This file is indexed.

/usr/include/trilinos/BelosPseudoBlockGmresIter.hpp is in libtrilinos-belos-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
//@HEADER
// ************************************************************************
//
//                 Belos: Block Linear Solvers Package
//                  Copyright 2004 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER

#ifndef BELOS_PSEUDO_BLOCK_GMRES_ITER_HPP
#define BELOS_PSEUDO_BLOCK_GMRES_ITER_HPP

/*! \file BelosPseudoBlockGmresIter.hpp
    \brief Belos concrete class for performing the pseudo-block GMRES iteration.
*/

#include "BelosConfigDefs.hpp"
#include "BelosTypes.hpp"
#include "BelosIteration.hpp"

#include "BelosLinearProblem.hpp"
#include "BelosMatOrthoManager.hpp"
#include "BelosOutputManager.hpp"
#include "BelosStatusTest.hpp"
#include "BelosOperatorTraits.hpp"
#include "BelosMultiVecTraits.hpp"

#include "Teuchos_BLAS.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"
#include "Teuchos_SerialDenseVector.hpp"
#include "Teuchos_ScalarTraits.hpp"
#include "Teuchos_ParameterList.hpp"
#include "Teuchos_TimeMonitor.hpp"

/*!	
  \class Belos::PseudoBlockGmresIter
  
  \brief This class implements the pseudo-block GMRES iteration, where a
  block Krylov subspace is constructed for all of the linear systems simultaneously.  
  The QR decomposition of each block, upper Hessenberg matrix is performed each iteration 
  to update the least squares system and give the current linear system residuals.

  \ingroup belos_solver_framework
 
  \author Heidi Thornquist
*/

namespace Belos {
  
  //! @name PseudoBlockGmresIter Structures 
  //@{ 
  
  /** \brief Structure to contain pointers to PseudoBlockGmresIter state variables.
   *
   * This struct is utilized by PseudoBlockGmresIter::initialize() and PseudoBlockGmresIter::getState().
   */
  template <class ScalarType, class MV>
  struct PseudoBlockGmresIterState {

    typedef Teuchos::ScalarTraits<ScalarType> SCT;
    typedef typename SCT::magnitudeType MagnitudeType;

    /*! \brief The current dimension of the reduction.
     *
     * This should always be equal to PseudoBlockGmresIter::getCurSubspaceDim()
     */
    int curDim;
    /*! \brief The current Krylov basis. */
    std::vector<Teuchos::RCP<const MV> > V;
    /*! \brief The current Hessenberg matrix. 
     *
     * The \c curDim by \c curDim leading submatrix of H is the 
     * projection of problem->getOperator() by the first \c curDim vectors in V. 
     */
    std::vector<Teuchos::RCP<const Teuchos::SerialDenseMatrix<int,ScalarType> > > H;
    /*! \brief The current upper-triangular matrix from the QR reduction of H. */
    std::vector<Teuchos::RCP<const Teuchos::SerialDenseMatrix<int,ScalarType> > > R;
    /*! \brief The current right-hand side of the least squares system RY = Z. */
    std::vector<Teuchos::RCP<const Teuchos::SerialDenseVector<int,ScalarType> > > Z;
    /*! \brief The current Given's rotation coefficients. */    
    std::vector<Teuchos::RCP<const Teuchos::SerialDenseVector<int,ScalarType> > > sn;
    std::vector<Teuchos::RCP<const Teuchos::SerialDenseVector<int,MagnitudeType> > > cs;

    PseudoBlockGmresIterState() : curDim(0), V(0),
				  H(0), R(0), Z(0),
                                  sn(0), cs(0)
    {}
  };
  
  //! @name PseudoBlockGmresIter Exceptions
  //@{ 
  
  /** \brief PseudoBlockGmresIterInitFailure is thrown when the PseudoBlockGmresIter object is unable to
   * generate an initial iterate in the PseudoBlockGmresIter::initialize() routine. 
   *
   * This std::exception is thrown from the PseudoBlockGmresIter::initialize() method, which is
   * called by the user or from the PseudoBlockGmresIter::iterate() method if isInitialized()
   * == \c false.
   *
   * In the case that this std::exception is thrown, 
   * PseudoBlockGmresIter::isInitialized() will be \c false and the user will need to provide
   * a new initial iterate to the iteration.
   *
   */
  class PseudoBlockGmresIterInitFailure : public BelosError {public:
    PseudoBlockGmresIterInitFailure(const std::string& what_arg) : BelosError(what_arg)
    {}};
  
  /** \brief PseudoBlockGmresIterOrthoFailure is thrown when the orthogonalization manager is
   * unable to generate orthonormal columns from the new basis vectors.
   *
   * This std::exception is thrown from the PseudoBlockGmresIter::iterate() method.
   *
   */
  class PseudoBlockGmresIterOrthoFailure : public BelosError {public:
    PseudoBlockGmresIterOrthoFailure(const std::string& what_arg) : BelosError(what_arg)
    {}};
  
  //@}
  
  
  template<class ScalarType, class MV, class OP>
  class PseudoBlockGmresIter : virtual public Iteration<ScalarType,MV,OP> {
    
  public:
    
    //
    // Convenience typedefs
    //
    typedef MultiVecTraits<ScalarType,MV> MVT;
    typedef OperatorTraits<ScalarType,MV,OP> OPT;
    typedef Teuchos::ScalarTraits<ScalarType> SCT;
    typedef typename SCT::magnitudeType MagnitudeType;
    
    //! @name Constructors/Destructor
    //@{ 
    
    /*! \brief %PseudoBlockGmresIter constructor with linear problem, solver utilities, and parameter list of solver options.
     *
     * This constructor takes pointers required by the linear solver, in addition
     * to a parameter list of options for the linear solver. These options include the following:
     *   - "Block Size" - an \c int specifying the block size used by the algorithm. This can also be specified using the setBlockSize() method. Default: 1
     *   - "Num Blocks" - an \c int specifying the maximum number of blocks allocated for the solver basis. Default: 25
     *   - "Restart Timers" = a \c bool specifying whether the timers should be restarted each time iterate() is called. Default: false
     */
    PseudoBlockGmresIter( const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem, 
			  const Teuchos::RCP<OutputManager<ScalarType> > &printer,
			  const Teuchos::RCP<StatusTest<ScalarType,MV,OP> > &tester,
			  const Teuchos::RCP<MatOrthoManager<ScalarType,MV,OP> > &ortho,
			  Teuchos::ParameterList &params );
    
    //! Destructor.
    virtual ~PseudoBlockGmresIter() {};
    //@}
    
    
    //! @name Solver methods
    //@{ 
    
    /*! \brief This method performs block Gmres iterations until the status
     * test indicates the need to stop or an error occurs (in which case, an
     * std::exception is thrown).
     *
     * iterate() will first determine whether the solver is inintialized; if
     * not, it will call initialize() using default arguments. After
     * initialization, the solver performs block Gmres iterations until the
     * status test evaluates as ::Passed, at which point the method returns to
     * the caller. 
     *
     * The block Gmres iteration proceeds as follows:
     * -# The operator problem->applyOp() is applied to the newest \c blockSize vectors in the Krylov basis.
     * -# The resulting vectors are orthogonalized against the previous basis vectors, and made orthonormal.
     * -# The Hessenberg matrix is updated.
     * -# The least squares system is updated.
     *
     * The status test is queried at the beginning of the iteration.
     *
     * Possible exceptions thrown include the PseudoBlockGmresIterOrthoFailure.
     *
     */
    void iterate();
    
    /*! \brief Initialize the solver to an iterate, providing a complete state.
     *
     * The %PseudoBlockGmresIter contains a certain amount of state, consisting of the current 
     * Krylov basis and the associated Hessenberg matrix.
     *
     * initialize() gives the user the opportunity to manually set these,
     * although this must be done with caution, abiding by the rules given
     * below. All notions of orthogonality and orthonormality are derived from
     * the inner product specified by the orthogonalization manager.
     *
     * \post 
     * <li>isInitialized() == \c true (see post-conditions of isInitialize())
     *
     * The user has the option of specifying any component of the state using
     * initialize(). However, these arguments are assumed to match the
     * post-conditions specified under isInitialized(). Any necessary component of the
     * state not given to initialize() will be generated.
     *
     * \note For any pointer in \c newstate which directly points to the multivectors in 
     * the solver, the data is not copied.
     */
    void initialize(const PseudoBlockGmresIterState<ScalarType,MV> & newstate);
    
    /*! \brief Initialize the solver with the initial vectors from the linear problem
     *  or random data.
     */
    void initialize()
    {
      PseudoBlockGmresIterState<ScalarType,MV> empty;
      initialize(empty);
    }
    
    /*! \brief Get the current state of the linear solver.
     *
     * The data is only valid if isInitialized() == \c true.
     *
     * \returns A PseudoBlockGmresIterState object containing const pointers to the current
     * solver state.
     */
    PseudoBlockGmresIterState<ScalarType,MV> getState() const {
      PseudoBlockGmresIterState<ScalarType,MV> state;
      state.curDim = curDim_;
      state.V.resize(numRHS_);
      state.H.resize(numRHS_);
      state.Z.resize(numRHS_);
      state.sn.resize(numRHS_);
      state.cs.resize(numRHS_);  
      for (int i=0; i<numRHS_; ++i) {
	state.V[i] = V_[i];
	state.H[i] = H_[i];
	state.Z[i] = Z_[i];
        state.sn[i] = sn_[i];
        state.cs[i] = cs_[i];
      }
      return state;
    }
    
    //@}
    
    
    //! @name Status methods
    //@{ 
    
    //! Get the current iteration count.
    int getNumIters() const { return iter_; }
    
    //! Reset the iteration count.
    void resetNumIters( int iter = 0 ) { iter_ = iter; }
    
    /// \brief Get the norms of the "native" residual vectors.
    ///
    /// If norms != NULL, fill *norms with the native residual norms.
    /// There are numRHS_ of them.  *norms will be resized if it has
    /// too few entries to hold the data.
    ///
    /// For an explanation of "native" vs. "exact" (also known as
    /// "implicit" vs. "explicit") residuals, see the documentation of
    /// \c PseudoBlockGmresSolMgr::isLOADetected().  In brief:
    /// "Native" residuals are cheaper to compute than "exact"
    /// residuals, but the two may differ, especially when using a
    /// left preconditioner. 
    ///
    /// \return Teuchos::null (always, regardless whether norms ==
    ///   NULL).  We only return something in order to satisfy the
    ///   Iteration interface.  \c PseudoBlockGmresSolMgr knows that
    ///   this method always returns null.
    Teuchos::RCP<const MV> getNativeResiduals( std::vector<MagnitudeType> *norms ) const;
    
    //! Get the current update to the linear system.
    /*! \note Some solvers, like GMRES, do not compute updates to the solution every iteration.
      This method forces its computation.  Other solvers, like CG, update the solution
      each iteration, so this method will return a zero vector indicating that the linear
      problem contains the current solution.
    */
    Teuchos::RCP<MV> getCurrentUpdate() const;
    
    //! Method for updating QR factorization of upper Hessenberg matrix
    /*! \note If \c dim >= \c getCurSubspaceDim() and \c dim < \c getMaxSubspaceDim(), then 
      the \c dim-th equations of the least squares problem will be updated.
    */
    void updateLSQR( int dim = -1 );
    
    //! Get the dimension of the search subspace used to generate the current solution to the linear problem.
    int getCurSubspaceDim() const { 
      if (!initialized_) return 0;
      return curDim_;
    };
    
    //! Get the maximum dimension allocated for the search subspace.
    int getMaxSubspaceDim() const { return numBlocks_; }
    
    //@}
    
    
    //! @name Accessor methods
    //@{ 
    
    //! Get a constant reference to the linear problem.
    const LinearProblem<ScalarType,MV,OP>& getProblem() const { return *lp_; }
    
    //! Get the blocksize to be used by the iterative solver in solving this linear problem.
    int getBlockSize() const { return 1; }
    
    //! \brief Set the blocksize.
    void setBlockSize(int blockSize) { 
      TEUCHOS_TEST_FOR_EXCEPTION(blockSize!=1,std::invalid_argument,
			 "Belos::PseudoBlockGmresIter::setBlockSize(): Cannot use a block size that is not one.");
    }
    
    //! Get the maximum number of blocks used by the iterative solver in solving this linear problem.
    int getNumBlocks() const { return numBlocks_; }
    
    //! \brief Set the maximum number of blocks used by the iterative solver.
    void setNumBlocks(int numBlocks);
    
    //! States whether the solver has been initialized or not.
    bool isInitialized() { return initialized_; }
    
    //@}
    
  private:
    
    //
    // Classes inputed through constructor that define the linear problem to be solved.
    //
    const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> >    lp_;
    const Teuchos::RCP<OutputManager<ScalarType> >          om_;
    const Teuchos::RCP<StatusTest<ScalarType,MV,OP> >       stest_;
    const Teuchos::RCP<OrthoManager<ScalarType,MV> >        ortho_;
    
    //
    // Algorithmic parameters
    //  
    // numRHS_ is the current number of linear systems being solved.
    int numRHS_;
    // numBlocks_ is the size of the allocated space for the Krylov basis, in blocks.
    int numBlocks_; 
    
    // Storage for QR factorization of the least squares system.
    std::vector<Teuchos::RCP<Teuchos::SerialDenseVector<int,ScalarType> > > sn_;
    std::vector<Teuchos::RCP<Teuchos::SerialDenseVector<int,MagnitudeType> > > cs_;
    
    // Pointers to a work vector used to improve aggregate performance.
    Teuchos::RCP<MV> U_vec_, AU_vec_;    

    // Pointers to the current right-hand side and solution multivecs being solved for.
    Teuchos::RCP<MV> cur_block_rhs_, cur_block_sol_;

    // 
    // Current solver state
    //
    // initialized_ specifies that the basis vectors have been initialized and the iterate() routine
    // is capable of running; _initialize is controlled  by the initialize() member method
    // For the implications of the state of initialized_, please see documentation for initialize()
    bool initialized_;
    
    // Current subspace dimension, and number of iterations performed.
    int curDim_, iter_;

    // 
    // State Storage
    //
    std::vector<Teuchos::RCP<MV> > V_;
    //
    // Projected matrices
    // H_ : Projected matrix from the Krylov factorization AV = VH + FE^T
    //
    std::vector<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > H_;
    // 
    // QR decomposition of Projected matrices for solving the least squares system HY = B.
    // R_: Upper triangular reduction of H
    // Z_: Q applied to right-hand side of the least squares system
    std::vector<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > R_;
    std::vector<Teuchos::RCP<Teuchos::SerialDenseVector<int,ScalarType> > > Z_;  
  };
  
  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Constructor.
  template<class ScalarType, class MV, class OP>
  PseudoBlockGmresIter<ScalarType,MV,OP>::PseudoBlockGmresIter(const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem, 
							       const Teuchos::RCP<OutputManager<ScalarType> > &printer,
							       const Teuchos::RCP<StatusTest<ScalarType,MV,OP> > &tester,
							       const Teuchos::RCP<MatOrthoManager<ScalarType,MV,OP> > &ortho,
							       Teuchos::ParameterList &params ):
    lp_(problem),
    om_(printer),
    stest_(tester),
    ortho_(ortho),
    numRHS_(0),
    numBlocks_(0),
    initialized_(false),
    curDim_(0),
    iter_(0)
  {
    // Get the maximum number of blocks allowed for each Krylov subspace
    TEUCHOS_TEST_FOR_EXCEPTION(!params.isParameter("Num Blocks"), std::invalid_argument,
                       "Belos::PseudoBlockGmresIter::constructor: mandatory parameter 'Num Blocks' is not specified.");
    int nb = Teuchos::getParameter<int>(params, "Num Blocks");

    setNumBlocks( nb );
  }
  
  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Set the block size and make necessary adjustments.
  template <class ScalarType, class MV, class OP>
  void PseudoBlockGmresIter<ScalarType,MV,OP>::setNumBlocks (int numBlocks)
  {
    // This routine only allocates space; it doesn't not perform any computation
    // any change in size will invalidate the state of the solver.
    
    TEUCHOS_TEST_FOR_EXCEPTION(numBlocks <= 0, std::invalid_argument, "Belos::PseudoBlockGmresIter::setNumBlocks was passed a non-positive argument.");

    numBlocks_ = numBlocks;
    curDim_ = 0;

    initialized_ = false;
  }

  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Get the current update from this subspace.
  template <class ScalarType, class MV, class OP>
  Teuchos::RCP<MV> PseudoBlockGmresIter<ScalarType,MV,OP>::getCurrentUpdate() const
  {
    //
    // If this is the first iteration of the Arnoldi factorization, 
    // there is no update, so return Teuchos::null. 
    //
    Teuchos::RCP<MV> currentUpdate = Teuchos::null;
    if (curDim_==0) { 
      return currentUpdate; 
    } else {
      currentUpdate = MVT::Clone(*(V_[0]), numRHS_);
      std::vector<int> index(1), index2(curDim_);
      for (int i=0; i<curDim_; ++i) {
        index2[i] = i;
      }
      const ScalarType one = Teuchos::ScalarTraits<ScalarType>::one();
      const ScalarType zero = Teuchos::ScalarTraits<ScalarType>::zero();
      Teuchos::BLAS<int,ScalarType> blas;
      
      for (int i=0; i<numRHS_; ++i) {
        index[0] = i;
        Teuchos::RCP<MV> cur_block_copy_vec = MVT::CloneViewNonConst( *currentUpdate, index );
        //
        //  Make a view and then copy the RHS of the least squares problem.  DON'T OVERWRITE IT!
        //
        Teuchos::SerialDenseVector<int,ScalarType> y( Teuchos::Copy, Z_[i]->values(), curDim_ );
        //
        //  Solve the least squares problem and compute current solutions.
        //
        blas.TRSM( Teuchos::LEFT_SIDE, Teuchos::UPPER_TRI, Teuchos::NO_TRANS,
	           Teuchos::NON_UNIT_DIAG, curDim_, 1, one,  
		   H_[i]->values(), H_[i]->stride(), y.values(), y.stride() );
	
	Teuchos::RCP<const MV> Vjp1 = MVT::CloneView( *V_[i], index2 );
	MVT::MvTimesMatAddMv( one, *Vjp1, y, zero, *cur_block_copy_vec );
      }
    }
    return currentUpdate;
  }
  

  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Get the native residuals stored in this iteration.  
  // Note:  No residual vector will be returned by Gmres.
  template <class ScalarType, class MV, class OP>
  Teuchos::RCP<const MV> 
  PseudoBlockGmresIter<ScalarType,MV,OP>::
  getNativeResiduals (std::vector<MagnitudeType> *norms) const 
  {
    typedef typename Teuchos::ScalarTraits<ScalarType> STS;

    if (norms)
      { // Resize the incoming std::vector if necessary.  The type
	// cast avoids the compiler warning resulting from a signed /
	// unsigned integer comparison.
	if (static_cast<int> (norms->size()) < numRHS_)
	  norms->resize (numRHS_); 

	Teuchos::BLAS<int, ScalarType> blas;
	for (int j = 0; j < numRHS_; ++j) 
	  {
	    const ScalarType curNativeResid = (*Z_[j])(curDim_);
	    (*norms)[j] = STS::magnitude (curNativeResid);
	  }
    }
    return Teuchos::null;
  }

  
  template <class ScalarType, class MV, class OP>
  void 
  PseudoBlockGmresIter<ScalarType,MV,OP>::
  initialize (const PseudoBlockGmresIterState<ScalarType,MV> & newstate)
  {
    using Teuchos::RCP;

    // (Re)set the number of right-hand sides, by interrogating the
    // current LinearProblem to solve.
    this->numRHS_ = MVT::GetNumberVecs (*(lp_->getCurrLHSVec()));

    // NOTE:  In PseudoBlockGmresIter, V and Z are required!!!  
    // Inconsistent multivectors widths and lengths will not be tolerated, and
    // will be treated with exceptions.
    //
    std::string errstr ("Belos::PseudoBlockGmresIter::initialize(): "
			"Specified multivectors must have a consistent "
			"length and width.");

    // Check that newstate has V and Z arrays with nonzero length.
    TEUCHOS_TEST_FOR_EXCEPTION((int)newstate.V.size()==0 || (int)newstate.Z.size()==0, 
		       std::invalid_argument,
                       "Belos::PseudoBlockGmresIter::initialize(): "
		       "V and/or Z was not specified in the input state; "
		       "the V and/or Z arrays have length zero.");

    // In order to create basis multivectors, we have to clone them
    // from some already existing multivector.  We require that at
    // least one of the right-hand side B and left-hand side X in the
    // LinearProblem be non-null.  Thus, we can clone from either B or
    // X.  We prefer to close from B, since B is in the range of the
    // operator A and the basis vectors should also be in the range of
    // A (the first basis vector is a scaled residual vector).
    // However, if B is not given, we will try our best by cloning
    // from X.
    RCP<const MV> lhsMV = lp_->getLHS();
    RCP<const MV> rhsMV = lp_->getRHS();

    // If the right-hand side is null, we make do with the left-hand
    // side, otherwise we use the right-hand side.
    RCP<const MV> vectorInBasisSpace = rhsMV.is_null() ? lhsMV : rhsMV;
    //RCP<const MV> tmp = ( (rhsMV!=Teuchos::null)? rhsMV: lhsMV );

    TEUCHOS_TEST_FOR_EXCEPTION(vectorInBasisSpace.is_null(), 
		       std::invalid_argument,
                       "Belos::PseudoBlockGmresIter::initialize(): "
		       "The linear problem to solve does not specify multi"
		       "vectors from which we can clone basis vectors.  The "
		       "right-hand side(s), left-hand side(s), or both should "
		       "be nonnull.");

    // Check the new dimension is not more that the maximum number of
    // allowable blocks.
    TEUCHOS_TEST_FOR_EXCEPTION(newstate.curDim > numBlocks_+1, 
		       std::invalid_argument, 
		       errstr);
    curDim_ = newstate.curDim;

    // Initialize the state storage.  If the subspace has not be
    // initialized before, generate it using the right-hand side or
    // left-hand side from the LinearProblem lp_ to solve.
    V_.resize(numRHS_);
    for (int i=0; i<numRHS_; ++i) {
      // Create a new vector if we need to.  We "need to" if the
      // current vector V_[i] is null, or if it doesn't have enough
      // columns.
      if (V_[i].is_null() || MVT::GetNumberVecs(*V_[i]) < numBlocks_ + 1) {
        V_[i] = MVT::Clone (*vectorInBasisSpace, numBlocks_ + 1);
      }
      // Check that the newstate vector newstate.V[i] has dimensions
      // consistent with those of V_[i].
      TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetGlobalLength(*newstate.V[i]) != MVT::GetGlobalLength(*V_[i]),
                          std::invalid_argument, errstr );
      TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetNumberVecs(*newstate.V[i]) < newstate.curDim,
                          std::invalid_argument, errstr );
      //
      // If newstate.V[i] and V_[i] are not identically the same
      // vector, then copy newstate.V[i] into V_[i].  
      //
      int lclDim = MVT::GetNumberVecs(*newstate.V[i]);
      if (newstate.V[i] != V_[i]) {
        // Only copy over the first block and print a warning.
        if (curDim_ == 0 && lclDim > 1) {
          om_->stream(Warnings) 
	    << "Belos::PseudoBlockGmresIter::initialize(): the solver was "
	    << "initialized with a kernel of " << lclDim 
	    << std::endl 
	    << "The block size however is only " << 1 
	    << std::endl
	    << "The last " << lclDim - 1 << " vectors will be discarded." 
	    << std::endl;
        }
        std::vector<int> nevind (curDim_ + 1);
        for (int j = 0; j < curDim_ + 1; ++j) 
	  nevind[j] = j;

        RCP<const MV> newV = MVT::CloneView (*newstate.V[i], nevind);
        RCP<MV> lclV = MVT::CloneViewNonConst( *V_[i], nevind );
        const ScalarType one = Teuchos::ScalarTraits<ScalarType>::one();
        const ScalarType zero = Teuchos::ScalarTraits<ScalarType>::zero();
        MVT::MvAddMv (one, *newV, zero, *newV, *lclV);

        // Done with local pointers
        lclV = Teuchos::null;
      }
    }


    // Check size of Z
    Z_.resize(numRHS_);
    for (int i=0; i<numRHS_; ++i) {
      // Create a vector if we need to.
      if (Z_[i] == Teuchos::null) {
	Z_[i] = Teuchos::rcp( new Teuchos::SerialDenseVector<int,ScalarType>() );
      }
      if (Z_[i]->length() < numBlocks_+1) {
	Z_[i]->shapeUninitialized(numBlocks_+1, 1); 
      }
      
      // Check that the newstate vector is consistent.
      TEUCHOS_TEST_FOR_EXCEPTION(newstate.Z[i]->numRows() < curDim_, std::invalid_argument, errstr);
      
      // Put data into Z_, make sure old information is not still hanging around.
      if (newstate.Z[i] != Z_[i]) {
	if (curDim_==0)
	  Z_[i]->putScalar();
	
        Teuchos::SerialDenseVector<int,ScalarType> newZ(Teuchos::View,newstate.Z[i]->values(),curDim_+1);
        Teuchos::RCP<Teuchos::SerialDenseVector<int,ScalarType> > lclZ;
        lclZ = Teuchos::rcp( new Teuchos::SerialDenseVector<int,ScalarType>(Teuchos::View,Z_[i]->values(),curDim_+1) );
        lclZ->assign(newZ);
	
        // Done with local pointers
	lclZ = Teuchos::null;
      }
    }


    // Check size of H
    H_.resize(numRHS_);
    for (int i=0; i<numRHS_; ++i) {
      // Create a matrix if we need to.
      if (H_[i] == Teuchos::null) {
	H_[i] = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>() );
      }
      if (H_[i]->numRows() < numBlocks_+1 || H_[i]->numCols() < numBlocks_) {
	H_[i]->shapeUninitialized(numBlocks_+1, numBlocks_);
      }
      
      // Put data into H_ if it exists, make sure old information is not still hanging around.
      if ((int)newstate.H.size() == numRHS_) {
	
	// Check that the newstate matrix is consistent.
	TEUCHOS_TEST_FOR_EXCEPTION((newstate.H[i]->numRows() < curDim_ || newstate.H[i]->numCols() < curDim_), std::invalid_argument, 
			   "Belos::PseudoBlockGmresIter::initialize(): Specified Hessenberg matrices must have a consistent size to the current subspace dimension");
	
	if (newstate.H[i] != H_[i]) {
	  // H_[i]->putScalar();
	  
	  Teuchos::SerialDenseMatrix<int,ScalarType> newH(Teuchos::View,*newstate.H[i],curDim_+1, curDim_);
	  Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > lclH;
	  lclH = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(Teuchos::View,*H_[i],curDim_+1, curDim_) );
	  lclH->assign(newH);
	  
	  // Done with local pointers
	  lclH = Teuchos::null;
	}
      }
    }      
    
    /////////////////////////////////
    // Reinitialize storage for least squares solve
    //
    cs_.resize(numRHS_);
    sn_.resize(numRHS_);
      
    // Copy over rotation angles if they exist
    if ((int)newstate.cs.size() == numRHS_ && (int)newstate.sn.size() == numRHS_) {
      for (int i=0; i<numRHS_; ++i) {
        if (cs_[i] != newstate.cs[i])
          cs_[i] = Teuchos::rcp( new Teuchos::SerialDenseVector<int,MagnitudeType>(*newstate.cs[i]) );
        if (sn_[i] != newstate.sn[i])
          sn_[i] = Teuchos::rcp( new Teuchos::SerialDenseVector<int,ScalarType>(*newstate.sn[i]) );
      }
    } 
      
    // Resize or create the vectors as necessary
    for (int i=0; i<numRHS_; ++i) {
      if (cs_[i] == Teuchos::null) 
        cs_[i] = Teuchos::rcp( new Teuchos::SerialDenseVector<int,MagnitudeType>(numBlocks_+1) );
      else
        cs_[i]->resize(numBlocks_+1);
      if (sn_[i] == Teuchos::null)
        sn_[i] = Teuchos::rcp( new Teuchos::SerialDenseVector<int,ScalarType>(numBlocks_+1) );
      else
        sn_[i]->resize(numBlocks_+1);
    }

    // the solver is initialized
    initialized_ = true;
      
      /*
	if (om_->isVerbosity( Debug ) ) {
      // Check almost everything here
      CheckList chk;
      chk.checkV = true;
      chk.checkArn = true;
      chk.checkAux = true;
      om_->print( Debug, accuracyCheck(chk, ": after initialize()") );
    }
    */

  }


  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Iterate until the status test informs us we should stop.
  template <class ScalarType, class MV, class OP>
  void PseudoBlockGmresIter<ScalarType,MV,OP>::iterate()
  {
    //
    // Allocate/initialize data structures
    //
    if (initialized_ == false) {
      initialize();
    }

    const ScalarType one = Teuchos::ScalarTraits<ScalarType>::one();
    const ScalarType zero = Teuchos::ScalarTraits<ScalarType>::zero();
    
    // Compute the current search dimension. 
    int searchDim = numBlocks_;
    //
    // Associate each initial block of V_[i] with U_vec[i]
    // Reset the index vector (this might have been changed if there was a restart)
    //
    std::vector<int> index(1);
    std::vector<int> index2(1);
    index[0] = curDim_;
    Teuchos::RCP<MV> U_vec = MVT::Clone( *V_[0], numRHS_ );

    // Create AU_vec to hold A*U_vec.
    Teuchos::RCP<MV> AU_vec = MVT::Clone( *V_[0], numRHS_ );

    for (int i=0; i<numRHS_; ++i) {
      index2[0] = i;
      Teuchos::RCP<const MV> tmp_vec = MVT::CloneView( *V_[i], index );
      Teuchos::RCP<MV> U_vec_view = MVT::CloneViewNonConst( *U_vec, index2 );
      MVT::MvAddMv( one, *tmp_vec, zero, *tmp_vec, *U_vec_view );
    }
    
    ////////////////////////////////////////////////////////////////
    // iterate until the status test tells us to stop.
    //
    // also break if our basis is full
    //
    while (stest_->checkStatus(this) != Passed && curDim_ < searchDim) {

      iter_++;
      //
      // Apply the operator to _work_vector
      //
      lp_->apply( *U_vec, *AU_vec );
      //
      //
      // Resize index.
      //
      int num_prev = curDim_+1;
      index.resize( num_prev );
      for (int i=0; i<num_prev; ++i) { 
	index[i] = i; 
      }
      //
      // Orthogonalize next Krylov vector for each right-hand side.
      //
      for (int i=0; i<numRHS_; ++i) {
	//
	// Get previous Krylov vectors.
	//
	Teuchos::RCP<const MV> V_prev = MVT::CloneView( *V_[i], index );
	Teuchos::Array< Teuchos::RCP<const MV> > V_array( 1, V_prev );
	//
	// Get a view of the new candidate std::vector.
	//
	index2[0] = i;
	Teuchos::RCP<MV> V_new = MVT::CloneViewNonConst( *AU_vec, index2 );
	//
	// Get a view of the current part of the upper-hessenberg matrix.
	//
	Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > h_new 
	  = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>
			  ( Teuchos::View, *H_[i], num_prev, 1, 0, curDim_ ) );
	Teuchos::Array< Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > h_array( 1, h_new );
	
	Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > r_new
	  = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>
			  ( Teuchos::View, *H_[i], 1, 1, num_prev, curDim_ ) );
	//
	// Orthonormalize the new block of the Krylov expansion
	// NOTE:  Rank deficiencies are not checked because this is a single-std::vector Krylov method.
	//
	ortho_->projectAndNormalize( *V_new, h_array, r_new, V_array );
	//
	// NOTE:  V_new is a copy of the iter+1 vector in V_[i], so the normalized vector has to be
	// be copied back in when V_new is changed.  
	//
	index2[0] = curDim_+1;
	Teuchos::RCP<MV> tmp_vec = MVT::CloneViewNonConst( *V_[i], index2 );
	MVT::MvAddMv( one, *V_new, zero, *V_new, *tmp_vec );
      }
      // 
      // Now _AU_vec is the new _U_vec, so swap these two vectors.
      // NOTE: This alleviates the need for allocating a vector for AU_vec each iteration.
      // 
      Teuchos::RCP<MV> tmp_AU_vec = U_vec;
      U_vec = AU_vec;
      AU_vec = tmp_AU_vec;
      //
      // V has been extended, and H has been extended. 
      //
      // Update the QR factorization of the upper Hessenberg matrix
      //
      updateLSQR();
      //
      // Update basis dim and release all pointers.
      //
      curDim_ += 1;
      //        
      /*      
      // When required, monitor some orthogonalities
      if (om_->isVerbosity( Debug ) ) {
      // Check almost everything here
      CheckList chk;
      chk.checkV = true;
      chk.checkArn = true;
      om_->print( Debug, accuracyCheck(chk, ": after local update") );
      }
      else if (om_->isVerbosity( OrthoDetails ) ) {
        CheckList chk;
        chk.checkV = true;
        om_->print( OrthoDetails, accuracyCheck(chk, ": after local update") );
      }
      */ 
      
    } // end while (statusTest == false)
   
  }

  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Update the least squares solution for each right-hand side.
  template<class ScalarType, class MV, class OP>
  void PseudoBlockGmresIter<ScalarType,MV,OP>::updateLSQR( int dim )
  {
    // Get correct dimension based on input "dim"
    // Remember that ortho failures result in an exit before updateLSQR() is called.
    // Therefore, it is possible that dim == curDim_.
    int curDim = curDim_;
    if (dim >= curDim_ && dim < getMaxSubspaceDim()) {
      curDim = dim;
    }
    
    int i, j;
    const ScalarType zero = Teuchos::ScalarTraits<ScalarType>::zero();

    Teuchos::BLAS<int, ScalarType> blas;
    
    for (i=0; i<numRHS_; ++i) {
      //
      // Update the least-squares QR for each linear system.
      //
      // QR factorization of Least-Squares system with Givens rotations
      //
      for (j=0; j<curDim; j++) {
	//
	// Apply previous Givens rotations to new column of Hessenberg matrix
	//
	blas.ROT( 1, &(*H_[i])(j,curDim), 1, &(*H_[i])(j+1, curDim), 1, &(*cs_[i])[j], &(*sn_[i])[j] );
      }
      //
      // Calculate new Givens rotation
      //
      blas.ROTG( &(*H_[i])(curDim,curDim), &(*H_[i])(curDim+1,curDim), &(*cs_[i])[curDim], &(*sn_[i])[curDim] );
      (*H_[i])(curDim+1,curDim) = zero;
      //
      // Update RHS w/ new transformation
      //
      blas.ROT( 1, &(*Z_[i])(curDim), 1, &(*Z_[i])(curDim+1), 1, &(*cs_[i])[curDim], &(*sn_[i])[curDim] );
    }

  } // end updateLSQR()

} // end Belos namespace

#endif /* BELOS_PSEUDO_BLOCK_GMRES_ITER_HPP */