the matrix and
  ///   vectors.
  /// \tparam MV The (multi)vector type.
  /// \tparam OP The operator type.  (Operators are functions that
  ///   take a multivector as input and compute a multivector as
  ///   output.)
  template <class ScalarType, class MV, class OP>
  class LinearProblem {
  public:
    
    //! @name Constructors/Destructor
    //@{ 

    /// \brief Default constructor.
    ///
    /// Creates an empty Belos::LinearProblem instance.  The operator
    /// A, left-hand-side X and right-hand-side B must be set using
    /// the \c setOperator(), \c setLHS(), and \c setRHS() methods
    /// respectively.
    LinearProblem (void);
    
    /// \brief Unpreconditioned linear system constructor.
    ///
    /// Creates an unpreconditioned LinearProblem instance with the
    /// operator (\c A), initial guess (\c X), and right hand side (\c
    /// B).  Preconditioners can be set using the \c setLeftPrec() and
    /// \c setRightPrec() methods, and scaling can also be set using
    /// the \c setLeftScale() and \c setRightScale() methods.
    LinearProblem (const Teuchos::RCP<const OP> &A, 
		   const Teuchos::RCP<MV> &X, 
		   const Teuchos::RCP<const MV> &B);
    
    /// \brief Copy constructor.
    ///
    /// Makes a copy of an existing LinearProblem instance.
    LinearProblem (const LinearProblem<ScalarType,MV,OP>& Problem);
    
    //! Destructor (declared virtual for memory safety of derived classes).
    virtual ~LinearProblem (void);

    //@}
    
    //! @name Set methods
    //@{ 
    
    /// \brief Set the operator A of the linear problem \f$AX = B\f$.
    /// 
    /// The operator is set by pointer; no copy of the operator is made.
    void setOperator (const Teuchos::RCP<const OP> &A) { 
      A_ = A; 
      isSet_=false; 
    }
    
    /// \brief Set left-hand-side X of linear problem \f$AX = B\f$.
    ///
    /// Setting the "left-hand side" sets the starting vector (also
    /// called "initial guess") of an iterative method.  The
    /// multivector is set by pointer; no copy of the object is made.
    /// Belos' solvers will modify this multivector in place.
    void setLHS (const Teuchos::RCP<MV> &X) { 
      X_ = X; 
      isSet_=false; 
    }
    
    /// \brief Set right-hand-side B of linear problem \f$AX = B\f$.
    ///
    /// The multivector is set by pointer; no copy of the object is
    /// made.
    void setRHS (const Teuchos::RCP<const MV> &B) { 
      B_ = B; 
      isSet_=false; 
    }
    
    /// \brief Set left preconditioner (\c LP) of linear problem \f$AX = B\f$.
    ///
    /// The operator is set by pointer; no copy of the operator is made.
    void setLeftPrec(const Teuchos::RCP<const OP> &LP) {  LP_ = LP; }

    /// \brief Set right preconditioner (\c RP) of linear problem \f$AX = B\f$.
    ///
    /// The operator is set by pointer; no copy of the operator is made.
    void setRightPrec(const Teuchos::RCP<const OP> &RP) { RP_ = RP; }

    /// Tell the linear problem that the solver is finished with the current linear system.
    ///
    /// \note This method is <b>only</b> to be used by the solver to
    ///   inform the linear problem that it is finished with the
    ///   current block of linear systems.  The next time that
    ///   Curr{RHS, LHS}Vec() is called, the next linear system will
    ///   be returned.  Computing the next linear system isn't done in
    ///   this method in case the block size is changed.
    void setCurrLS ();

    /// \brief Tell the linear problem which linear system(s) need to be solved next.
    ///
    /// Any calls to get the current RHS/LHS vectors after this method
    /// is called will return the new linear system(s) indicated by \c
    /// index.  The length of \c index is assumed to be the blocksize.
    /// Entries of \c index must be between 0 and the number of
    /// vectors in the RHS/LHS multivector.  An entry of \c index may
    /// also be -1, which means this column of the linear system is
    /// augmented using a random vector.
    void setLSIndex (const std::vector<int>& index); 
    
    /// \brief Tell the linear problem that the (preconditioned) operator is Hermitian.
    ///
    /// This knowledge may allow the operator to take advantage of the
    /// linear problem's symmetry.  However, this method should not be
    /// called if the preconditioned operator is not Hermitian (or
    /// symmetric in real arithmetic).
    ///
    /// We make no attempt to detect the symmetry of the operators, so
    /// we cannot check whether this method has been called
    /// incorrectly.
    void setHermitian( bool isSym = true ) { isHermitian_ = isSym; }
   
    /// \brief Set the label prefix used by the timers in this object.  
    ///
    /// The default label prefix is "Belos".  The timers are created
    /// during the call to \c setProblem().  If they have already been
    /// created and this label is different than the current one, then
    /// this method will generate a new timer.
    void setLabel (const std::string& label);

    /// \brief Compute the new solution to the linear system using the
    ///   given update vector.
    ///
    /// Let \f$\delta\f$ be the update vector, \f$\alpha\f$ the scale
    /// factor, and \f$x\f$ the current solution.  If there is a right
    /// preconditioner \f$M_R^{-1}\f$, then we compute the new
    /// solution as \f$x + \alpha M_R^{-1} \delta\f$.  Otherwise, if
    /// there is no right preconditioner, we compute the new solution
    /// as \f$x + \alpha \delta\f$.
    ///
    /// This method always returns the new solution.  If updateLP is
    /// false, it computes the new solution as a deep copy, without
    /// modifying the internally stored current solution.  If updateLP
    /// is true, it computes the new solution in place, and returns a
    /// pointer to the internally stored solution.
    ///
    /// \param update [in/out] The solution update vector.  If null,
    ///   this method returns a pointer to the new solution.
    ///
    /// \param updateLP [in] This is ignored if the update vector is
    ///   null.  Otherwise, if updateLP is true, the following things
    ///   happen: (a) this LinearProblem's stored solution is updated
    ///   in place, and (b) the next time \c GetCurrResVecs() is
    ///   called, a new residual will be computed.  If updateLP is
    ///   false, then the new solution is computed and returned as a
    ///   copy, without modifying this LinearProblem's stored current
    ///   solution.
    ///
    /// \param scale [in] The factor \f$\alpha\f$ by which to multiply
    ///   the solution update vector when computing the update.  This
    ///   is ignored if the update vector is null.
    ///
    /// \return A pointer to the new solution.  This is freshly
    ///   allocated if updateLP is false, otherwise it is a view of
    ///   the LinearProblem's stored current solution.
    ///
    Teuchos::RCP<MV> 
    updateSolution (const Teuchos::RCP<MV>& update = Teuchos::null,
		    bool updateLP = false,
		    ScalarType scale = Teuchos::ScalarTraits<ScalarType>::one());    

    /// \brief Compute the new solution to the linear system using the
    ///   given update vector.
    ///
    /// This method does the same thing as calling the three-argument
    /// version of updateSolution() with updateLP = false.  It does
    /// not update the linear problem or change the linear problem's
    /// state in any way.
    ///
    /// \param update [in/out] The solution update vector.  If null,
    ///   this method returns a pointer to the new solution.
    ///
    /// \param scale [in] The factor \f$\alpha\f$ by which to multiply
    ///   the solution update vector when computing the update.  This
    ///   is ignored if the update vector is null.
    ///
    /// \return A pointer to the new solution. 
    ///
    Teuchos::RCP<MV> updateSolution( const Teuchos::RCP<MV>& update = Teuchos::null,
                                    ScalarType scale = Teuchos::ScalarTraits<ScalarType>::one() ) const
    { return const_cast<LinearProblem<ScalarType,MV,OP> *>(this)->updateSolution( update, false, scale ); }

    //@}
    
    //! @name Set / Reset method
    //@{ 
    
    /// \brief Set up the linear problem manager.
    ///
    /// Call this method if you want to solve the linear system with a
    /// different left- or right-hand side, or if you want to prepare
    /// the linear problem to solve the linear system that was already
    /// passed in.  (In the latter case, call this method with the
    /// default arguments.)  The internal flags will be set as if the
    /// linear system manager was just initialized, and the initial
    /// residual will be computed.
    ///
    /// Many of Belos' solvers require that this method has been
    /// called on the linear problem, before they can solve it.
    ///
    /// \param newX [in/out] If you want to solve the linear system
    ///   with a different left-hand side, pass it in here.
    ///   Otherwise, set this to null (the default value).
    ///
    /// \param newB [in] If you want to solve the linear system with a
    ///   different right-hand side, pass it in here.  Otherwise, set
    ///   this to null (the default value).
    ///
    /// \return Whether the linear problem was successfully set up.
    ///   Successful setup requires at least that the matrix operator
    ///   A, the left-hand side X, and the right-hand side B all be
    ///   non-null.
    bool 
    setProblem (const Teuchos::RCP<MV> &newX = Teuchos::null, 
		const Teuchos::RCP<const MV> &newB = Teuchos::null);

    //@}
    
    //! @name Accessor methods
    //@{ 
    
    //! A pointer to the (unpreconditioned) operator A.
    Teuchos::RCP<const OP> getOperator() const { return(A_); }
    
    //! A pointer to the left-hand side X.
    Teuchos::RCP<MV> getLHS() const { return(X_); }
    
    //! A pointer to the right-hand side B.
    Teuchos::RCP<const MV> getRHS() const { return(B_); }
    
    //! A pointer to the initial unpreconditioned residual vector.
    Teuchos::RCP<const MV> getInitResVec() const { return(R0_); }
    
    /// \brief A pointer to the preconditioned initial residual vector.
    ///
    /// \note This is the preconditioned residual if the linear system
    ///   is left preconditioned.
    Teuchos::RCP<const MV> getInitPrecResVec() const { return(PR0_); }
    
    /// \brief Get a pointer to the current left-hand side (solution) of the linear system.
    ///
    /// This method is called by the solver or any method that is
    /// interested in the current linear system being solved.
    ///   - If the solution has been updated by the solver, then this
    ///     vector is current ( see \c isSolutionUpdated() ).
    ///   - If there is no linear system to solve, this method returns
    ///     a null pointer.
    ///
    /// This method is <i>not</i> the same thing as \c getLHS().  The
    /// \c getLHS() method just returns a pointer to the original
    /// left-hand side vector.  This method only returns a valid
    /// vector if the current subset of right-hand side(s) to solve
    /// has been set (via the \c setLSIndex() method).
    Teuchos::RCP<MV> getCurrLHSVec();
    
    /// \brief Get a pointer to the current right-hand side of the linear system.
    ///
    /// This method is called by the solver or any method that is
    /// interested in the current linear system being solved.
    ///   - If the solution has been updated by the solver, then this
    ///     vector is current ( see \c isSolutionUpdated() ).
    ///   - If there is no linear system to solve, this method returns
    ///     a null pointer.
    ///
    /// This method is <i>not</i> the same thing as \c getRHS().  The
    /// \c getRHS() method just returns a pointer to the original
    /// right-hand side vector.  This method only returns a valid
    /// vector if the current subset of right-hand side(s) to solve
    /// has been set (via the \c setLSIndex() method).
    Teuchos::RCP<const MV> getCurrRHSVec();
    
    //! Get a pointer to the left preconditioner.
    Teuchos::RCP<const OP> getLeftPrec() const { return(LP_); };
    
    //! Get a pointer to the right preconditioner.
    Teuchos::RCP<const OP> getRightPrec() const { return(RP_); };
    
    /// \brief (Zero-based) indices of the linear system(s) currently being solved.
    ///
    /// Since the block size is independent of the number of
    /// right-hand sides for some solvers (GMRES, CG, etc.), it is
    /// important to know which linear systems are being solved.  That
    /// may mean you need to update the information about the norms of
    /// your initial residual vector for weighting purposes.  This
    /// information can help you avoid querying the solver for
    /// information that rarely changes.
    ///
    /// \note The length of the returned index vector is the number of
    ///   right-hand sides currently being solved.  If an entry of the
    ///   index vector is -1, then the corresponding linear system is
    ///   an augmented linear system and doesn't need to be considered
    ///   for convergence.
    /// 
    /// \note The index vector returned from this method can only be
    ///   nonempty if \c setLSIndex() has been called with a nonempty
    ///   index vector argument, or if this linear problem was
    ///   constructed via the copy constructor of a linear problem
    ///   with a nonempty index vector.
    const std::vector<int> getLSIndex() const { return(rhsIndex_); }

    /// \brief The number of linear systems that have been set.
    ///
    /// This can be used by status test classes to determine if the
    /// solver manager has advanced and is solving another linear
    /// system.  This is incremented by one every time that \c
    /// setLSIndex() completes successfully.
    int getLSNumber() const { return(lsNum_); }

    /*! \brief The timers for this object.
     *
     * The timers are ordered as follows:
     *   - time spent applying operator
     *   - time spent applying preconditioner
     */
    Teuchos::Array<Teuchos::RCP<Teuchos::Time> > getTimers() const {
      return Teuchos::tuple(timerOp_,timerPrec_);
    }


    //@}
    
    //! @name State methods
    //@{ 
    
    /// \brief Has the current approximate solution been updated?
    ///
    /// This only means that the current linear system for which the
    /// solver is solving (as obtained by getCurr{LHS, RHS}Vec()) has
    /// been updated by the solver.  This will be true every iteration
    /// for solvers like CG, but not true for solvers like GMRES until
    /// the solver restarts.
    bool isSolutionUpdated() const { return(solutionUpdated_); }

    //! Whether the problem has been set.
    bool isProblemSet() const { return(isSet_); }

    /// \brief Whether the (preconditioned) operator is Hermitian.
    ///
    /// If preconditioner(s) are defined and this method returns true,
    /// then the entire preconditioned operator is Hermitian (or
    /// symmetric in real arithmetic).
    bool isHermitian() const { return(isHermitian_); }
    
    //! Whether the linear system is being preconditioned on the left.
    bool isLeftPrec() const { return(LP_!=Teuchos::null); }

    //! Whether the linear system is being preconditioned on the right.
    bool isRightPrec() const { return(RP_!=Teuchos::null); }
 
    //@}
    
    //! @name Apply / Compute methods
    //@{ 
    
    //! Apply the composite operator of this linear problem to \c x, returning \c y.
    /*! This application is the composition of the left/right preconditioner and operator.
      Most Krylov methods will use this application method within their code.
      
      Precondition:<ul>
      <li><tt>getOperator().get()!=NULL</tt>
      </ul>
    */
    void apply( const MV& x, MV& y ) const;
    
    /// \brief Apply ONLY the operator to \c x, returning \c y.
    ///
    /// This method only applies the linear problem's operator,
    /// without any preconditioners that may have been defined.
    /// Flexible variants of Krylov methods will use this method.  If
    /// no operator has been defined, this method just copies x into
    /// y.
    void applyOp( const MV& x, MV& y ) const;
    
    /// \brief Apply ONLY the left preconditioner to \c x, returning \c y.
    ///
    /// This method only applies the left preconditioner.  This may be
    /// required for flexible variants of Krylov methods.  If no left
    /// preconditioner has been defined, this method just copies x
    /// into y.
    void applyLeftPrec( const MV& x, MV& y ) const;

    /// \brief Apply ONLY the right preconditioner to \c x, returning \c y.
    ///
    /// This method only applies the right preconditioner.  This may
    /// be required for flexible variants of Krylov methods.  If no
    /// right preconditioner has been defined, this method just copies
    /// x into y.
    void applyRightPrec( const MV& x, MV& y ) const;
    
    //! Compute a residual \c R for this operator given a solution \c X, and right-hand side \c B.
    /*! This method will compute the residual for the current linear system if \c X and \c B are null pointers.
      The result will be returned into R.  Otherwise <tt>R = OP(A)X - B</tt> will be computed and returned.
      \note This residual will not be preconditioned if the system has a left preconditioner.
    */
    void computeCurrResVec( MV* R , const MV* X = 0, const MV* B = 0 ) const;

    //! Compute a residual \c R for this operator given a solution \c X, and right-hand side \c B.
    /*! This method will compute the residual for the current linear system if \c X and \c B are null pointers.
      The result will be returned into R.  Otherwise <tt>R = OP(A)X - B</tt> will be computed and returned.
      \note This residual will be preconditioned if the system has a left preconditioner.
    */
    void computeCurrPrecResVec( MV* R, const MV* X = 0, const MV* B = 0 ) const;
    
    //@}
    
  private:
    
    //! Operator of linear system. 
    Teuchos::RCP<const OP> A_;
    
    //! Solution vector of linear system.
    Teuchos::RCP<MV> X_;
    
    //! Current solution vector of the linear system.
    Teuchos::RCP<MV> curX_;
    
    //! Right-hand side of linear system.
    Teuchos::RCP<const MV> B_;
    
    //! Current right-hand side of the linear system.
    Teuchos::RCP<const MV> curB_;
    
    //! Initial residual of the linear system.
    Teuchos::RCP<MV> R0_;
   
    //! Preconditioned initial residual of the linear system.
    Teuchos::RCP<MV> PR0_;
 
    //! Left preconditioning operator of linear system
    Teuchos::RCP<const OP> LP_;  
    
    //! Right preconditioning operator of linear system
    Teuchos::RCP<const OP> RP_;
    
    //! Timers
    mutable Teuchos::RCP<Teuchos::Time> timerOp_, timerPrec_;

    //! Current block size of linear system.
    int blocksize_;

    //! Number of linear systems that are currently being solver for ( <= blocksize_ )
    int num2Solve_;
    
    //! Indices of current linear systems being solver for.
    std::vector<int> rhsIndex_;    

    //! Number of linear systems that have been loaded in this linear problem object.
    int lsNum_;

    //! @name Booleans to keep track of linear problem attributes and status.
    //@{ 

    //! Is there a left scaling?
    bool Left_Scale_;

    //! Is there a right scaling?
    bool Right_Scale_;

    //! Has the linear problem to solve been set?
    bool isSet_;

    /// Whether the operator A is symmetric (in real arithmetic, or
    /// Hermitian in complex arithmetic).
    bool isHermitian_;

    //! Has the current approximate solution been updated?
    bool solutionUpdated_;    

    //@}
   
    //! Linear problem label that prefixes the timer labels.
    std::string label_;
 
    typedef MultiVecTraits<ScalarType,MV>  MVT;
    typedef OperatorTraits<ScalarType,MV,OP>  OPT;
  };
  
  //--------------------------------------------
  //  Constructor Implementations
  //--------------------------------------------
  
  template <class ScalarType, class MV, class OP>
  LinearProblem<ScalarType,MV,OP>::LinearProblem(void) : 
    blocksize_(0),
    num2Solve_(0),
    rhsIndex_(0),
    lsNum_(0),
    Left_Scale_(false),
    Right_Scale_(false),
    isSet_(false),
    isHermitian_(false),
    solutionUpdated_(false),
    label_("Belos")
  {
  }
  
  template <class ScalarType, class MV, class OP>
  LinearProblem<ScalarType,MV,OP>::LinearProblem(const Teuchos::RCP<const OP> &A, 
						 const Teuchos::RCP<MV> &X, 
						 const Teuchos::RCP<const MV> &B
						 ) :
    A_(A),
    X_(X),
    B_(B),
    blocksize_(0),
    num2Solve_(0),
    rhsIndex_(0),
    lsNum_(0),
    Left_Scale_(false),
    Right_Scale_(false),
    isSet_(false),
    isHermitian_(false),
    solutionUpdated_(false),
    label_("Belos")
  {
  }
  
  template <class ScalarType, class MV, class OP>
  LinearProblem<ScalarType,MV,OP>::LinearProblem(const LinearProblem<ScalarType,MV,OP>& Problem) :
    A_(Problem.A_),
    X_(Problem.X_),
    curX_(Problem.curX_),
    B_(Problem.B_),
    curB_(Problem.curB_),
    R0_(Problem.R0_),
    PR0_(Problem.PR0_),
    LP_(Problem.LP_),
    RP_(Problem.RP_),
    timerOp_(Problem.timerOp_),
    timerPrec_(Problem.timerPrec_),
    blocksize_(Problem.blocksize_),
    num2Solve_(Problem.num2Solve_),
    rhsIndex_(Problem.rhsIndex_),
    lsNum_(Problem.lsNum_),
    Left_Scale_(Problem.Left_Scale_),
    Right_Scale_(Problem.Right_Scale_),
    isSet_(Problem.isSet_),
    isHermitian_(Problem.isHermitian_),
    solutionUpdated_(Problem.solutionUpdated_),
    label_(Problem.label_)
  {
  }
  
  template <class ScalarType, class MV, class OP>
  LinearProblem<ScalarType,MV,OP>::~LinearProblem(void)
  {}
  
  template <class ScalarType, class MV, class OP>
  void LinearProblem<ScalarType,MV,OP>::setLSIndex(const std::vector<int>& index)
  {
    // Set new linear systems using the indices in index.
    rhsIndex_ = index;
    
    // Compute the new block linear system.
    // ( first clean up old linear system )
    curB_ = Teuchos::null;
    curX_ = Teuchos::null;
   
    // Create indices for the new linear system.
    int validIdx = 0, ivalidIdx = 0;
    blocksize_ = rhsIndex_.size();
    std::vector<int> vldIndex( blocksize_ );
    std::vector<int> newIndex( blocksize_ );
    std::vector<int> iIndex( blocksize_ );
    for (int i=0; i<blocksize_; ++i) {
      if (rhsIndex_[i] > -1) {
        vldIndex[validIdx] = rhsIndex_[i];
        newIndex[validIdx] = i;
        validIdx++;
      }
      else {
        iIndex[ivalidIdx] = i;
        ivalidIdx++;
      }
    }
    vldIndex.resize(validIdx);
    newIndex.resize(validIdx);   
    iIndex.resize(ivalidIdx);
    num2Solve_ = validIdx;

    // Create the new linear system using index
    if (num2Solve_ != blocksize_) {
      newIndex.resize(num2Solve_);
      vldIndex.resize(num2Solve_);
      //
      // First create multivectors of blocksize.
      // Fill the RHS with random vectors LHS with zero vectors.
      curX_ = MVT::Clone( *X_, blocksize_ );
      MVT::MvInit(*curX_);
      Teuchos::RCP<MV> tmpCurB = MVT::Clone( *B_, blocksize_ );
      MVT::MvRandom(*tmpCurB);
      //
      // Now put in the part of B into curB 
      Teuchos::RCP<const MV> tptr = MVT::CloneView( *B_, vldIndex );
      MVT::SetBlock( *tptr, newIndex, *tmpCurB );
      curB_ = tmpCurB;
      //
      // Now put in the part of X into curX
      tptr = MVT::CloneView( *X_, vldIndex );
      MVT::SetBlock( *tptr, newIndex, *curX_ );
      //
      solutionUpdated_ = false;
    }
    else {
      curX_ = MVT::CloneViewNonConst( *X_, rhsIndex_ );
      curB_ = MVT::CloneView( *B_, rhsIndex_ );
    }
    //
    // Increment the number of linear systems that have been loaded into this object.
    //
    lsNum_++;
  }


  template <class ScalarType, class MV, class OP>
  void LinearProblem<ScalarType,MV,OP>::setCurrLS() 
  { 
    //
    // We only need to copy the solutions back if the linear systems of
    // interest are less than the block size.
    //
    if (num2Solve_ < blocksize_) {
      //
      // Get a view of the current solutions and correction std::vector.
      //
      int validIdx = 0;
      std::vector<int> newIndex( num2Solve_ );
      std::vector<int> vldIndex( num2Solve_ );
      for (int i=0; i<blocksize_; ++i) {
        if ( rhsIndex_[i] > -1 ) { 
          vldIndex[validIdx] = rhsIndex_[i];
	  newIndex[validIdx] = i;
          validIdx++;
        }	
      }
      Teuchos::RCP<MV> tptr = MVT::CloneViewNonConst( *curX_, newIndex );
      MVT::SetBlock( *tptr, vldIndex, *X_ );
    }
    //
    // Clear the current vectors of this linear system so that any future calls
    // to get the vectors for this system return null pointers.
    //
    curX_ = Teuchos::null;
    curB_ = Teuchos::null;
    rhsIndex_.resize(0);
  }
  

  template <class ScalarType, class MV, class OP>
  Teuchos::RCP<MV> 
  LinearProblem<ScalarType,MV,OP>::
  updateSolution (const Teuchos::RCP<MV>& update, 
		  bool updateLP,
		  ScalarType scale)
  { 
    using Teuchos::RCP;
    using Teuchos::null;

    RCP<MV> newSoln;
    if (update.is_null())
      { // The caller didn't supply an update vector, so we assume
	// that the current solution curX_ is unchanged, and return a
	// pointer to it.
	newSoln = curX_;
      }
    else // the update vector is NOT null.
      { 
	if (updateLP) // The caller wants us to update the linear problem.
	  { 
	    if (RP_.is_null()) 
	      { // There is no right preconditioner.
		// curX_ := curX_ + scale * update.
		MVT::MvAddMv( 1.0, *curX_, scale, *update, *curX_ ); 
	      }
	    else 
	      { // There is indeed a right preconditioner, so apply it
		// before computing the new solution.
		RCP<MV> rightPrecUpdate = 
		  MVT::Clone (*update, MVT::GetNumberVecs (*update));
		{
#ifdef BELOS_TEUCHOS_TIME_MONITOR
		  Teuchos::TimeMonitor PrecTimer (*timerPrec_);
#endif
		  OPT::Apply( *RP_, *update, *rightPrecUpdate ); 
		}
		// curX_ := curX_ + scale * rightPrecUpdate.
		MVT::MvAddMv( 1.0, *curX_, scale, *rightPrecUpdate, *curX_ ); 
	      } 
	    solutionUpdated_ = true; 
	    newSoln = curX_;
	  }
	else 
	  { // Rather than updating our stored current solution curX_,
	    // we make a copy and compute the new solution in the
	    // copy, without modifying curX_.
	    newSoln = MVT::Clone (*update, MVT::GetNumberVecs (*update));
	    if (RP_.is_null())
	      { // There is no right preconditioner.
		// newSoln := curX_ + scale * update.
		MVT::MvAddMv( 1.0, *curX_, scale, *update, *newSoln ); 
	      }
	    else 
	      { // There is indeed a right preconditioner, so apply it
		// before computing the new solution.
		RCP<MV> rightPrecUpdate = 
		  MVT::Clone (*update, MVT::GetNumberVecs (*update));
		{
#ifdef BELOS_TEUCHOS_TIME_MONITOR
		  Teuchos::TimeMonitor PrecTimer(*timerPrec_);
#endif
		  OPT::Apply( *RP_, *update, *rightPrecUpdate ); 
		}
		// newSoln := curX_ + scale * rightPrecUpdate.
		MVT::MvAddMv( 1.0, *curX_, scale, *rightPrecUpdate, *newSoln ); 
	      } 
	  }
      }
    return newSoln;
  }
  
  template <class ScalarType, class MV, class OP>
  void LinearProblem<ScalarType,MV,OP>::setLabel(const std::string& label)
  {
    if (label != label_) {
      label_ = label;
      // Create new timers if they have already been created.
      if (timerOp_ != Teuchos::null) {
        std::string opLabel = label_ + ": Operation Op*x";
#ifdef BELOS_TEUCHOS_TIME_MONITOR
        timerOp_ = Teuchos::TimeMonitor::getNewCounter( opLabel );
#endif
      }
      if (timerPrec_ != Teuchos::null) {
        std::string precLabel = label_ + ": Operation Prec*x";
#ifdef BELOS_TEUCHOS_TIME_MONITOR
        timerPrec_ = Teuchos::TimeMonitor::getNewCounter( precLabel );
#endif
      }
    }
  }

  template <class ScalarType, class MV, class OP>
  bool 
  LinearProblem<ScalarType,MV,OP>::
  setProblem (const Teuchos::RCP<MV> &newX, 
	      const Teuchos::RCP<const MV> &newB)
  {
    // Create timers if the haven't been created yet.
    if (timerOp_ == Teuchos::null) {
      std::string opLabel = label_ + ": Operation Op*x";
#ifdef BELOS_TEUCHOS_TIME_MONITOR
      timerOp_ = Teuchos::TimeMonitor::getNewCounter( opLabel );
#endif
    }
    if (timerPrec_ == Teuchos::null) {
      std::string precLabel = label_ + ": Operation Prec*x";
#ifdef BELOS_TEUCHOS_TIME_MONITOR
      timerPrec_ = Teuchos::TimeMonitor::getNewCounter( precLabel );
#endif
    }

    // Set the linear system using the arguments newX and newB
    if (newX != Teuchos::null)
      X_ = newX;
    if (newB != Teuchos::null)
      B_ = newB;

    // Invalidate the current linear system indices and multivectors.
    rhsIndex_.resize(0);
    curX_ = Teuchos::null;
    curB_ = Teuchos::null;

    // If we didn't set a matrix A, a left-hand side X, or a
    // right-hand side B, then we didn't set the problem.
    if (A_ == Teuchos::null || X_ == Teuchos::null || B_ == Teuchos::null) {
      isSet_ = false;
      return isSet_;
    }

    // Reset whether the solution has been updated.  (We're just
    // setting the problem now, so of course we haven't updated the
    // solution yet.)
    solutionUpdated_ = false;
    
    // Compute the initial residuals.
    if (R0_==Teuchos::null || MVT::GetNumberVecs( *R0_ )!=MVT::GetNumberVecs( *B_ )) {
      R0_ = MVT::Clone( *B_, MVT::GetNumberVecs( *B_ ) );
    }
    computeCurrResVec( &*R0_, &*X_, &*B_ );

    if (LP_!=Teuchos::null) {
      if (PR0_==Teuchos::null || MVT::GetNumberVecs( *PR0_ )!=MVT::GetNumberVecs( *B_ )) {
        PR0_ = MVT::Clone( *B_, MVT::GetNumberVecs( *B_ ) );
      }
      {
#ifdef BELOS_TEUCHOS_TIME_MONITOR
        Teuchos::TimeMonitor PrecTimer(*timerPrec_);
#endif
        OPT::Apply( *LP_, *R0_, *PR0_ );
      }
    } 
    else {
      PR0_ = R0_;
    }    

    // The problem has been set and is ready for use.
    isSet_ = true;
    
    // Return isSet.
    return isSet_;
  }
  
  template <class ScalarType, class MV, class OP>
  Teuchos::RCP<MV> LinearProblem<ScalarType,MV,OP>::getCurrLHSVec()
  {
    if (isSet_) {
      return curX_;
    }
    else {
      return Teuchos::null;
    }
  }
  
  template <class ScalarType, class MV, class OP>
  Teuchos::RCP<const MV> LinearProblem<ScalarType,MV,OP>::getCurrRHSVec()
  {
    if (isSet_) {
      return curB_;
    }
    else {
      return Teuchos::null;
    }
  }
  
  template <class ScalarType, class MV, class OP>
  void LinearProblem<ScalarType,MV,OP>::apply( const MV& x, MV& y ) const
  {
    using Teuchos::null;
    using Teuchos::RCP;

    const bool leftPrec = LP_ != null;
    const bool rightPrec = RP_ != null;

    // We only need a temporary vector for intermediate results if
    // there is a left or right preconditioner.  We really should just
    // keep this temporary vector around instead of allocating it each
    // time.
    RCP<MV> ytemp = (leftPrec || rightPrec) ? MVT::Clone (y, MVT::GetNumberVecs (y)) : null;

    //
    // No preconditioning.
    // 
    if (!leftPrec && !rightPrec){ 
#ifdef BELOS_TEUCHOS_TIME_MONITOR
      Teuchos::TimeMonitor OpTimer(*timerOp_);
#endif
      OPT::Apply( *A_, x, y );
    }
    //
    // Preconditioning is being done on both sides
    //
    else if( leftPrec && rightPrec ) 
      {
        {
#ifdef BELOS_TEUCHOS_TIME_MONITOR
          Teuchos::TimeMonitor PrecTimer(*timerPrec_);
#endif
	  OPT::Apply( *RP_, x, y );   
        }
        {
#ifdef BELOS_TEUCHOS_TIME_MONITOR
          Teuchos::TimeMonitor OpTimer(*timerOp_);
#endif
	  OPT::Apply( *A_, y, *ytemp );
        }
        {
#ifdef BELOS_TEUCHOS_TIME_MONITOR
          Teuchos::TimeMonitor PrecTimer(*timerPrec_);
#endif
	  OPT::Apply( *LP_, *ytemp, y );
        }
      }
    //
    // Preconditioning is only being done on the left side
    //
    else if( leftPrec ) 
      {
        {
#ifdef BELOS_TEUCHOS_TIME_MONITOR
          Teuchos::TimeMonitor OpTimer(*timerOp_);
#endif
	  OPT::Apply( *A_, x, *ytemp );
        }
        {
#ifdef BELOS_TEUCHOS_TIME_MONITOR
          Teuchos::TimeMonitor PrecTimer(*timerPrec_);
#endif
	  OPT::Apply( *LP_, *ytemp, y );
        }
      }
    //
    // Preconditioning is only being done on the right side
    //
    else 
      {
        {
#ifdef BELOS_TEUCHOS_TIME_MONITOR
          Teuchos::TimeMonitor PrecTimer(*timerPrec_);
#endif
	  OPT::Apply( *RP_, x, *ytemp );
        }
        {
#ifdef BELOS_TEUCHOS_TIME_MONITOR
          Teuchos::TimeMonitor OpTimer(*timerOp_);
#endif
      	  OPT::Apply( *A_, *ytemp, y );
        }
      }  
  }
  
  template <class ScalarType, class MV, class OP>
  void LinearProblem<ScalarType,MV,OP>::applyOp( const MV& x, MV& y ) const {
    if (A_.get()) {
#ifdef BELOS_TEUCHOS_TIME_MONITOR
      Teuchos::TimeMonitor OpTimer(*timerOp_);
#endif
      OPT::Apply( *A_,x, y);   
    }
    else {
      MVT::MvAddMv( Teuchos::ScalarTraits<ScalarType>::one(), x, 
		    Teuchos::ScalarTraits<ScalarType>::zero(), x, y );
    }
  }
  
  template <class ScalarType, class MV, class OP>
  void LinearProblem<ScalarType,MV,OP>::applyLeftPrec( const MV& x, MV& y ) const {
    if (LP_!=Teuchos::null) {
#ifdef BELOS_TEUCHOS_TIME_MONITOR
      Teuchos::TimeMonitor PrecTimer(*timerPrec_);
#endif
      return ( OPT::Apply( *LP_,x, y) );
    }
    else {
      MVT::MvAddMv( Teuchos::ScalarTraits<ScalarType>::one(), x, 
		    Teuchos::ScalarTraits<ScalarType>::zero(), x, y );
    }
  }
  
  template <class ScalarType, class MV, class OP>
  void LinearProblem<ScalarType,MV,OP>::applyRightPrec( const MV& x, MV& y ) const {
    if (RP_!=Teuchos::null) {
#ifdef BELOS_TEUCHOS_TIME_MONITOR
      Teuchos::TimeMonitor PrecTimer(*timerPrec_);
#endif
      return ( OPT::Apply( *RP_,x, y) );
    }
    else {
      MVT::MvAddMv( Teuchos::ScalarTraits<ScalarType>::one(), x, 
		    Teuchos::ScalarTraits<ScalarType>::zero(), x, y );
    }
  }
  
  template <class ScalarType, class MV, class OP>
  void LinearProblem<ScalarType,MV,OP>::computeCurrPrecResVec( MV* R, const MV* X, const MV* B ) const {

    if (R) {
      if (X && B) // The entries are specified, so compute the residual of Op(A)X = B
	{
	  if (LP_!=Teuchos::null)
	    {
	      Teuchos::RCP<MV> R_temp = MVT::Clone( *B, MVT::GetNumberVecs( *B ) );
              {
#ifdef BELOS_TEUCHOS_TIME_MONITOR
                Teuchos::TimeMonitor OpTimer(*timerOp_);
#endif
	        OPT::Apply( *A_, *X, *R_temp );
              }
	      MVT::MvAddMv( -1.0, *R_temp, 1.0, *B, *R_temp );
              {
#ifdef BELOS_TEUCHOS_TIME_MONITOR
                Teuchos::TimeMonitor PrecTimer(*timerPrec_);
#endif
	        OPT::Apply( *LP_, *R_temp, *R );
              }
	    }
	  else 
	    {
              {
#ifdef BELOS_TEUCHOS_TIME_MONITOR
                Teuchos::TimeMonitor OpTimer(*timerOp_);
#endif
	        OPT::Apply( *A_, *X, *R );
              }
	      MVT::MvAddMv( -1.0, *R, 1.0, *B, *R );
	    }
	}
      else { 
	// The solution and right-hand side may not be specified, check and use which ones exist.
	Teuchos::RCP<const MV> localB, localX;
	if (B)
	  localB = Teuchos::rcp( B, false );
	else
	  localB = curB_;
	
	if (X)
	  localX = Teuchos::rcp( X, false );
	else
	  localX = curX_;
	
	if (LP_!=Teuchos::null)
	  {
	    Teuchos::RCP<MV> R_temp = MVT::Clone( *localB, MVT::GetNumberVecs( *localB ) );
            {
#ifdef BELOS_TEUCHOS_TIME_MONITOR
              Teuchos::TimeMonitor OpTimer(*timerOp_);
#endif
	      OPT::Apply( *A_, *localX, *R_temp );
            }
	    MVT::MvAddMv( -1.0, *R_temp, 1.0, *localB, *R_temp );
            {
#ifdef BELOS_TEUCHOS_TIME_MONITOR
              Teuchos::TimeMonitor PrecTimer(*timerPrec_);
#endif
	      OPT::Apply( *LP_, *R_temp, *R );
            }
	  }
	else 
	  {
            {
#ifdef BELOS_TEUCHOS_TIME_MONITOR
              Teuchos::TimeMonitor OpTimer(*timerOp_);
#endif
  	      OPT::Apply( *A_, *localX, *R );
            }
	    MVT::MvAddMv( -1.0, *R, 1.0, *localB, *R );
	  }
      }    
    } 
  }
  
  
  template <class ScalarType, class MV, class OP>
  void LinearProblem<ScalarType,MV,OP>::computeCurrResVec( MV* R, const MV* X, const MV* B ) const {

    if (R) {
      if (X && B) // The entries are specified, so compute the residual of Op(A)X = B
	{
          {
#ifdef BELOS_TEUCHOS_TIME_MONITOR
            Teuchos::TimeMonitor OpTimer(*timerOp_);
#endif
	    OPT::Apply( *A_, *X, *R );
          }
	  MVT::MvAddMv( -1.0, *R, 1.0, *B, *R );
	}
      else { 
	// The solution and right-hand side may not be specified, check and use which ones exist.
	Teuchos::RCP<const MV> localB, localX;
	if (B)
	  localB = Teuchos::rcp( B, false );
	else
	  localB = curB_;
	
	if (X)
	  localX = Teuchos::rcp( X, false );
	else
	  localX = curX_;
	  
        {
#ifdef BELOS_TEUCHOS_TIME_MONITOR
          Teuchos::TimeMonitor OpTimer(*timerOp_);
#endif
	  OPT::Apply( *A_, *localX, *R );
        }
	MVT::MvAddMv( -1.0, *R, 1.0, *localB, *R );
      }    
    }
  }
  
} // end Belos namespace

#endif /* BELOS_LINEAR_PROBLEM_HPP */