This file is indexed.

/usr/include/trilinos/BelosPseudoBlockStochasticCGSolMgr.hpp is in libtrilinos-belos-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
//@HEADER
// ************************************************************************
//
//                 Belos: Block Linear Solvers Package
//                  Copyright 2004 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER

#ifndef BELOS_PSEUDO_BLOCK_STOCHASTIC_CG_SOLMGR_HPP
#define BELOS_PSEUDO_BLOCK_STOCHASTIC_CG_SOLMGR_HPP

/*! \file BelosPseudoBlockStochasticCGSolMgr.hpp
 *  \brief The Belos::PseudoBlockStochasticCGSolMgr provides a solver manager for the stochastic BlockCG linear solver.
*/

#include "BelosConfigDefs.hpp"
#include "BelosTypes.hpp"

#include "BelosLinearProblem.hpp"
#include "BelosSolverManager.hpp"

#include "BelosPseudoBlockStochasticCGIter.hpp"
#include "BelosStatusTestMaxIters.hpp"
#include "BelosStatusTestGenResNorm.hpp"
#include "BelosStatusTestCombo.hpp"
#include "BelosStatusTestOutputFactory.hpp"
#include "BelosOutputManager.hpp"
#include "Teuchos_BLAS.hpp"
#ifdef BELOS_TEUCHOS_TIME_MONITOR
#include "Teuchos_TimeMonitor.hpp"
#endif

/*! \class Belos::PseudoBlockStochasticCGSolMgr
 *
 *  \brief The Belos::PseudoBlockStochasticCGSolMgr provides a powerful and fully-featured solver manager over the pseudo-block CG iteration.

 \ingroup belos_solver_framework

 \author Chris Siefert, Heidi Thornquist, Chris Baker, and Teri Barth
 */

namespace Belos {

  //! @name PseudoBlockStochasticCGSolMgr Exceptions
  //@{

  /** \brief PseudoBlockStochasticCGSolMgrLinearProblemFailure is thrown when the linear problem is
   * not setup (i.e. setProblem() was not called) when solve() is called.
   *
   * This std::exception is thrown from the PseudoBlockStochasticCGSolMgr::solve() method.
   *
   */
  class PseudoBlockStochasticCGSolMgrLinearProblemFailure : public BelosError {public:
    PseudoBlockStochasticCGSolMgrLinearProblemFailure(const std::string& what_arg) : BelosError(what_arg)
    {}};

  /** \brief PseudoBlockStochasticCGSolMgrOrthoFailure is thrown when the orthogonalization manager is
   * unable to generate orthonormal columns from the initial basis vectors.
   *
   * This std::exception is thrown from the PseudoBlockStochasticCGSolMgr::solve() method.
   *
   */
  class PseudoBlockStochasticCGSolMgrOrthoFailure : public BelosError {public:
    PseudoBlockStochasticCGSolMgrOrthoFailure(const std::string& what_arg) : BelosError(what_arg)
    {}};

  template<class ScalarType, class MV, class OP>
  class PseudoBlockStochasticCGSolMgr : public SolverManager<ScalarType,MV,OP> {

  private:
    typedef MultiVecTraits<ScalarType,MV> MVT;
    typedef OperatorTraits<ScalarType,MV,OP> OPT;
    typedef Teuchos::ScalarTraits<ScalarType> SCT;
    typedef typename Teuchos::ScalarTraits<ScalarType>::magnitudeType MagnitudeType;
    typedef Teuchos::ScalarTraits<MagnitudeType> MT;

  public:

    //! @name Constructors/Destructor
    //@{

    /*! \brief Empty constructor for BlockStochasticCGSolMgr.
     * This constructor takes no arguments and sets the default values for the solver.
     * The linear problem must be passed in using setProblem() before solve() is called on this object.
     * The solver values can be changed using setParameters().
     */
    PseudoBlockStochasticCGSolMgr();

    /*! \brief Basic constructor for PseudoBlockStochasticCGSolMgr.
     *
     * This constructor accepts the LinearProblem to be solved in addition
     * to a parameter list of options for the solver manager. These options include the following:
     *   - "Maximum Iterations" - a \c int specifying the maximum number of iterations the underlying solver is allowed to perform.
     *   - "Verbosity" - a sum of MsgType specifying the verbosity. Default: Belos::Errors
     *   - "Output Style" - a OutputType specifying the style of output. Default: Belos::General
     *   - "Convergence Tolerance" - a \c MagnitudeType specifying the level that residual norms must reach to decide convergence.
     */
    PseudoBlockStochasticCGSolMgr( const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem,
                         const Teuchos::RCP<Teuchos::ParameterList> &pl );

    //! Destructor.
    virtual ~PseudoBlockStochasticCGSolMgr() {};
    //@}

    //! @name Accessor methods
    //@{

    const LinearProblem<ScalarType,MV,OP>& getProblem() const {
      return *problem_;
    }

    /*! \brief Get a parameter list containing the valid parameters for this object.
     */
    Teuchos::RCP<const Teuchos::ParameterList> getValidParameters() const;

    /*! \brief Get a parameter list containing the current parameters for this object.
     */
    Teuchos::RCP<const Teuchos::ParameterList> getCurrentParameters() const { return params_; }

    /*! \brief Return the timers for this object.
     *
     * The timers are ordered as follows:
     *   - time spent in solve() routine
     */
    Teuchos::Array<Teuchos::RCP<Teuchos::Time> > getTimers() const {
      return Teuchos::tuple(timerSolve_);
    }

    //! Get the iteration count for the most recent call to \c solve().
    int getNumIters() const {
      return numIters_;
    }

    /*! \brief Return whether a loss of accuracy was detected by this solver during the most current solve.
        \note This flag will be reset the next time solve() is called.
     */
    bool isLOADetected() const { return false; }

    //@}

    //! @name Set methods
    //@{

    //! Set the linear problem that needs to be solved.
    void setProblem( const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem ) { problem_ = problem; }

    //! Set the parameters the solver manager should use to solve the linear problem.
    void setParameters( const Teuchos::RCP<Teuchos::ParameterList> &params );

    //@}

    //! @name Reset methods
    //@{
    /*! \brief Performs a reset of the solver manager specified by the \c ResetType.  This informs the
     *  solver manager that the solver should prepare for the next call to solve by resetting certain elements
     *  of the iterative solver strategy.
     */
    void reset( const ResetType type ) { if ((type & Belos::Problem) && !Teuchos::is_null(problem_)) problem_->setProblem(); }
    //@}

    //! @name Solver application methods
    //@{

    /*! \brief This method performs possibly repeated calls to the underlying linear solver's iterate() routine
     * until the problem has been solved (as decided by the solver manager) or the solver manager decides to
     * quit.
     *
     * This method calls PseudoBlockStochasticCGIter::iterate(), which will return either because a specially constructed status test evaluates to
     * ::Passed or an std::exception is thrown.
     *
     * A return from PseudoBlockStochasticCGIter::iterate() signifies one of the following scenarios:
     *    - the maximum number of restarts has been exceeded. In this scenario, the current solutions to the linear system
     *      will be placed in the linear problem and return ::Unconverged.
     *    - global convergence has been met. In this case, the current solutions to the linear system will be placed in the linear
     *      problem and the solver manager will return ::Converged
     *
     * \returns ::ReturnType specifying:
     *     - ::Converged: the linear problem was solved to the specification required by the solver manager.
     *     - ::Unconverged: the linear problem was not solved to the specification desired by the solver manager.
     */
    ReturnType solve();

    //@}

    //! Get a copy of the final stochastic vector
    Teuchos::RCP<MV> getStochasticVector() { return Y_;}

    /** \name Overridden from Teuchos::Describable */
    //@{

    /** \brief Method to return description of the block CG solver manager */
    std::string description() const;

    //@}

  private:

    // Linear problem.
    Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > problem_;

    // Output manager.
    Teuchos::RCP<OutputManager<ScalarType> > printer_;
    Teuchos::RCP<std::ostream> outputStream_;

    // Status test.
    Teuchos::RCP<StatusTest<ScalarType,MV,OP> > sTest_;
    Teuchos::RCP<StatusTestMaxIters<ScalarType,MV,OP> > maxIterTest_;
    Teuchos::RCP<StatusTestGenResNorm<ScalarType,MV,OP> > convTest_;
    Teuchos::RCP<StatusTestOutput<ScalarType,MV,OP> > outputTest_;

    // Orthogonalization manager.
    Teuchos::RCP<MatOrthoManager<ScalarType,MV,OP> > ortho_;

    // Current parameter list.
    Teuchos::RCP<Teuchos::ParameterList> params_;

    /// \brief List of valid parameters and their default values.
    ///
    /// This is declared "mutable" because the SolverManager interface
    /// requires that getValidParameters() be declared const, yet we
    /// want to create the valid parameter list only on demand.
    mutable Teuchos::RCP<const Teuchos::ParameterList> validParams_;

    // Default solver values.
    static const MagnitudeType convtol_default_;
    static const int maxIters_default_;
    static const bool assertPositiveDefiniteness_default_;
    static const bool showMaxResNormOnly_default_;
    static const int verbosity_default_;
    static const int outputStyle_default_;
    static const int outputFreq_default_;
    static const int defQuorum_default_;
    static const std::string resScale_default_;
    static const std::string label_default_;
    static const Teuchos::RCP<std::ostream> outputStream_default_;

    // Current solver values.
    MagnitudeType convtol_;
    int maxIters_, numIters_;
    int verbosity_, outputStyle_, outputFreq_, defQuorum_;
    bool assertPositiveDefiniteness_, showMaxResNormOnly_;
    std::string resScale_;

    // Timers.
    std::string label_;
    Teuchos::RCP<Teuchos::Time> timerSolve_;

    // Internal state variables.
    bool isSet_;

    // Stashed copy of the stochastic vector
    Teuchos::RCP<MV> Y_;

  };


// Default solver values.
template<class ScalarType, class MV, class OP>
const typename PseudoBlockStochasticCGSolMgr<ScalarType,MV,OP>::MagnitudeType PseudoBlockStochasticCGSolMgr<ScalarType,MV,OP>::convtol_default_ = 1e-8;

template<class ScalarType, class MV, class OP>
const int PseudoBlockStochasticCGSolMgr<ScalarType,MV,OP>::maxIters_default_ = 1000;

template<class ScalarType, class MV, class OP>
const bool PseudoBlockStochasticCGSolMgr<ScalarType,MV,OP>::assertPositiveDefiniteness_default_ = true;

template<class ScalarType, class MV, class OP>
const bool PseudoBlockStochasticCGSolMgr<ScalarType,MV,OP>::showMaxResNormOnly_default_ = false;

template<class ScalarType, class MV, class OP>
const int PseudoBlockStochasticCGSolMgr<ScalarType,MV,OP>::verbosity_default_ = Belos::Errors;

template<class ScalarType, class MV, class OP>
const int PseudoBlockStochasticCGSolMgr<ScalarType,MV,OP>::outputStyle_default_ = Belos::General;

template<class ScalarType, class MV, class OP>
const int PseudoBlockStochasticCGSolMgr<ScalarType,MV,OP>::outputFreq_default_ = -1;

template<class ScalarType, class MV, class OP>
const int PseudoBlockStochasticCGSolMgr<ScalarType,MV,OP>::defQuorum_default_ = 1;

template<class ScalarType, class MV, class OP>
const std::string PseudoBlockStochasticCGSolMgr<ScalarType,MV,OP>::resScale_default_ = "Norm of Initial Residual";

template<class ScalarType, class MV, class OP>
const std::string PseudoBlockStochasticCGSolMgr<ScalarType,MV,OP>::label_default_ = "Belos";

template<class ScalarType, class MV, class OP>
const Teuchos::RCP<std::ostream> PseudoBlockStochasticCGSolMgr<ScalarType,MV,OP>::outputStream_default_ = Teuchos::rcp(&std::cout,false);


// Empty Constructor
template<class ScalarType, class MV, class OP>
PseudoBlockStochasticCGSolMgr<ScalarType,MV,OP>::PseudoBlockStochasticCGSolMgr() :
  outputStream_(outputStream_default_),
  convtol_(convtol_default_),
  maxIters_(maxIters_default_),
  numIters_(0),
  verbosity_(verbosity_default_),
  outputStyle_(outputStyle_default_),
  outputFreq_(outputFreq_default_),
  defQuorum_(defQuorum_default_),
  assertPositiveDefiniteness_(assertPositiveDefiniteness_default_),
  showMaxResNormOnly_(showMaxResNormOnly_default_),
  resScale_(resScale_default_),
  label_(label_default_),
  isSet_(false)
{}

// Basic Constructor
template<class ScalarType, class MV, class OP>
PseudoBlockStochasticCGSolMgr<ScalarType,MV,OP>::
PseudoBlockStochasticCGSolMgr (const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem,
                               const Teuchos::RCP<Teuchos::ParameterList> &pl ) :
  problem_(problem),
  outputStream_(outputStream_default_),
  convtol_(convtol_default_),
  maxIters_(maxIters_default_),
  numIters_(0),
  verbosity_(verbosity_default_),
  outputStyle_(outputStyle_default_),
  outputFreq_(outputFreq_default_),
  defQuorum_(defQuorum_default_),
  assertPositiveDefiniteness_(assertPositiveDefiniteness_default_),
  showMaxResNormOnly_(showMaxResNormOnly_default_),
  resScale_(resScale_default_),
  label_(label_default_),
  isSet_(false)
{
  TEUCHOS_TEST_FOR_EXCEPTION(
    problem_.is_null (), std::invalid_argument,
    "Belos::PseudoBlockStochasticCGSolMgr two-argument constructor: "
    "'problem' is null.  You must supply a non-null Belos::LinearProblem "
    "instance when calling this constructor.");

  if (! pl.is_null ()) {
    // Set the parameters using the list that was passed in.
    setParameters (pl);
  }
}

template<class ScalarType, class MV, class OP>
void PseudoBlockStochasticCGSolMgr<ScalarType,MV,OP>::setParameters( const Teuchos::RCP<Teuchos::ParameterList> &params )
{
  using Teuchos::ParameterList;
  using Teuchos::parameterList;
  using Teuchos::RCP;

  RCP<const ParameterList> defaultParams = getValidParameters();

  // Create the internal parameter list if one doesn't already exist.
  if (params_.is_null()) {
    params_ = parameterList (*defaultParams);
  } else {
    params->validateParameters (*defaultParams);
  }

  // Check for maximum number of iterations
  if (params->isParameter("Maximum Iterations")) {
    maxIters_ = params->get("Maximum Iterations",maxIters_default_);

    // Update parameter in our list and in status test.
    params_->set("Maximum Iterations", maxIters_);
    if (maxIterTest_!=Teuchos::null)
      maxIterTest_->setMaxIters( maxIters_ );
  }

  // Check if positive definiteness assertions are to be performed
  if (params->isParameter("Assert Positive Definiteness")) {
    assertPositiveDefiniteness_ = params->get("Assert Positive Definiteness",assertPositiveDefiniteness_default_);

    // Update parameter in our list.
    params_->set("Assert Positive Definiteness", assertPositiveDefiniteness_);
  }

  // Check to see if the timer label changed.
  if (params->isParameter("Timer Label")) {
    std::string tempLabel = params->get("Timer Label", label_default_);

    // Update parameter in our list and solver timer
    if (tempLabel != label_) {
      label_ = tempLabel;
      params_->set("Timer Label", label_);
      std::string solveLabel = label_ + ": PseudoBlockStochasticCGSolMgr total solve time";
#ifdef BELOS_TEUCHOS_TIME_MONITOR
      timerSolve_ = Teuchos::TimeMonitor::getNewCounter(solveLabel);
#endif
      if (ortho_ != Teuchos::null) {
        ortho_->setLabel( label_ );
      }
    }
  }

  // Check for a change in verbosity level
  if (params->isParameter("Verbosity")) {
    if (Teuchos::isParameterType<int>(*params,"Verbosity")) {
      verbosity_ = params->get("Verbosity", verbosity_default_);
    } else {
      verbosity_ = (int)Teuchos::getParameter<Belos::MsgType>(*params,"Verbosity");
    }

    // Update parameter in our list.
    params_->set("Verbosity", verbosity_);
    if (printer_ != Teuchos::null)
      printer_->setVerbosity(verbosity_);
  }

  // Check for a change in output style
  if (params->isParameter("Output Style")) {
    if (Teuchos::isParameterType<int>(*params,"Output Style")) {
      outputStyle_ = params->get("Output Style", outputStyle_default_);
    } else {
      outputStyle_ = (int)Teuchos::getParameter<Belos::OutputType>(*params,"Output Style");
    }

    // Reconstruct the convergence test if the explicit residual test is not being used.
    params_->set("Output Style", outputStyle_);
    outputTest_ = Teuchos::null;
  }

  // output stream
  if (params->isParameter("Output Stream")) {
    outputStream_ = Teuchos::getParameter<Teuchos::RCP<std::ostream> >(*params,"Output Stream");

    // Update parameter in our list.
    params_->set("Output Stream", outputStream_);
    if (printer_ != Teuchos::null)
      printer_->setOStream( outputStream_ );
  }

  // frequency level
  if (verbosity_ & Belos::StatusTestDetails) {
    if (params->isParameter("Output Frequency")) {
      outputFreq_ = params->get("Output Frequency", outputFreq_default_);
    }

    // Update parameter in out list and output status test.
    params_->set("Output Frequency", outputFreq_);
    if (outputTest_ != Teuchos::null)
      outputTest_->setOutputFrequency( outputFreq_ );
  }

  // Create output manager if we need to.
  if (printer_ == Teuchos::null) {
    printer_ = Teuchos::rcp( new OutputManager<ScalarType>(verbosity_, outputStream_) );
  }

  // Convergence
  typedef Belos::StatusTestCombo<ScalarType,MV,OP>  StatusTestCombo_t;
  typedef Belos::StatusTestGenResNorm<ScalarType,MV,OP>  StatusTestResNorm_t;

  // Check for convergence tolerance
  if (params->isParameter("Convergence Tolerance")) {
    convtol_ = params->get("Convergence Tolerance",convtol_default_);

    // Update parameter in our list and residual tests.
    params_->set("Convergence Tolerance", convtol_);
    if (convTest_ != Teuchos::null)
      convTest_->setTolerance( convtol_ );
  }

  if (params->isParameter("Show Maximum Residual Norm Only")) {
    showMaxResNormOnly_ = Teuchos::getParameter<bool>(*params,"Show Maximum Residual Norm Only");

    // Update parameter in our list and residual tests
    params_->set("Show Maximum Residual Norm Only", showMaxResNormOnly_);
    if (convTest_ != Teuchos::null)
      convTest_->setShowMaxResNormOnly( showMaxResNormOnly_ );
  }

  // Check for a change in scaling, if so we need to build new residual tests.
  bool newResTest = false;
  {
    // "Residual Scaling" is the old parameter name; "Implicit
    // Residual Scaling" is the new name.  We support both options for
    // backwards compatibility.
    std::string tempResScale = resScale_;
    bool implicitResidualScalingName = false;
    if (params->isParameter ("Residual Scaling")) {
      tempResScale = params->get<std::string> ("Residual Scaling");
    }
    else if (params->isParameter ("Implicit Residual Scaling")) {
      tempResScale = params->get<std::string> ("Implicit Residual Scaling");
      implicitResidualScalingName = true;
    }

    // Only update the scaling if it's different.
    if (resScale_ != tempResScale) {
      Belos::ScaleType resScaleType = convertStringToScaleType( tempResScale );
      resScale_ = tempResScale;

      // Update parameter in our list and residual tests, using the
      // given parameter name.
      if (implicitResidualScalingName) {
        params_->set ("Implicit Residual Scaling", resScale_);
      }
      else {
        params_->set ("Residual Scaling", resScale_);
      }

      if (! convTest_.is_null()) {
        try {
          convTest_->defineScaleForm( resScaleType, Belos::TwoNorm );
        }
        catch (std::exception& e) {
          // Make sure the convergence test gets constructed again.
          newResTest = true;
        }
      }
    }
  }

  // Get the deflation quorum, or number of converged systems before deflation is allowed
  if (params->isParameter("Deflation Quorum")) {
    defQuorum_ = params->get("Deflation Quorum", defQuorum_);
    params_->set("Deflation Quorum", defQuorum_);
    if (convTest_ != Teuchos::null)
      convTest_->setQuorum( defQuorum_ );
  }

  // Create status tests if we need to.

  // Basic test checks maximum iterations and native residual.
  if (maxIterTest_ == Teuchos::null)
    maxIterTest_ = Teuchos::rcp( new StatusTestMaxIters<ScalarType,MV,OP>( maxIters_ ) );

  // Implicit residual test, using the native residual to determine if convergence was achieved.
  if (convTest_ == Teuchos::null || newResTest) {
    convTest_ = Teuchos::rcp( new StatusTestResNorm_t( convtol_, defQuorum_, showMaxResNormOnly_ ) );
    convTest_->defineScaleForm( convertStringToScaleType( resScale_ ), Belos::TwoNorm );
  }

  if (sTest_ == Teuchos::null || newResTest)
    sTest_ = Teuchos::rcp( new StatusTestCombo_t( StatusTestCombo_t::OR, maxIterTest_, convTest_ ) );

  if (outputTest_ == Teuchos::null || newResTest) {

    // Create the status test output class.
    // This class manages and formats the output from the status test.
    StatusTestOutputFactory<ScalarType,MV,OP> stoFactory( outputStyle_ );
    outputTest_ = stoFactory.create( printer_, sTest_, outputFreq_, Passed+Failed+Undefined );

    // Set the solver string for the output test
    std::string solverDesc = " Pseudo Block CG ";
    outputTest_->setSolverDesc( solverDesc );

  }

  // Create the timer if we need to.
  if (timerSolve_ == Teuchos::null) {
    std::string solveLabel = label_ + ": PseudoBlockStochasticCGSolMgr total solve time";
#ifdef BELOS_TEUCHOS_TIME_MONITOR
    timerSolve_ = Teuchos::TimeMonitor::getNewCounter(solveLabel);
#endif
  }

  // Inform the solver manager that the current parameters were set.
  isSet_ = true;
}


template<class ScalarType, class MV, class OP>
Teuchos::RCP<const Teuchos::ParameterList>
PseudoBlockStochasticCGSolMgr<ScalarType,MV,OP>::getValidParameters() const
{
  using Teuchos::ParameterList;
  using Teuchos::parameterList;
  using Teuchos::RCP;

  if (validParams_.is_null()) {
    // Set all the valid parameters and their default values.
    RCP<ParameterList> pl = parameterList ();
    pl->set("Convergence Tolerance", convtol_default_,
      "The relative residual tolerance that needs to be achieved by the\n"
      "iterative solver in order for the linera system to be declared converged.");
    pl->set("Maximum Iterations", maxIters_default_,
      "The maximum number of block iterations allowed for each\n"
      "set of RHS solved.");
    pl->set("Assert Positive Definiteness", assertPositiveDefiniteness_default_,
      "Whether or not to assert that the linear operator\n"
      "and the preconditioner are indeed positive definite.");
    pl->set("Verbosity", verbosity_default_,
      "What type(s) of solver information should be outputted\n"
      "to the output stream.");
    pl->set("Output Style", outputStyle_default_,
      "What style is used for the solver information outputted\n"
      "to the output stream.");
    pl->set("Output Frequency", outputFreq_default_,
      "How often convergence information should be outputted\n"
      "to the output stream.");
    pl->set("Deflation Quorum", defQuorum_default_,
      "The number of linear systems that need to converge before\n"
      "they are deflated.  This number should be <= block size.");
    pl->set("Output Stream", outputStream_default_,
      "A reference-counted pointer to the output stream where all\n"
      "solver output is sent.");
    pl->set("Show Maximum Residual Norm Only", showMaxResNormOnly_default_,
      "When convergence information is printed, only show the maximum\n"
      "relative residual norm when the block size is greater than one.");
    pl->set("Implicit Residual Scaling", resScale_default_,
      "The type of scaling used in the residual convergence test.");
    // We leave the old name as a valid parameter for backwards
    // compatibility (so that validateParametersAndSetDefaults()
    // doesn't raise an exception if it encounters "Residual
    // Scaling").  The new name was added for compatibility with other
    // solvers, none of which use "Residual Scaling".
    pl->set("Residual Scaling", resScale_default_,
            "The type of scaling used in the residual convergence test.  This "
            "name is deprecated; the new name is \"Implicit Residual Scaling\".");
    pl->set("Timer Label", label_default_,
      "The string to use as a prefix for the timer labels.");
    //  defaultParams_->set("Restart Timers", restartTimers_);
    validParams_ = pl;
  }
  return validParams_;
}


// solve()
template<class ScalarType, class MV, class OP>
ReturnType PseudoBlockStochasticCGSolMgr<ScalarType,MV,OP>::solve() {

  // Set the current parameters if they were not set before.
  // NOTE:  This may occur if the user generated the solver manager with the default constructor and
  // then didn't set any parameters using setParameters().
  if (!isSet_) { setParameters( params_ ); }

  Teuchos::BLAS<int,ScalarType> blas;

  TEUCHOS_TEST_FOR_EXCEPTION(!problem_->isProblemSet(),PseudoBlockStochasticCGSolMgrLinearProblemFailure,
                     "Belos::PseudoBlockStochasticCGSolMgr::solve(): Linear problem is not ready, setProblem() has not been called.");

  // Create indices for the linear systems to be solved.
  int startPtr = 0;
  int numRHS2Solve = MVT::GetNumberVecs( *(problem_->getRHS()) );
  int numCurrRHS = numRHS2Solve;

  std::vector<int> currIdx( numRHS2Solve ), currIdx2( numRHS2Solve );
  for (int i=0; i<numRHS2Solve; ++i) {
    currIdx[i] = startPtr+i;
    currIdx2[i]=i;
  }

  // Inform the linear problem of the current linear system to solve.
  problem_->setLSIndex( currIdx );

  //////////////////////////////////////////////////////////////////////////////////////
  // Parameter list
  Teuchos::ParameterList plist;

  plist.set("Assert Positive Definiteness",assertPositiveDefiniteness_);

  // Reset the status test.
  outputTest_->reset();

  // Assume convergence is achieved, then let any failed convergence set this to false.
  bool isConverged = true;

  //////////////////////////////////////////////////////////////////////////////////////
  // Pseudo-Block CG solver

  Teuchos::RCP<PseudoBlockStochasticCGIter<ScalarType,MV,OP> > block_cg_iter
    = Teuchos::rcp( new PseudoBlockStochasticCGIter<ScalarType,MV,OP>(problem_,printer_,outputTest_,plist) );

  // Enter solve() iterations
  {
#ifdef BELOS_TEUCHOS_TIME_MONITOR
    Teuchos::TimeMonitor slvtimer(*timerSolve_);
#endif

    while ( numRHS2Solve > 0 ) {

      // Reset the active / converged vectors from this block
      std::vector<int> convRHSIdx;
      std::vector<int> currRHSIdx( currIdx );
      currRHSIdx.resize(numCurrRHS);

      // Reset the number of iterations.
      block_cg_iter->resetNumIters();

      // Reset the number of calls that the status test output knows about.
      outputTest_->resetNumCalls();

      // Get the current residual for this block of linear systems.
      Teuchos::RCP<MV> R_0 = MVT::CloneViewNonConst( *(Teuchos::rcp_const_cast<MV>(problem_->getInitResVec())), currIdx );

      // Get a new state struct and initialize the solver.
      StochasticCGIterationState<ScalarType,MV> newState;
      newState.R = R_0;
      block_cg_iter->initializeCG(newState);

      while(1) {

        // tell block_gmres_iter to iterate
        try {
          block_cg_iter->iterate();

          ////////////////////////////////////////////////////////////////////////////////////
          //
          // check convergence first
          //
          ////////////////////////////////////////////////////////////////////////////////////
          if ( convTest_->getStatus() == Passed ) {

            // Figure out which linear systems converged.
            std::vector<int> convIdx = Teuchos::rcp_dynamic_cast<StatusTestGenResNorm<ScalarType,MV,OP> >(convTest_)->convIndices();

            // If the number of converged linear systems is equal to the
            // number of current linear systems, then we are done with this block.
            if (convIdx.size() == currRHSIdx.size())
              break;  // break from while(1){block_cg_iter->iterate()}

            // Inform the linear problem that we are finished with this current linear system.
            problem_->setCurrLS();

            // Reset currRHSIdx to have the right-hand sides that are left to converge for this block.
            int have = 0;
            std::vector<int> unconvIdx(currRHSIdx.size());
            for (unsigned int i=0; i<currRHSIdx.size(); ++i) {
              bool found = false;
              for (unsigned int j=0; j<convIdx.size(); ++j) {
                if (currRHSIdx[i] == convIdx[j]) {
                  found = true;
                  break;
                }
              }
              if (!found) {
                currIdx2[have] = currIdx2[i];
                currRHSIdx[have++] = currRHSIdx[i];
              }
            }
            currRHSIdx.resize(have);
            currIdx2.resize(have);

            // Set the remaining indices after deflation.
            problem_->setLSIndex( currRHSIdx );

            // Get the current residual vector.
            std::vector<MagnitudeType> norms;
            R_0 = MVT::CloneCopy( *(block_cg_iter->getNativeResiduals(&norms)),currIdx2 );
            for (int i=0; i<have; ++i) { currIdx2[i] = i; }

            // Set the new state and initialize the solver.
            StochasticCGIterationState<ScalarType,MV> defstate;
            defstate.R = R_0;
            block_cg_iter->initializeCG(defstate);
          }

          ////////////////////////////////////////////////////////////////////////////////////
          //
          // check for maximum iterations
          //
          ////////////////////////////////////////////////////////////////////////////////////
          else if ( maxIterTest_->getStatus() == Passed ) {
            // we don't have convergence
            isConverged = false;
            break;  // break from while(1){block_cg_iter->iterate()}
          }

          ////////////////////////////////////////////////////////////////////////////////////
          //
          // we returned from iterate(), but none of our status tests Passed.
          // something is wrong, and it is probably our fault.
          //
          ////////////////////////////////////////////////////////////////////////////////////

          else {
            TEUCHOS_TEST_FOR_EXCEPTION(true,std::logic_error,
                               "Belos::PseudoBlockStochasticCGSolMgr::solve(): Invalid return from PseudoBlockStochasticCGIter::iterate().");
          }
        }
        catch (const std::exception &e) {
          printer_->stream(Errors) << "Error! Caught std::exception in PseudoBlockStochasticCGIter::iterate() at iteration "
                                   << block_cg_iter->getNumIters() << std::endl
                                   << e.what() << std::endl;
          throw;
        }
      }

      // Inform the linear problem that we are finished with this block linear system.
      problem_->setCurrLS();

      // Update indices for the linear systems to be solved.
      startPtr += numCurrRHS;
      numRHS2Solve -= numCurrRHS;

      if ( numRHS2Solve > 0 ) {

        numCurrRHS = numRHS2Solve;
        currIdx.resize( numCurrRHS );
        currIdx2.resize( numCurrRHS );
        for (int i=0; i<numCurrRHS; ++i)
          { currIdx[i] = startPtr+i; currIdx2[i] = i; }

        // Set the next indices.
        problem_->setLSIndex( currIdx );
      }
      else {
        currIdx.resize( numRHS2Solve );
      }

    }// while ( numRHS2Solve > 0 )

  }

  // get the final stochastic vector
  Y_=block_cg_iter->getStochasticVector();


  // print final summary
  sTest_->print( printer_->stream(FinalSummary) );

  // print timing information
#ifdef BELOS_TEUCHOS_TIME_MONITOR
  // Calling summarize() can be expensive, so don't call unless the
  // user wants to print out timing details.  summarize() will do all
  // the work even if it's passed a "black hole" output stream.
  if (verbosity_ & TimingDetails)
    Teuchos::TimeMonitor::summarize( printer_->stream(TimingDetails) );
#endif

  // get iteration information for this solve
  numIters_ = maxIterTest_->getNumIters();

  if (!isConverged ) {
    return Unconverged; // return from PseudoBlockStochasticCGSolMgr::solve()
  }
  return Converged; // return from PseudoBlockStochasticCGSolMgr::solve()
}

//  This method requires the solver manager to return a std::string that describes itself.
template<class ScalarType, class MV, class OP>
std::string PseudoBlockStochasticCGSolMgr<ScalarType,MV,OP>::description() const
{
  std::ostringstream oss;
  oss << "Belos::PseudoBlockStochasticCGSolMgr<...,"<<Teuchos::ScalarTraits<ScalarType>::name()<<">";
  oss << "{";
  oss << "}";
  return oss.str();
}

} // end Belos namespace

#endif /* BELOS_PSEUDO_BLOCK_CG_SOLMGR_HPP */