/usr/include/trilinos/BelosPseudoBlockGmresSolMgr.hpp is in libtrilinos-belos-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 | //@HEADER
// ************************************************************************
//
// Belos: Block Linear Solvers Package
// Copyright 2004 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
#ifndef BELOS_PSEUDO_BLOCK_GMRES_SOLMGR_HPP
#define BELOS_PSEUDO_BLOCK_GMRES_SOLMGR_HPP
/*! \file BelosPseudoBlockGmresSolMgr.hpp
* \brief The Belos::PseudoBlockGmresSolMgr provides a solver manager for the BlockGmres linear solver.
*/
#include "BelosConfigDefs.hpp"
#include "BelosTypes.hpp"
#include "BelosLinearProblem.hpp"
#include "BelosSolverManager.hpp"
#include "BelosPseudoBlockGmresIter.hpp"
#include "BelosDGKSOrthoManager.hpp"
#include "BelosICGSOrthoManager.hpp"
#include "BelosIMGSOrthoManager.hpp"
#ifdef HAVE_BELOS_TSQR
# include "BelosTsqrOrthoManager.hpp"
#endif // HAVE_BELOS_TSQR
#include "BelosStatusTestMaxIters.hpp"
#include "BelosStatusTestGenResNorm.hpp"
#include "BelosStatusTestImpResNorm.hpp"
#include "BelosStatusTestCombo.hpp"
#include "BelosStatusTestOutputFactory.hpp"
#include "BelosOutputManager.hpp"
#include "Teuchos_BLAS.hpp"
#ifdef BELOS_TEUCHOS_TIME_MONITOR
#include "Teuchos_TimeMonitor.hpp"
#endif
/** \example BlockGmres/PseudoBlockGmresEpetraExFile.cpp
This is an example of how to use the Belos::PseudoBlockGmresSolMgr solver manager.
*/
/** \example BlockGmres/PseudoBlockPrecGmresEpetraExFile.cpp
This is an example of how to use the Belos::PseudoBlockGmresSolMgr solver manager with an Ifpack preconditioner.
*/
namespace Belos {
//! @name PseudoBlockGmresSolMgr Exceptions
//@{
/** \brief PseudoBlockGmresSolMgrLinearProblemFailure is thrown when the linear problem is
* not setup (i.e. setProblem() was not called) when solve() is called.
*
* This std::exception is thrown from the PseudoBlockGmresSolMgr::solve() method.
*
*/
class PseudoBlockGmresSolMgrLinearProblemFailure : public BelosError {public:
PseudoBlockGmresSolMgrLinearProblemFailure(const std::string& what_arg) : BelosError(what_arg)
{}};
/** \brief PseudoBlockGmresSolMgrOrthoFailure is thrown when the orthogonalization manager is
* unable to generate orthonormal columns from the initial basis vectors.
*
* This std::exception is thrown from the PseudoBlockGmresSolMgr::solve() method.
*
*/
class PseudoBlockGmresSolMgrOrthoFailure : public BelosError {public:
PseudoBlockGmresSolMgrOrthoFailure(const std::string& what_arg) : BelosError(what_arg)
{}};
/*! \class PseudoBlockGmresSolMgr
* \brief Interface to standard and "pseudoblock" GMRES.
* \author Heidi Thornquist, Chris Baker, and Teri Barth
* \ingroup belos_solver_framework
*
* This class provides an interface to the following iterative solvers:
* - GMRES, for linear systems with one right-hand side
* - The "pseudoblock" variant of GMRES, for linear systems
* with multiple right-hand sides
*
* If you are a new Belos user and just want standard GMRES, use
* this class. If you want Flexible GMRES, use \c BlockGmresSolMgr
* with the appropriate option set.
*
* "Pseudoblock" GMRES is a way to improve performance when solving
* systems with multiple right-hand sides, without changing the
* convergence characteristics. It is equivalent in terms of
* convergence to running a separate instance of (standard) GMRES
* for each right-hand side, but should often be faster. When
* solving for multiple right-hand sides, "Block GMRES" (as
* implemented by \c BlockGmresSolMgr) is a different algorithm with
* different convergence characteristics than Pseudoblock GMRES.
*/
template<class ScalarType, class MV, class OP>
class PseudoBlockGmresSolMgr : public SolverManager<ScalarType,MV,OP> {
private:
typedef MultiVecTraits<ScalarType,MV> MVT;
typedef OperatorTraits<ScalarType,MV,OP> OPT;
typedef Teuchos::ScalarTraits<ScalarType> SCT;
typedef typename Teuchos::ScalarTraits<ScalarType>::magnitudeType MagnitudeType;
typedef Teuchos::ScalarTraits<MagnitudeType> MT;
public:
//! @name Constructors and destructor
//@{
/*! \brief Empty constructor.
*
* This constructor takes no arguments. It sets default solver
* parameters, which you may change by calling setParameters().
* Before you may call solve(), you must first give the solver a
* linear problem to solve, by calling setProblem().
*/
PseudoBlockGmresSolMgr();
/*! \brief Constructor that takes the problem to solve, and a list
* of solver options.
*
* \param problem [in/out] The linear problem to be solved.
* \param pl [in/out] A list of solver options.
*
* Belos' solvers accept many different options. You may accept
* their default values, or set any of them yourself. We will
* explain the options by category.
*
* The following options govern the number of iterations and
* restarts:
* - "Num Blocks" (\c int): The restart length. The number of
* vectors (or blocks, in the case of multiple right-hand sides)
* allocated for the Krylov basis. Its default value is 300.
* - "Maximum Iterations" (\c int): The maximum number of
* iterations the solver is allowed to perform. This does
* <i>not</i> include computing the initial residual, but it
* <i>does</i> include iterations before and after any restarts.
* Its default value is 1000.
* - "Maximum Restarts" (\c int): The maximum number of restarts.
* This does <i>not</i> include the first "Num Blocks"
* iterations (before the first restart). Its default value is
* 20.
*
* We do not currently perform any sanity checks for these
* options. This may affect you if you set some of them but let
* others keep their default values. For example, if you set "Num
* Blocks" to 2 and "Maximum Iterations" to 100, but don't set
* "Maximum Restarts", you will only get 40 = 20*2 total
* iterations, rather than 100. Thus, if you set one of these
* parameters, you should always set them all.
*
* When solving with multiple right-hand sides, the "Block Size"
* (\c int) parameter controls the number of right-hand sides for
* which the solver solves at once. This setting controls both
* performance and total memory use. Doubling it (approximately)
* doubles the total amount of memory used by the solver, but
* might make the solves faster by reducing synchronization
* overhead and improving memory bandwidth utilization. The gain
* from increasing this tends to level off quickly. Making this
* setting too large may actually hurt performance.
*
* These options govern convergence and the numerical algorithm:
* - "Convergence Tolerance" (\c MagnitudeType): The level that
* residual norms must reach in order for the solver to stop
* iterating.
* - "Implicit Residual Scaling" (\c std::string): How to scale
* the implicit residual norm. The default is the norm of the
* preconditioned initial residual.
* - "Explicit Residual Scaling" (\c std::string): How to scale
* the explicit residual norm. The default is the norm of the
* (unpreconditioned) initial residual.
* - "Deflation Quorum" (\c int): When solving with multiple
* right-hand sides: the number of right-hand sides that must
* have converged to the given tolerance, before the solver will
* consider all the systems converged. If -1, then the solver
* will require that all the right-hand sides have converged
* before declaring all the systems converged. This must be no
* bigger than the "Block Size" parameter.
* - "Orthogonalization" (\c std::string): The desired
* orthogonalization method. Currently accepted values are
* "DGKS", "ICGS", and "IMGS". Please refer to Belos'
* documentation for more details.
*
* For an explanation of "implicit" vs. "explicit" residuals,
* please see the documentation of isLOADetected(). The
* difference matters if using left preconditioning. Otherwise,
* it is not so important to most users.
*
* The residual scaling parameters ("Implicit Residual Scaling"
* and "Explicit Residual Scaling") accept the following values:
* - "Norm of Initial Residual"
* - "Norm of Preconditioned Initial Residual"
* - "Norm of RHS" (RHS stands for "right-hand side")
* - "None" (no scaling factor)
*
* GMRES always uses the 2 norm (square root of sum of squares of
* magnitudes of entries) to measure convergence.
*
* Belos' solvers let users control intermediate "status" output.
* This output tells you the current iteration and the values of
* current convergence criteria. The following parameters control
* output. The default values are fine for users who only care
* about the final result and don't want to see status output.
* - "Verbosity": a sum of \c MsgType enum values specifying the
* verbosity. Default: Belos::Errors.
* - "Output Frequency" (\c int): How often (in terms of number of
* iterations) to print intermediate status output. The default
* (-1) means not to print intermediate status output at all.
* - "Output Style" (\c OutputType): The style of output.
* Accepted values are General and Brief. Default: General.
* - "Output Stream" (<tt>Teuchos::RCP<std::ostream></tt>): A
* pointer to an output stream to which the solver will write
* status output. The default is a pointer to
* <tt>std::cout</tt>. Currently, if Trilinos was built with
* MPI support, only the MPI process with rank 0 in
* MPI_COMM_WORLD will print to this output stream.
* - "Show Maximum Residual Norm Only": When solving for multiple
* right-hand sides, this controls whether output shows residual
* norms for all the right-hand sides, or just the current
* maximum residual norm over all right-hand sides.
*/
PseudoBlockGmresSolMgr( const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem,
const Teuchos::RCP<Teuchos::ParameterList> &pl );
//! Destructor.
virtual ~PseudoBlockGmresSolMgr() {};
//@}
//! @name Accessor methods
//@{
const LinearProblem<ScalarType,MV,OP>& getProblem() const {
return *problem_;
}
//! A list of valid default parameters for this solver.
Teuchos::RCP<const Teuchos::ParameterList> getValidParameters() const;
//! The current parameters for this solver.
Teuchos::RCP<const Teuchos::ParameterList> getCurrentParameters() const { return params_; }
/*! \brief Return the timers for this object.
*
* The timers are ordered as follows:
* - time spent in solve() routine
*/
Teuchos::Array<Teuchos::RCP<Teuchos::Time> > getTimers() const {
return Teuchos::tuple(timerSolve_);
}
/// \brief Tolerance achieved by the last \c solve() invocation.
///
/// This is the maximum over all right-hand sides' achieved
/// convergence tolerances, and is set whether or not the solve
/// actually managed to achieve the desired convergence tolerance.
///
/// \warning This result may not be meaningful if there was a loss
/// of accuracy during the solve. You should first call \c
/// isLOADetected() to check for a loss of accuracy during the
/// last solve.
MagnitudeType achievedTol() const {
return achievedTol_;
}
//! Iteration count for the most recent call to \c solve().
int getNumIters() const {
return numIters_;
}
/// \brief Whether a "loss of accuracy" was detected during the last solve().
///
/// This solver uses two different residual norms to predict
/// convergence: "implicit" (also called "native") and "explicit"
/// (also called "exact," not to be confused with "exact
/// arithmetic"). The "implicit" residuals are computed by the
/// solver via a recurrence relation (the Arnoldi relation, in the
/// case of GMRES). The "explicit" residuals are computed
/// directly as $B - A X_k$. Implicit residuals are much cheaper
/// to compute, since they are available almost "for free" from
/// the recurrence relation. In contrast, computing exact
/// residuals requires computing the current approximate solution
/// \f$X_k\f$, applying the global operator \f$A\f$ to \f$X_k\f$,
/// and then computing the norm of the resulting vector(s) via a
/// global reduction. Thus, GMRES favors using the cheaper
/// implicit residuals to predict convergence. Users typically
/// want convergence with respect to explicit residuals, though.
///
/// Implicit and explicit residuals may differ due to rounding
/// error. However, the difference between implicit and explicit
/// residuals matters most when using a left (or split)
/// preconditioner. In that case, the implicit residuals are
/// those of the left-preconditioned problem \f$M_L^{-1} A X =
/// M_L^{-1} B\f$ instead of the original problem \f$A X = B\f$.
/// The implicit residual norms may thus differ significantly from
/// the explicit residual norms, even if one could compute without
/// rounding error.
///
/// When using a left preconditioner, this solver tries to detect
/// if the implicit residuals have converged but the explicit
/// residuals have not. In that case, it will reduce the
/// convergence tolerance and iterate a little while longer to
/// attempt to reduce the explicit residual norm. However, if
/// that doesn't work, it declares a "loss of accuracy" for the
/// affected right-hand side(s), and stops iterating on them.
/// (Not all right-hand sides may have experienced a loss of
/// accuracy.) Thus, the affected right-hand sides may or may not
/// have converged to the desired residual norm tolerance.
/// Calling this method tells you whether a "loss of accuracy"
/// (LOA) occurred during the last \c solve() invocation.
///
/// When <i>not</i> using a left preconditioner, this solver will
/// iterate until both the implicit and explicit residuals
/// converge. (It does not start testing the explicit residuals
/// until the implicit residuals have converged. This avoids
/// whenever possible the cost of computing explicit residuals.)
/// Implicit and explicit residuals may differ due to rounding
/// error, even though they are identical when no rounding error
/// occurs. In this case, the algorithm does <i>not</i> report a
/// "loss of accuracy," since it continues iterating until the
/// explicit residuals converge.
///
/// \note Calling \c solve() again resets the flag that reports
/// whether a loss of accuracy was detected. Thus, you should
/// call this method immediately after calling \c solve().
bool isLOADetected() const { return loaDetected_; }
//@}
//! @name Set methods
//@{
//! Set the linear problem to solve.
void setProblem (const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem) {
problem_ = problem;
}
//! Set the parameters the solver manager should use to solve the linear problem.
void setParameters (const Teuchos::RCP<Teuchos::ParameterList> ¶ms);
/// \brief Set a custom status test.
///
/// A custom status test is not required. If you decide to set
/// one, the current implementation will apply it sequentially
/// (short-circuiting OR, like the || operator in C++) after
/// Pseudoblock GMRES' standard convergence test.
virtual void setUserConvStatusTest(
const Teuchos::RCP<StatusTest<ScalarType,MV,OP> > &userConvStatusTest
);
/// \brief Set a debug status test.
///
/// A debug status test is not required. If you decide to set
/// one, the current implementation will apply it at the same
/// time it applies Pseudoblock GMRES' standard convergence test.
virtual void setDebugStatusTest(
const Teuchos::RCP<StatusTest<ScalarType,MV,OP> > &debugStatusTest
);
//@}
//! @name Reset methods
//@{
/*! \brief Performs a reset of the solver manager specified by the \c ResetType. This informs the
* solver manager that the solver should prepare for the next call to solve by resetting certain elements
* of the iterative solver strategy.
*/
void reset( const ResetType type ) { if ((type & Belos::Problem) && !Teuchos::is_null(problem_)) problem_->setProblem(); }
//@}
//! @name Solver application methods
//@{
/*! \brief This method performs possibly repeated calls to the underlying linear solver's iterate() routine
* until the problem has been solved (as decided by the solver manager) or the solver manager decides to
* quit.
*
* This method calls PseudoBlockGmresIter::iterate(), which will return either because a specially constructed status test evaluates to
* ::Passed or an std::exception is thrown.
*
* A return from PseudoBlockGmresIter::iterate() signifies one of the following scenarios:
* - the maximum number of restarts has been exceeded. In this scenario, the current solutions to the linear system
* will be placed in the linear problem and return ::Unconverged.
* - global convergence has been met. In this case, the current solutions to the linear system will be placed in the linear
* problem and the solver manager will return ::Converged
*
* \returns ::ReturnType specifying:
* - ::Converged: the linear problem was solved to the specification required by the solver manager.
* - ::Unconverged: the linear problem was not solved to the specification desired by the solver manager.
*/
ReturnType solve();
//@}
/** \name Overridden from Teuchos::Describable */
//@{
/// \brief Print the object with the given verbosity level to a FancyOStream.
///
/// \param out [out] Output stream to which to print.
///
/// \param verbLevel [in] Verbosity level. The default verbosity
/// (verbLevel=Teuchos::VERB_DEFAULT) is Teuchos::VERB_LOW.
void
describe (Teuchos::FancyOStream& out,
const Teuchos::EVerbosityLevel verbLevel =
Teuchos::Describable::verbLevel_default) const;
//! Return a one-line description of this object.
std::string description () const;
//@}
private:
/// \brief Check current status tests against current linear problem.
///
/// (Re)create all the status tests, based on the current solve
/// parameters and the current linear problem to solve. This is
/// necessary whenever the linear problem is set or changed via \c
/// setProblem(), because the residual norm test to use depends on
/// whether or not the (new) linear problem defines a left
/// preconditioner. Furthermore, include the user's custom
/// convergence test if they set one via \c
/// setUserConvStatusTest().
///
/// \return False if we were able to (re)create all the status
/// tests correctly, else true. The \c solve() routine may call
/// this method. If it does, it checks the return value.
bool checkStatusTest();
//! The current linear problem to solve.
Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > problem_;
// Output manager.
Teuchos::RCP<OutputManager<ScalarType> > printer_;
Teuchos::RCP<std::ostream> outputStream_;
// Status tests.
Teuchos::RCP<StatusTest<ScalarType,MV,OP> > userConvStatusTest_;
Teuchos::RCP<StatusTest<ScalarType,MV,OP> > debugStatusTest_;
Teuchos::RCP<StatusTest<ScalarType,MV,OP> > sTest_;
Teuchos::RCP<StatusTestMaxIters<ScalarType,MV,OP> > maxIterTest_;
Teuchos::RCP<StatusTest<ScalarType,MV,OP> > convTest_;
Teuchos::RCP<StatusTestResNorm<ScalarType,MV,OP> > impConvTest_, expConvTest_;
Teuchos::RCP<StatusTestOutput<ScalarType,MV,OP> > outputTest_;
// Orthogonalization manager.
Teuchos::RCP<MatOrthoManager<ScalarType,MV,OP> > ortho_;
// Current parameter list.
Teuchos::RCP<Teuchos::ParameterList> params_;
// Default solver values.
static const MagnitudeType convtol_default_;
static const MagnitudeType orthoKappa_default_;
static const int maxRestarts_default_;
static const int maxIters_default_;
static const bool showMaxResNormOnly_default_;
static const int blockSize_default_;
static const int numBlocks_default_;
static const int verbosity_default_;
static const int outputStyle_default_;
static const int outputFreq_default_;
static const int defQuorum_default_;
static const std::string impResScale_default_;
static const std::string expResScale_default_;
static const std::string label_default_;
static const std::string orthoType_default_;
static const Teuchos::RCP<std::ostream> outputStream_default_;
// Current solver values.
MagnitudeType convtol_, orthoKappa_, achievedTol_;
int maxRestarts_, maxIters_, numIters_;
int blockSize_, numBlocks_, verbosity_, outputStyle_, outputFreq_, defQuorum_;
bool showMaxResNormOnly_;
std::string orthoType_;
std::string impResScale_, expResScale_;
// Timers.
std::string label_;
Teuchos::RCP<Teuchos::Time> timerSolve_;
// Internal state variables.
bool isSet_, isSTSet_, expResTest_;
bool loaDetected_;
};
// Default solver values.
template<class ScalarType, class MV, class OP>
const typename PseudoBlockGmresSolMgr<ScalarType,MV,OP>::MagnitudeType PseudoBlockGmresSolMgr<ScalarType,MV,OP>::convtol_default_ = 1e-8;
template<class ScalarType, class MV, class OP>
const typename PseudoBlockGmresSolMgr<ScalarType,MV,OP>::MagnitudeType PseudoBlockGmresSolMgr<ScalarType,MV,OP>::orthoKappa_default_ = -1.0;
template<class ScalarType, class MV, class OP>
const int PseudoBlockGmresSolMgr<ScalarType,MV,OP>::maxRestarts_default_ = 20;
template<class ScalarType, class MV, class OP>
const int PseudoBlockGmresSolMgr<ScalarType,MV,OP>::maxIters_default_ = 1000;
template<class ScalarType, class MV, class OP>
const bool PseudoBlockGmresSolMgr<ScalarType,MV,OP>::showMaxResNormOnly_default_ = false;
template<class ScalarType, class MV, class OP>
const int PseudoBlockGmresSolMgr<ScalarType,MV,OP>::blockSize_default_ = 1;
template<class ScalarType, class MV, class OP>
const int PseudoBlockGmresSolMgr<ScalarType,MV,OP>::numBlocks_default_ = 300;
template<class ScalarType, class MV, class OP>
const int PseudoBlockGmresSolMgr<ScalarType,MV,OP>::verbosity_default_ = Belos::Errors;
template<class ScalarType, class MV, class OP>
const int PseudoBlockGmresSolMgr<ScalarType,MV,OP>::outputStyle_default_ = Belos::General;
template<class ScalarType, class MV, class OP>
const int PseudoBlockGmresSolMgr<ScalarType,MV,OP>::outputFreq_default_ = -1;
template<class ScalarType, class MV, class OP>
const int PseudoBlockGmresSolMgr<ScalarType,MV,OP>::defQuorum_default_ = 1;
template<class ScalarType, class MV, class OP>
const std::string PseudoBlockGmresSolMgr<ScalarType,MV,OP>::impResScale_default_ = "Norm of Preconditioned Initial Residual";
template<class ScalarType, class MV, class OP>
const std::string PseudoBlockGmresSolMgr<ScalarType,MV,OP>::expResScale_default_ = "Norm of Initial Residual";
template<class ScalarType, class MV, class OP>
const std::string PseudoBlockGmresSolMgr<ScalarType,MV,OP>::label_default_ = "Belos";
template<class ScalarType, class MV, class OP>
const std::string PseudoBlockGmresSolMgr<ScalarType,MV,OP>::orthoType_default_ = "DGKS";
template<class ScalarType, class MV, class OP>
const Teuchos::RCP<std::ostream> PseudoBlockGmresSolMgr<ScalarType,MV,OP>::outputStream_default_ = Teuchos::rcp(&std::cout,false);
// Empty Constructor
template<class ScalarType, class MV, class OP>
PseudoBlockGmresSolMgr<ScalarType,MV,OP>::PseudoBlockGmresSolMgr() :
outputStream_(outputStream_default_),
convtol_(convtol_default_),
orthoKappa_(orthoKappa_default_),
achievedTol_(Teuchos::ScalarTraits<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType>::zero()),
maxRestarts_(maxRestarts_default_),
maxIters_(maxIters_default_),
numIters_(0),
blockSize_(blockSize_default_),
numBlocks_(numBlocks_default_),
verbosity_(verbosity_default_),
outputStyle_(outputStyle_default_),
outputFreq_(outputFreq_default_),
defQuorum_(defQuorum_default_),
showMaxResNormOnly_(showMaxResNormOnly_default_),
orthoType_(orthoType_default_),
impResScale_(impResScale_default_),
expResScale_(expResScale_default_),
label_(label_default_),
isSet_(false),
isSTSet_(false),
expResTest_(false),
loaDetected_(false)
{}
// Basic Constructor
template<class ScalarType, class MV, class OP>
PseudoBlockGmresSolMgr<ScalarType,MV,OP>::
PseudoBlockGmresSolMgr (const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem,
const Teuchos::RCP<Teuchos::ParameterList> &pl) :
problem_(problem),
outputStream_(outputStream_default_),
convtol_(convtol_default_),
orthoKappa_(orthoKappa_default_),
achievedTol_(Teuchos::ScalarTraits<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType>::zero()),
maxRestarts_(maxRestarts_default_),
maxIters_(maxIters_default_),
numIters_(0),
blockSize_(blockSize_default_),
numBlocks_(numBlocks_default_),
verbosity_(verbosity_default_),
outputStyle_(outputStyle_default_),
outputFreq_(outputFreq_default_),
defQuorum_(defQuorum_default_),
showMaxResNormOnly_(showMaxResNormOnly_default_),
orthoType_(orthoType_default_),
impResScale_(impResScale_default_),
expResScale_(expResScale_default_),
label_(label_default_),
isSet_(false),
isSTSet_(false),
expResTest_(false),
loaDetected_(false)
{
TEUCHOS_TEST_FOR_EXCEPTION(problem_ == Teuchos::null, std::invalid_argument, "Problem not given to solver manager.");
// If the parameter list pointer is null, then set the current parameters to the default parameter list.
if (!is_null(pl)) {
// Set the parameters using the list that was passed in.
setParameters( pl );
}
}
template<class ScalarType, class MV, class OP>
void
PseudoBlockGmresSolMgr<ScalarType,MV,OP>::
setParameters (const Teuchos::RCP<Teuchos::ParameterList>& params)
{
using Teuchos::ParameterList;
using Teuchos::parameterList;
using Teuchos::rcp;
using Teuchos::rcp_dynamic_cast;
// Create the internal parameter list if one doesn't already exist.
if (params_ == Teuchos::null) {
params_ = parameterList (*getValidParameters ());
} else {
params->validateParameters (*getValidParameters ());
}
// Check for maximum number of restarts
if (params->isParameter ("Maximum Restarts")) {
maxRestarts_ = params->get ("Maximum Restarts", maxRestarts_default_);
// Update parameter in our list.
params_->set ("Maximum Restarts", maxRestarts_);
}
// Check for maximum number of iterations
if (params->isParameter ("Maximum Iterations")) {
maxIters_ = params->get ("Maximum Iterations", maxIters_default_);
// Update parameter in our list and in status test.
params_->set ("Maximum Iterations", maxIters_);
if (! maxIterTest_.is_null ()) {
maxIterTest_->setMaxIters (maxIters_);
}
}
// Check for blocksize
if (params->isParameter ("Block Size")) {
blockSize_ = params->get ("Block Size", blockSize_default_);
TEUCHOS_TEST_FOR_EXCEPTION(
blockSize_ <= 0, std::invalid_argument,
"Belos::PseudoBlockGmresSolMgr::setParameters: "
"The \"Block Size\" parameter must be strictly positive, "
"but you specified a value of " << blockSize_ << ".");
// Update parameter in our list.
params_->set ("Block Size", blockSize_);
}
// Check for the maximum number of blocks.
if (params->isParameter ("Num Blocks")) {
numBlocks_ = params->get ("Num Blocks", numBlocks_default_);
TEUCHOS_TEST_FOR_EXCEPTION(
numBlocks_ <= 0, std::invalid_argument,
"Belos::PseudoBlockGmresSolMgr::setParameters: "
"The \"Num Blocks\" parameter must be strictly positive, "
"but you specified a value of " << numBlocks_ << ".");
// Update parameter in our list.
params_->set ("Num Blocks", numBlocks_);
}
// Check to see if the timer label changed.
if (params->isParameter ("Timer Label")) {
const std::string tempLabel = params->get ("Timer Label", label_default_);
// Update parameter in our list and solver timer
if (tempLabel != label_) {
label_ = tempLabel;
params_->set ("Timer Label", label_);
const std::string solveLabel =
label_ + ": PseudoBlockGmresSolMgr total solve time";
#ifdef BELOS_TEUCHOS_TIME_MONITOR
timerSolve_ = Teuchos::TimeMonitor::getNewCounter (solveLabel);
#endif // BELOS_TEUCHOS_TIME_MONITOR
if (ortho_ != Teuchos::null) {
ortho_->setLabel( label_ );
}
}
}
// Check if the orthogonalization changed.
if (params->isParameter ("Orthogonalization")) {
std::string tempOrthoType = params->get ("Orthogonalization", orthoType_default_);
#ifdef HAVE_BELOS_TSQR
TEUCHOS_TEST_FOR_EXCEPTION(
tempOrthoType != "DGKS" && tempOrthoType != "ICGS" &&
tempOrthoType != "IMGS" && tempOrthoType != "TSQR",
std::invalid_argument,
"Belos::PseudoBlockGmresSolMgr::setParameters: "
"The \"Orthogonalization\" parameter must be one of \"DGKS\", \"ICGS\", "
"\"IMGS\", or \"TSQR\".");
#else
TEUCHOS_TEST_FOR_EXCEPTION(
tempOrthoType != "DGKS" && tempOrthoType != "ICGS" &&
tempOrthoType != "IMGS",
std::invalid_argument,
"Belos::PseudoBlockGmresSolMgr::setParameters: "
"The \"Orthogonalization\" parameter must be one of \"DGKS\", \"ICGS\", "
"or \"IMGS\".");
#endif // HAVE_BELOS_TSQR
if (tempOrthoType != orthoType_) {
orthoType_ = tempOrthoType;
// Create orthogonalization manager
if (orthoType_ == "DGKS") {
typedef DGKSOrthoManager<ScalarType, MV, OP> ortho_type;
if (orthoKappa_ <= 0) {
ortho_ = rcp (new ortho_type (label_));
}
else {
ortho_ = rcp (new ortho_type (label_));
rcp_dynamic_cast<ortho_type> (ortho_)->setDepTol (orthoKappa_);
}
}
else if (orthoType_ == "ICGS") {
typedef ICGSOrthoManager<ScalarType, MV, OP> ortho_type;
ortho_ = rcp (new ortho_type (label_));
}
else if (orthoType_ == "IMGS") {
typedef IMGSOrthoManager<ScalarType, MV, OP> ortho_type;
ortho_ = rcp (new ortho_type (label_));
}
#ifdef HAVE_BELOS_TSQR
else if (orthoType_ == "TSQR") {
typedef TsqrMatOrthoManager<ScalarType, MV, OP> ortho_type;
ortho_ = rcp (new ortho_type (label_));
}
#endif // HAVE_BELOS_TSQR
}
}
// Check which orthogonalization constant to use.
if (params->isParameter ("Orthogonalization Constant")) {
orthoKappa_ = params->get ("Orthogonalization Constant", orthoKappa_default_);
// Update parameter in our list.
params_->set ("Orthogonalization Constant", orthoKappa_);
if (orthoType_ == "DGKS") {
if (orthoKappa_ > 0 && ! ortho_.is_null ()) {
typedef DGKSOrthoManager<ScalarType, MV, OP> ortho_type;
rcp_dynamic_cast<ortho_type> (ortho_)->setDepTol (orthoKappa_);
}
}
}
// Check for a change in verbosity level
if (params->isParameter ("Verbosity")) {
if (Teuchos::isParameterType<int> (*params, "Verbosity")) {
verbosity_ = params->get ("Verbosity", verbosity_default_);
} else {
verbosity_ = (int) Teuchos::getParameter<Belos::MsgType> (*params, "Verbosity");
}
// Update parameter in our list.
params_->set ("Verbosity", verbosity_);
if (! printer_.is_null ()) {
printer_->setVerbosity (verbosity_);
}
}
// Check for a change in output style.
if (params->isParameter ("Output Style")) {
if (Teuchos::isParameterType<int> (*params, "Output Style")) {
outputStyle_ = params->get ("Output Style", outputStyle_default_);
} else {
outputStyle_ = (int) Teuchos::getParameter<Belos::OutputType> (*params, "Output Style");
}
// Update parameter in our list.
params_->set ("Output Style", verbosity_);
if (! outputTest_.is_null ()) {
isSTSet_ = false;
}
}
// output stream
if (params->isParameter ("Output Stream")) {
outputStream_ = Teuchos::getParameter<Teuchos::RCP<std::ostream> > (*params, "Output Stream");
// Update parameter in our list.
params_->set("Output Stream", outputStream_);
if (! printer_.is_null ()) {
printer_->setOStream (outputStream_);
}
}
// frequency level
if (verbosity_ & Belos::StatusTestDetails) {
if (params->isParameter ("Output Frequency")) {
outputFreq_ = params->get ("Output Frequency", outputFreq_default_);
}
// Update parameter in out list and output status test.
params_->set ("Output Frequency", outputFreq_);
if (! outputTest_.is_null ()) {
outputTest_->setOutputFrequency (outputFreq_);
}
}
// Create output manager if we need to.
if (printer_.is_null ()) {
printer_ = rcp (new OutputManager<ScalarType> (verbosity_, outputStream_));
}
// Convergence
// Check for convergence tolerance
if (params->isParameter ("Convergence Tolerance")) {
convtol_ = params->get ("Convergence Tolerance", convtol_default_);
// Update parameter in our list and residual tests.
params_->set ("Convergence Tolerance", convtol_);
if (! impConvTest_.is_null ()) {
impConvTest_->setTolerance (convtol_);
}
if (! expConvTest_.is_null ()) {
expConvTest_->setTolerance (convtol_);
}
}
// Check for a change in scaling, if so we need to build new residual tests.
if (params->isParameter ("Implicit Residual Scaling")) {
const std::string tempImpResScale =
Teuchos::getParameter<std::string> (*params, "Implicit Residual Scaling");
// Only update the scaling if it's different.
if (impResScale_ != tempImpResScale) {
Belos::ScaleType impResScaleType = convertStringToScaleType (tempImpResScale);
impResScale_ = tempImpResScale;
// Update parameter in our list and residual tests
params_->set ("Implicit Residual Scaling", impResScale_);
if (! impConvTest_.is_null ()) {
try {
impConvTest_->defineScaleForm (impResScaleType, Belos::TwoNorm);
}
catch (std::exception& e) {
// Make sure the convergence test gets constructed again.
isSTSet_ = false;
}
}
}
}
if (params->isParameter ("Explicit Residual Scaling")) {
const std::string tempExpResScale =
Teuchos::getParameter<std::string> (*params, "Explicit Residual Scaling");
// Only update the scaling if it's different.
if (expResScale_ != tempExpResScale) {
Belos::ScaleType expResScaleType = convertStringToScaleType (tempExpResScale);
expResScale_ = tempExpResScale;
// Update parameter in our list and residual tests
params_->set ("Explicit Residual Scaling", expResScale_);
if (! expConvTest_.is_null ()) {
try {
expConvTest_->defineScaleForm (expResScaleType, Belos::TwoNorm);
}
catch (std::exception& e) {
// Make sure the convergence test gets constructed again.
isSTSet_ = false;
}
}
}
}
if (params->isParameter ("Show Maximum Residual Norm Only")) {
showMaxResNormOnly_ =
Teuchos::getParameter<bool> (*params, "Show Maximum Residual Norm Only");
// Update parameter in our list and residual tests
params_->set ("Show Maximum Residual Norm Only", showMaxResNormOnly_);
if (! impConvTest_.is_null ()) {
impConvTest_->setShowMaxResNormOnly (showMaxResNormOnly_);
}
if (! expConvTest_.is_null ()) {
expConvTest_->setShowMaxResNormOnly (showMaxResNormOnly_);
}
}
// Create status tests if we need to.
// Get the deflation quorum, or number of converged systems before deflation is allowed
if (params->isParameter("Deflation Quorum")) {
defQuorum_ = params->get("Deflation Quorum", defQuorum_);
TEUCHOS_TEST_FOR_EXCEPTION(
defQuorum_ > blockSize_, std::invalid_argument,
"Belos::PseudoBlockGmresSolMgr::setParameters: "
"The \"Deflation Quorum\" parameter (= " << defQuorum_ << ") must not be "
"larger than \"Block Size\" (= " << blockSize_ << ").");
params_->set ("Deflation Quorum", defQuorum_);
if (! impConvTest_.is_null ()) {
impConvTest_->setQuorum (defQuorum_);
}
if (! expConvTest_.is_null ()) {
expConvTest_->setQuorum (defQuorum_);
}
}
// Create orthogonalization manager if we need to.
if (ortho_.is_null ()) {
if (orthoType_ == "DGKS") {
typedef DGKSOrthoManager<ScalarType, MV, OP> ortho_type;
if (orthoKappa_ <= 0) {
ortho_ = rcp (new ortho_type (label_));
}
else {
ortho_ = rcp (new ortho_type (label_));
rcp_dynamic_cast<ortho_type> (ortho_)->setDepTol (orthoKappa_);
}
}
else if (orthoType_ == "ICGS") {
typedef ICGSOrthoManager<ScalarType, MV, OP> ortho_type;
ortho_ = rcp (new ortho_type (label_));
}
else if (orthoType_ == "IMGS") {
typedef IMGSOrthoManager<ScalarType, MV, OP> ortho_type;
ortho_ = rcp (new ortho_type (label_));
}
#ifdef HAVE_BELOS_TSQR
else if (orthoType_ == "TSQR") {
typedef TsqrMatOrthoManager<ScalarType, MV, OP> ortho_type;
ortho_ = rcp (new ortho_type (label_));
}
#endif // HAVE_BELOS_TSQR
else {
#ifdef HAVE_BELOS_TSQR
TEUCHOS_TEST_FOR_EXCEPTION(
orthoType_ != "ICGS" && orthoType_ != "DGKS" &&
orthoType_ != "IMGS" && orthoType_ != "TSQR",
std::logic_error,
"Belos::PseudoBlockGmresSolMgr::setParameters(): "
"Invalid orthogonalization type \"" << orthoType_ << "\".");
#else
TEUCHOS_TEST_FOR_EXCEPTION(
orthoType_ != "ICGS" && orthoType_ != "DGKS" &&
orthoType_ != "IMGS",
std::logic_error,
"Belos::PseudoBlockGmresSolMgr::setParameters(): "
"Invalid orthogonalization type \"" << orthoType_ << "\".");
#endif // HAVE_BELOS_TSQR
}
}
// Create the timer if we need to.
if (timerSolve_ == Teuchos::null) {
std::string solveLabel = label_ + ": PseudoBlockGmresSolMgr total solve time";
#ifdef BELOS_TEUCHOS_TIME_MONITOR
timerSolve_ = Teuchos::TimeMonitor::getNewCounter (solveLabel);
#endif
}
// Inform the solver manager that the current parameters were set.
isSet_ = true;
}
template<class ScalarType, class MV, class OP>
void
PseudoBlockGmresSolMgr<ScalarType,MV,OP>::setUserConvStatusTest(
const Teuchos::RCP<StatusTest<ScalarType,MV,OP> > &userConvStatusTest
)
{
userConvStatusTest_ = userConvStatusTest;
}
template<class ScalarType, class MV, class OP>
void
PseudoBlockGmresSolMgr<ScalarType,MV,OP>::setDebugStatusTest(
const Teuchos::RCP<StatusTest<ScalarType,MV,OP> > &debugStatusTest
)
{
debugStatusTest_ = debugStatusTest;
}
template<class ScalarType, class MV, class OP>
Teuchos::RCP<const Teuchos::ParameterList>
PseudoBlockGmresSolMgr<ScalarType,MV,OP>::getValidParameters() const
{
static Teuchos::RCP<const Teuchos::ParameterList> validPL;
if (is_null(validPL)) {
Teuchos::RCP<Teuchos::ParameterList> pl = Teuchos::parameterList();
// Set all the valid parameters and their default values.
pl= Teuchos::rcp( new Teuchos::ParameterList() );
pl->set("Convergence Tolerance", convtol_default_,
"The relative residual tolerance that needs to be achieved by the\n"
"iterative solver in order for the linear system to be declared converged.");
pl->set("Maximum Restarts", maxRestarts_default_,
"The maximum number of restarts allowed for each\n"
"set of RHS solved.");
pl->set("Maximum Iterations", maxIters_default_,
"The maximum number of block iterations allowed for each\n"
"set of RHS solved.");
pl->set("Num Blocks", numBlocks_default_,
"The maximum number of vectors allowed in the Krylov subspace\n"
"for each set of RHS solved.");
pl->set("Block Size", blockSize_default_,
"The number of RHS solved simultaneously.");
pl->set("Verbosity", verbosity_default_,
"What type(s) of solver information should be outputted\n"
"to the output stream.");
pl->set("Output Style", outputStyle_default_,
"What style is used for the solver information outputted\n"
"to the output stream.");
pl->set("Output Frequency", outputFreq_default_,
"How often convergence information should be outputted\n"
"to the output stream.");
pl->set("Deflation Quorum", defQuorum_default_,
"The number of linear systems that need to converge before\n"
"they are deflated. This number should be <= block size.");
pl->set("Output Stream", outputStream_default_,
"A reference-counted pointer to the output stream where all\n"
"solver output is sent.");
pl->set("Show Maximum Residual Norm Only", showMaxResNormOnly_default_,
"When convergence information is printed, only show the maximum\n"
"relative residual norm when the block size is greater than one.");
pl->set("Implicit Residual Scaling", impResScale_default_,
"The type of scaling used in the implicit residual convergence test.");
pl->set("Explicit Residual Scaling", expResScale_default_,
"The type of scaling used in the explicit residual convergence test.");
pl->set("Timer Label", label_default_,
"The string to use as a prefix for the timer labels.");
// defaultParams_->set("Restart Timers", restartTimers_);
pl->set("Orthogonalization", orthoType_default_,
"The type of orthogonalization to use: DGKS, ICGS, IMGS.");
pl->set("Orthogonalization Constant",orthoKappa_default_,
"The constant used by DGKS orthogonalization to determine\n"
"whether another step of classical Gram-Schmidt is necessary.");
validPL = pl;
}
return validPL;
}
// Check the status test versus the defined linear problem
template<class ScalarType, class MV, class OP>
bool PseudoBlockGmresSolMgr<ScalarType,MV,OP>::checkStatusTest() {
typedef Belos::StatusTestCombo<ScalarType,MV,OP> StatusTestCombo_t;
typedef Belos::StatusTestGenResNorm<ScalarType,MV,OP> StatusTestGenResNorm_t;
typedef Belos::StatusTestImpResNorm<ScalarType,MV,OP> StatusTestImpResNorm_t;
// Basic test checks maximum iterations and native residual.
maxIterTest_ = Teuchos::rcp( new StatusTestMaxIters<ScalarType,MV,OP>( maxIters_ ) );
// If there is a left preconditioner, we create a combined status test that checks the implicit
// and then explicit residual norm to see if we have convergence.
if ( !Teuchos::is_null(problem_->getLeftPrec()) ) {
expResTest_ = true;
}
if (expResTest_) {
// Implicit residual test, using the native residual to determine if convergence was achieved.
Teuchos::RCP<StatusTestGenResNorm_t> tmpImpConvTest =
Teuchos::rcp( new StatusTestGenResNorm_t( convtol_, defQuorum_ ) );
tmpImpConvTest->defineScaleForm( convertStringToScaleType(impResScale_), Belos::TwoNorm );
tmpImpConvTest->setShowMaxResNormOnly( showMaxResNormOnly_ );
impConvTest_ = tmpImpConvTest;
// Explicit residual test once the native residual is below the tolerance
Teuchos::RCP<StatusTestGenResNorm_t> tmpExpConvTest =
Teuchos::rcp( new StatusTestGenResNorm_t( convtol_, defQuorum_ ) );
tmpExpConvTest->defineResForm( StatusTestGenResNorm_t::Explicit, Belos::TwoNorm );
tmpExpConvTest->defineScaleForm( convertStringToScaleType(expResScale_), Belos::TwoNorm );
tmpExpConvTest->setShowMaxResNormOnly( showMaxResNormOnly_ );
expConvTest_ = tmpExpConvTest;
// The convergence test is a combination of the "cheap" implicit test and explicit test.
convTest_ = Teuchos::rcp( new StatusTestCombo_t( StatusTestCombo_t::SEQ, impConvTest_, expConvTest_ ) );
}
else {
// Implicit residual test, using the native residual to determine if convergence was achieved.
// Use test that checks for loss of accuracy.
Teuchos::RCP<StatusTestImpResNorm_t> tmpImpConvTest =
Teuchos::rcp( new StatusTestImpResNorm_t( convtol_, defQuorum_ ) );
tmpImpConvTest->defineScaleForm( convertStringToScaleType(impResScale_), Belos::TwoNorm );
tmpImpConvTest->setShowMaxResNormOnly( showMaxResNormOnly_ );
impConvTest_ = tmpImpConvTest;
// Set the explicit and total convergence test to this implicit test that checks for accuracy loss.
expConvTest_ = impConvTest_;
convTest_ = impConvTest_;
}
if (nonnull(debugStatusTest_) ) {
// Add debug convergence test
convTest_ = Teuchos::rcp(
new StatusTestCombo_t( StatusTestCombo_t::AND, convTest_, debugStatusTest_ ) );
}
if (nonnull(userConvStatusTest_) ) {
// Override the overall convergence test with the users convergence test
convTest_ = Teuchos::rcp(
new StatusTestCombo_t( StatusTestCombo_t::SEQ, convTest_, userConvStatusTest_ ) );
// NOTE: Above, you have to run the other convergence tests also because
// the logic in this class depends on it. This is very unfortunate.
}
sTest_ = Teuchos::rcp( new StatusTestCombo_t( StatusTestCombo_t::OR, maxIterTest_, convTest_ ) );
// Create the status test output class.
// This class manages and formats the output from the status test.
StatusTestOutputFactory<ScalarType,MV,OP> stoFactory( outputStyle_ );
outputTest_ = stoFactory.create( printer_, sTest_, outputFreq_, Passed+Failed+Undefined );
// Set the solver string for the output test
std::string solverDesc = " Pseudo Block Gmres ";
outputTest_->setSolverDesc( solverDesc );
// The status test is now set.
isSTSet_ = true;
return false;
}
// solve()
template<class ScalarType, class MV, class OP>
ReturnType PseudoBlockGmresSolMgr<ScalarType,MV,OP>::solve() {
// Set the current parameters if they were not set before.
// NOTE: This may occur if the user generated the solver manager with the default constructor and
// then didn't set any parameters using setParameters().
if (!isSet_) { setParameters( params_ ); }
Teuchos::BLAS<int,ScalarType> blas;
TEUCHOS_TEST_FOR_EXCEPTION(!problem_->isProblemSet(),PseudoBlockGmresSolMgrLinearProblemFailure,
"Belos::PseudoBlockGmresSolMgr::solve(): Linear problem is not ready, setProblem() has not been called.");
// Check if we have to create the status tests.
if (!isSTSet_ || (!expResTest_ && !Teuchos::is_null(problem_->getLeftPrec())) ) {
TEUCHOS_TEST_FOR_EXCEPTION( checkStatusTest(),PseudoBlockGmresSolMgrLinearProblemFailure,
"Belos::BlockGmresSolMgr::solve(): Linear problem and requested status tests are incompatible.");
}
// Create indices for the linear systems to be solved.
int startPtr = 0;
int numRHS2Solve = MVT::GetNumberVecs( *(problem_->getRHS()) );
int numCurrRHS = ( numRHS2Solve < blockSize_) ? numRHS2Solve : blockSize_;
std::vector<int> currIdx( numCurrRHS );
blockSize_ = numCurrRHS;
for (int i=0; i<numCurrRHS; ++i)
{ currIdx[i] = startPtr+i; }
// Inform the linear problem of the current linear system to solve.
problem_->setLSIndex( currIdx );
//////////////////////////////////////////////////////////////////////////////////////
// Parameter list
Teuchos::ParameterList plist;
plist.set("Num Blocks",numBlocks_);
// Reset the status test.
outputTest_->reset();
loaDetected_ = false;
// Assume convergence is achieved, then let any failed convergence set this to false.
bool isConverged = true;
//////////////////////////////////////////////////////////////////////////////////////
// BlockGmres solver
Teuchos::RCP<PseudoBlockGmresIter<ScalarType,MV,OP> > block_gmres_iter
= Teuchos::rcp( new PseudoBlockGmresIter<ScalarType,MV,OP>(problem_,printer_,outputTest_,ortho_,plist) );
// Enter solve() iterations
{
#ifdef BELOS_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor slvtimer(*timerSolve_);
#endif
while ( numRHS2Solve > 0 ) {
// Reset the active / converged vectors from this block
std::vector<int> convRHSIdx;
std::vector<int> currRHSIdx( currIdx );
currRHSIdx.resize(numCurrRHS);
// Set the current number of blocks with the pseudo Gmres iteration.
block_gmres_iter->setNumBlocks( numBlocks_ );
// Reset the number of iterations.
block_gmres_iter->resetNumIters();
// Reset the number of calls that the status test output knows about.
outputTest_->resetNumCalls();
// Get a new state struct and initialize the solver.
PseudoBlockGmresIterState<ScalarType,MV> newState;
// Create the first block in the current Krylov basis for each right-hand side.
std::vector<int> index(1);
Teuchos::RCP<MV> tmpV, R_0 = MVT::CloneCopy( *(problem_->getInitPrecResVec()), currIdx );
newState.V.resize( blockSize_ );
newState.Z.resize( blockSize_ );
for (int i=0; i<blockSize_; ++i) {
index[0]=i;
tmpV = MVT::CloneViewNonConst( *R_0, index );
// Get a matrix to hold the orthonormalization coefficients.
Teuchos::RCP<Teuchos::SerialDenseVector<int,ScalarType> > tmpZ
= Teuchos::rcp( new Teuchos::SerialDenseVector<int,ScalarType>( 1 ));
// Orthonormalize the new V_0
int rank = ortho_->normalize( *tmpV, tmpZ );
TEUCHOS_TEST_FOR_EXCEPTION(rank != 1, PseudoBlockGmresSolMgrOrthoFailure,
"Belos::PseudoBlockGmresSolMgr::solve(): Failed to compute initial block of orthonormal vectors.");
newState.V[i] = tmpV;
newState.Z[i] = tmpZ;
}
newState.curDim = 0;
block_gmres_iter->initialize(newState);
int numRestarts = 0;
while(1) {
// tell block_gmres_iter to iterate
try {
block_gmres_iter->iterate();
////////////////////////////////////////////////////////////////////////////////////
//
// check convergence first
//
////////////////////////////////////////////////////////////////////////////////////
if ( convTest_->getStatus() == Passed ) {
if ( expConvTest_->getLOADetected() ) {
// Oops! There was a loss of accuracy (LOA) for one or
// more right-hand sides. That means the implicit
// (a.k.a. "native") residuals claim convergence,
// whereas the explicit (hence expConvTest_, i.e.,
// "explicit convergence test") residuals have not
// converged.
//
// We choose to deal with this situation by deflating
// out the affected right-hand sides and moving on.
loaDetected_ = true;
printer_->stream(Warnings) <<
"Belos::PseudoBlockGmresSolMgr::solve(): Warning! Solver has experienced a loss of accuracy!" << std::endl;
isConverged = false;
}
// Figure out which linear systems converged.
std::vector<int> convIdx = expConvTest_->convIndices();
// If the number of converged linear systems is equal to the
// number of current linear systems, then we are done with this block.
if (convIdx.size() == currRHSIdx.size())
break; // break from while(1){block_gmres_iter->iterate()}
// Get a new state struct and initialize the solver.
PseudoBlockGmresIterState<ScalarType,MV> defState;
// Inform the linear problem that we are finished with this current linear system.
problem_->setCurrLS();
// Get the state.
PseudoBlockGmresIterState<ScalarType,MV> oldState = block_gmres_iter->getState();
int curDim = oldState.curDim;
// Get a new state struct and reset currRHSIdx to have the right-hand sides that
// are left to converge for this block.
int have = 0;
std::vector<int> oldRHSIdx( currRHSIdx );
std::vector<int> defRHSIdx;
for (unsigned int i=0; i<currRHSIdx.size(); ++i) {
bool found = false;
for (unsigned int j=0; j<convIdx.size(); ++j) {
if (currRHSIdx[i] == convIdx[j]) {
found = true;
break;
}
}
if (found) {
defRHSIdx.push_back( i );
}
else {
defState.V.push_back( Teuchos::rcp_const_cast<MV>( oldState.V[i] ) );
defState.Z.push_back( Teuchos::rcp_const_cast<Teuchos::SerialDenseVector<int,ScalarType> >( oldState.Z[i] ) );
defState.H.push_back( Teuchos::rcp_const_cast<Teuchos::SerialDenseMatrix<int,ScalarType> >( oldState.H[i] ) );
defState.sn.push_back( Teuchos::rcp_const_cast<Teuchos::SerialDenseVector<int,ScalarType> >( oldState.sn[i] ) );
defState.cs.push_back( Teuchos::rcp_const_cast<Teuchos::SerialDenseVector<int,MagnitudeType> >(oldState.cs[i] ) );
currRHSIdx[have] = currRHSIdx[i];
have++;
}
}
defRHSIdx.resize(currRHSIdx.size()-have);
currRHSIdx.resize(have);
// Compute the current solution that needs to be deflated if this solver has taken any steps.
if (curDim) {
Teuchos::RCP<MV> update = block_gmres_iter->getCurrentUpdate();
Teuchos::RCP<MV> defUpdate = MVT::CloneViewNonConst( *update, defRHSIdx );
// Set the deflated indices so we can update the solution.
problem_->setLSIndex( convIdx );
// Update the linear problem.
problem_->updateSolution( defUpdate, true );
}
// Set the remaining indices after deflation.
problem_->setLSIndex( currRHSIdx );
// Set the dimension of the subspace, which is the same as the old subspace size.
defState.curDim = curDim;
// Initialize the solver with the deflated system.
block_gmres_iter->initialize(defState);
}
////////////////////////////////////////////////////////////////////////////////////
//
// check for maximum iterations
//
////////////////////////////////////////////////////////////////////////////////////
else if ( maxIterTest_->getStatus() == Passed ) {
// we don't have convergence
isConverged = false;
break; // break from while(1){block_gmres_iter->iterate()}
}
////////////////////////////////////////////////////////////////////////////////////
//
// check for restarting, i.e. the subspace is full
//
////////////////////////////////////////////////////////////////////////////////////
else if ( block_gmres_iter->getCurSubspaceDim() == block_gmres_iter->getMaxSubspaceDim() ) {
if ( numRestarts >= maxRestarts_ ) {
isConverged = false;
break; // break from while(1){block_gmres_iter->iterate()}
}
numRestarts++;
printer_->stream(Debug) << " Performing restart number " << numRestarts << " of " << maxRestarts_ << std::endl << std::endl;
// Update the linear problem.
Teuchos::RCP<MV> update = block_gmres_iter->getCurrentUpdate();
problem_->updateSolution( update, true );
// Get the state.
PseudoBlockGmresIterState<ScalarType,MV> oldState = block_gmres_iter->getState();
// Set the new state.
PseudoBlockGmresIterState<ScalarType,MV> newstate;
newstate.V.resize(currRHSIdx.size());
newstate.Z.resize(currRHSIdx.size());
// Compute the restart vectors
// NOTE: Force the linear problem to update the current residual since the solution was updated.
R_0 = MVT::Clone( *(problem_->getInitPrecResVec()), currRHSIdx.size() );
problem_->computeCurrPrecResVec( &*R_0 );
for (unsigned int i=0; i<currRHSIdx.size(); ++i) {
index[0] = i; // index(1) vector declared on line 891
tmpV = MVT::CloneViewNonConst( *R_0, index );
// Get a matrix to hold the orthonormalization coefficients.
Teuchos::RCP<Teuchos::SerialDenseVector<int,ScalarType> > tmpZ
= Teuchos::rcp( new Teuchos::SerialDenseVector<int,ScalarType>( 1 ));
// Orthonormalize the new V_0
int rank = ortho_->normalize( *tmpV, tmpZ );
TEUCHOS_TEST_FOR_EXCEPTION(rank != 1 ,PseudoBlockGmresSolMgrOrthoFailure,
"Belos::PseudoBlockGmresSolMgr::solve(): Failed to compute initial block of orthonormal vectors after the restart.");
newstate.V[i] = tmpV;
newstate.Z[i] = tmpZ;
}
// Initialize the solver.
newstate.curDim = 0;
block_gmres_iter->initialize(newstate);
} // end of restarting
////////////////////////////////////////////////////////////////////////////////////
//
// we returned from iterate(), but none of our status tests Passed.
// something is wrong, and it is probably our fault.
//
////////////////////////////////////////////////////////////////////////////////////
else {
TEUCHOS_TEST_FOR_EXCEPTION(true,std::logic_error,
"Belos::PseudoBlockGmresSolMgr::solve(): Invalid return from PseudoBlockGmresIter::iterate().");
}
}
catch (const PseudoBlockGmresIterOrthoFailure &e) {
// Try to recover the most recent least-squares solution
block_gmres_iter->updateLSQR( block_gmres_iter->getCurSubspaceDim() );
// Check to see if the most recent least-squares solution yielded convergence.
sTest_->checkStatus( &*block_gmres_iter );
if (convTest_->getStatus() != Passed)
isConverged = false;
break;
}
catch (const std::exception &e) {
printer_->stream(Errors) << "Error! Caught std::exception in PseudoBlockGmresIter::iterate() at iteration "
<< block_gmres_iter->getNumIters() << std::endl
<< e.what() << std::endl;
throw;
}
}
// Compute the current solution.
// Update the linear problem.
if (nonnull(userConvStatusTest_)) {
//std::cout << "\nnonnull(userConvStatusTest_)\n";
Teuchos::RCP<MV> update = block_gmres_iter->getCurrentUpdate();
problem_->updateSolution( update, true );
}
else if (nonnull(expConvTest_->getSolution())) {
//std::cout << "\nexpConvTest_->getSolution()\n";
Teuchos::RCP<MV> newX = expConvTest_->getSolution();
Teuchos::RCP<MV> curX = problem_->getCurrLHSVec();
MVT::MvAddMv( 0.0, *newX, 1.0, *newX, *curX );
}
else {
//std::cout << "\nblock_gmres_iter->getCurrentUpdate()\n";
Teuchos::RCP<MV> update = block_gmres_iter->getCurrentUpdate();
problem_->updateSolution( update, true );
}
// Inform the linear problem that we are finished with this block linear system.
problem_->setCurrLS();
// Update indices for the linear systems to be solved.
startPtr += numCurrRHS;
numRHS2Solve -= numCurrRHS;
if ( numRHS2Solve > 0 ) {
numCurrRHS = ( numRHS2Solve < blockSize_) ? numRHS2Solve : blockSize_;
blockSize_ = numCurrRHS;
currIdx.resize( numCurrRHS );
for (int i=0; i<numCurrRHS; ++i)
{ currIdx[i] = startPtr+i; }
// Adapt the status test quorum if we need to.
if (defQuorum_ > blockSize_) {
if (impConvTest_ != Teuchos::null)
impConvTest_->setQuorum( blockSize_ );
if (expConvTest_ != Teuchos::null)
expConvTest_->setQuorum( blockSize_ );
}
// Set the next indices.
problem_->setLSIndex( currIdx );
}
else {
currIdx.resize( numRHS2Solve );
}
}// while ( numRHS2Solve > 0 )
}
// print final summary
sTest_->print( printer_->stream(FinalSummary) );
// print timing information
#ifdef BELOS_TEUCHOS_TIME_MONITOR
// Calling summarize() can be expensive, so don't call unless the
// user wants to print out timing details. summarize() will do all
// the work even if it's passed a "black hole" output stream.
if (verbosity_ & TimingDetails)
Teuchos::TimeMonitor::summarize( printer_->stream(TimingDetails) );
#endif
// get iteration information for this solve
numIters_ = maxIterTest_->getNumIters();
// Save the convergence test value ("achieved tolerance") for this
// solve. For this solver, convTest_ may either be a single
// residual norm test, or a combination of two residual norm tests.
// In the latter case, the master convergence test convTest_ is a
// SEQ combo of the implicit resp. explicit tests. If the implicit
// test never passes, then the explicit test won't ever be executed.
// This manifests as expConvTest_->getTestValue()->size() < 1. We
// deal with this case by using the values returned by
// impConvTest_->getTestValue().
{
// We'll fetch the vector of residual norms one way or the other.
const std::vector<MagnitudeType>* pTestValues = NULL;
if (expResTest_) {
pTestValues = expConvTest_->getTestValue();
if (pTestValues == NULL || pTestValues->size() < 1) {
pTestValues = impConvTest_->getTestValue();
}
}
else {
// Only the implicit residual norm test is being used.
pTestValues = impConvTest_->getTestValue();
}
TEUCHOS_TEST_FOR_EXCEPTION(pTestValues == NULL, std::logic_error,
"Belos::PseudoBlockGmresSolMgr::solve(): The implicit convergence test's "
"getTestValue() method returned NULL. Please report this bug to the "
"Belos developers.");
TEUCHOS_TEST_FOR_EXCEPTION(pTestValues->size() < 1, std::logic_error,
"Belos::PseudoBlockGmresSolMgr::solve(): The implicit convergence test's "
"getTestValue() method returned a vector of length zero. Please report "
"this bug to the Belos developers.");
// FIXME (mfh 12 Dec 2011) Does pTestValues really contain the
// achieved tolerances for all vectors in the current solve(), or
// just for the vectors from the last deflation?
achievedTol_ = *std::max_element (pTestValues->begin(), pTestValues->end());
}
if (!isConverged || loaDetected_) {
return Unconverged; // return from PseudoBlockGmresSolMgr::solve()
}
return Converged; // return from PseudoBlockGmresSolMgr::solve()
}
template<class ScalarType, class MV, class OP>
std::string PseudoBlockGmresSolMgr<ScalarType,MV,OP>::description () const
{
std::ostringstream out;
out << "\"Belos::PseudoBlockGmresSolMgr\": {";
if (this->getObjectLabel () != "") {
out << "Label: " << this->getObjectLabel () << ", ";
}
out << "Num Blocks: " << numBlocks_
<< ", Maximum Iterations: " << maxIters_
<< ", Maximum Restarts: " << maxRestarts_
<< ", Convergence Tolerance: " << convtol_
<< "}";
return out.str ();
}
template<class ScalarType, class MV, class OP>
void
PseudoBlockGmresSolMgr<ScalarType, MV, OP>::
describe (Teuchos::FancyOStream &out,
const Teuchos::EVerbosityLevel verbLevel) const
{
using Teuchos::TypeNameTraits;
using Teuchos::VERB_DEFAULT;
using Teuchos::VERB_NONE;
using Teuchos::VERB_LOW;
// using Teuchos::VERB_MEDIUM;
// using Teuchos::VERB_HIGH;
// using Teuchos::VERB_EXTREME;
using std::endl;
// Set default verbosity if applicable.
const Teuchos::EVerbosityLevel vl =
(verbLevel == VERB_DEFAULT) ? VERB_LOW : verbLevel;
if (vl != VERB_NONE) {
Teuchos::OSTab tab0 (out);
out << "\"Belos::PseudoBlockGmresSolMgr\":" << endl;
Teuchos::OSTab tab1 (out);
out << "Template parameters:" << endl;
{
Teuchos::OSTab tab2 (out);
out << "ScalarType: " << TypeNameTraits<ScalarType>::name () << endl
<< "MV: " << TypeNameTraits<MV>::name () << endl
<< "OP: " << TypeNameTraits<OP>::name () << endl;
}
if (this->getObjectLabel () != "") {
out << "Label: " << this->getObjectLabel () << endl;
}
out << "Num Blocks: " << numBlocks_ << endl
<< "Maximum Iterations: " << maxIters_ << endl
<< "Maximum Restarts: " << maxRestarts_ << endl
<< "Convergence Tolerance: " << convtol_ << endl;
}
}
} // end Belos namespace
#endif /* BELOS_PSEUDO_BLOCK_GMRES_SOLMGR_HPP */
|