/usr/include/trilinos/BelosPseudoBlockStochasticCGSolMgr.hpp is in libtrilinos-belos-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 | //@HEADER
// ************************************************************************
//
// Belos: Block Linear Solvers Package
// Copyright 2004 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
#ifndef BELOS_PSEUDO_BLOCK_STOCHASTIC_CG_SOLMGR_HPP
#define BELOS_PSEUDO_BLOCK_STOCHASTIC_CG_SOLMGR_HPP
/*! \file BelosPseudoBlockStochasticCGSolMgr.hpp
* \brief The Belos::PseudoBlockStochasticCGSolMgr provides a solver manager for the stochastic BlockCG linear solver.
*/
#include "BelosConfigDefs.hpp"
#include "BelosTypes.hpp"
#include "BelosLinearProblem.hpp"
#include "BelosSolverManager.hpp"
#include "BelosPseudoBlockStochasticCGIter.hpp"
#include "BelosStatusTestMaxIters.hpp"
#include "BelosStatusTestGenResNorm.hpp"
#include "BelosStatusTestCombo.hpp"
#include "BelosStatusTestOutputFactory.hpp"
#include "BelosOutputManager.hpp"
#include "Teuchos_BLAS.hpp"
#ifdef BELOS_TEUCHOS_TIME_MONITOR
#include "Teuchos_TimeMonitor.hpp"
#endif
/*! \class Belos::PseudoBlockStochasticCGSolMgr
*
* \brief The Belos::PseudoBlockStochasticCGSolMgr provides a powerful and fully-featured solver manager over the pseudo-block CG iteration.
\ingroup belos_solver_framework
\author Chris Siefert, Heidi Thornquist, Chris Baker, and Teri Barth
*/
namespace Belos {
//! @name PseudoBlockStochasticCGSolMgr Exceptions
//@{
/** \brief PseudoBlockStochasticCGSolMgrLinearProblemFailure is thrown when the linear problem is
* not setup (i.e. setProblem() was not called) when solve() is called.
*
* This std::exception is thrown from the PseudoBlockStochasticCGSolMgr::solve() method.
*
*/
class PseudoBlockStochasticCGSolMgrLinearProblemFailure : public BelosError {public:
PseudoBlockStochasticCGSolMgrLinearProblemFailure(const std::string& what_arg) : BelosError(what_arg)
{}};
/** \brief PseudoBlockStochasticCGSolMgrOrthoFailure is thrown when the orthogonalization manager is
* unable to generate orthonormal columns from the initial basis vectors.
*
* This std::exception is thrown from the PseudoBlockStochasticCGSolMgr::solve() method.
*
*/
class PseudoBlockStochasticCGSolMgrOrthoFailure : public BelosError {public:
PseudoBlockStochasticCGSolMgrOrthoFailure(const std::string& what_arg) : BelosError(what_arg)
{}};
template<class ScalarType, class MV, class OP>
class PseudoBlockStochasticCGSolMgr : public SolverManager<ScalarType,MV,OP> {
private:
typedef MultiVecTraits<ScalarType,MV> MVT;
typedef OperatorTraits<ScalarType,MV,OP> OPT;
typedef Teuchos::ScalarTraits<ScalarType> SCT;
typedef typename Teuchos::ScalarTraits<ScalarType>::magnitudeType MagnitudeType;
typedef Teuchos::ScalarTraits<MagnitudeType> MT;
public:
//! @name Constructors/Destructor
//@{
/*! \brief Empty constructor for BlockStochasticCGSolMgr.
* This constructor takes no arguments and sets the default values for the solver.
* The linear problem must be passed in using setProblem() before solve() is called on this object.
* The solver values can be changed using setParameters().
*/
PseudoBlockStochasticCGSolMgr();
/*! \brief Basic constructor for PseudoBlockStochasticCGSolMgr.
*
* This constructor accepts the LinearProblem to be solved in addition
* to a parameter list of options for the solver manager. These options include the following:
* - "Maximum Iterations" - a \c int specifying the maximum number of iterations the underlying solver is allowed to perform.
* - "Verbosity" - a sum of MsgType specifying the verbosity. Default: Belos::Errors
* - "Output Style" - a OutputType specifying the style of output. Default: Belos::General
* - "Convergence Tolerance" - a \c MagnitudeType specifying the level that residual norms must reach to decide convergence.
*/
PseudoBlockStochasticCGSolMgr( const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem,
const Teuchos::RCP<Teuchos::ParameterList> &pl );
//! Destructor.
virtual ~PseudoBlockStochasticCGSolMgr() {};
//@}
//! @name Accessor methods
//@{
const LinearProblem<ScalarType,MV,OP>& getProblem() const {
return *problem_;
}
/*! \brief Get a parameter list containing the valid parameters for this object.
*/
Teuchos::RCP<const Teuchos::ParameterList> getValidParameters() const;
/*! \brief Get a parameter list containing the current parameters for this object.
*/
Teuchos::RCP<const Teuchos::ParameterList> getCurrentParameters() const { return params_; }
/*! \brief Return the timers for this object.
*
* The timers are ordered as follows:
* - time spent in solve() routine
*/
Teuchos::Array<Teuchos::RCP<Teuchos::Time> > getTimers() const {
return Teuchos::tuple(timerSolve_);
}
//! Get the iteration count for the most recent call to \c solve().
int getNumIters() const {
return numIters_;
}
/*! \brief Return whether a loss of accuracy was detected by this solver during the most current solve.
\note This flag will be reset the next time solve() is called.
*/
bool isLOADetected() const { return false; }
//@}
//! @name Set methods
//@{
//! Set the linear problem that needs to be solved.
void setProblem( const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem ) { problem_ = problem; }
//! Set the parameters the solver manager should use to solve the linear problem.
void setParameters( const Teuchos::RCP<Teuchos::ParameterList> ¶ms );
//@}
//! @name Reset methods
//@{
/*! \brief Performs a reset of the solver manager specified by the \c ResetType. This informs the
* solver manager that the solver should prepare for the next call to solve by resetting certain elements
* of the iterative solver strategy.
*/
void reset( const ResetType type ) { if ((type & Belos::Problem) && !Teuchos::is_null(problem_)) problem_->setProblem(); }
//@}
//! @name Solver application methods
//@{
/*! \brief This method performs possibly repeated calls to the underlying linear solver's iterate() routine
* until the problem has been solved (as decided by the solver manager) or the solver manager decides to
* quit.
*
* This method calls PseudoBlockStochasticCGIter::iterate(), which will return either because a specially constructed status test evaluates to
* ::Passed or an std::exception is thrown.
*
* A return from PseudoBlockStochasticCGIter::iterate() signifies one of the following scenarios:
* - the maximum number of restarts has been exceeded. In this scenario, the current solutions to the linear system
* will be placed in the linear problem and return ::Unconverged.
* - global convergence has been met. In this case, the current solutions to the linear system will be placed in the linear
* problem and the solver manager will return ::Converged
*
* \returns ::ReturnType specifying:
* - ::Converged: the linear problem was solved to the specification required by the solver manager.
* - ::Unconverged: the linear problem was not solved to the specification desired by the solver manager.
*/
ReturnType solve();
//@}
//! Get a copy of the final stochastic vector
Teuchos::RCP<MV> getStochasticVector() { return Y_;}
/** \name Overridden from Teuchos::Describable */
//@{
/** \brief Method to return description of the block CG solver manager */
std::string description() const;
//@}
private:
// Linear problem.
Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > problem_;
// Output manager.
Teuchos::RCP<OutputManager<ScalarType> > printer_;
Teuchos::RCP<std::ostream> outputStream_;
// Status test.
Teuchos::RCP<StatusTest<ScalarType,MV,OP> > sTest_;
Teuchos::RCP<StatusTestMaxIters<ScalarType,MV,OP> > maxIterTest_;
Teuchos::RCP<StatusTestGenResNorm<ScalarType,MV,OP> > convTest_;
Teuchos::RCP<StatusTestOutput<ScalarType,MV,OP> > outputTest_;
// Orthogonalization manager.
Teuchos::RCP<MatOrthoManager<ScalarType,MV,OP> > ortho_;
// Current parameter list.
Teuchos::RCP<Teuchos::ParameterList> params_;
/// \brief List of valid parameters and their default values.
///
/// This is declared "mutable" because the SolverManager interface
/// requires that getValidParameters() be declared const, yet we
/// want to create the valid parameter list only on demand.
mutable Teuchos::RCP<const Teuchos::ParameterList> validParams_;
// Default solver values.
static const MagnitudeType convtol_default_;
static const int maxIters_default_;
static const bool assertPositiveDefiniteness_default_;
static const bool showMaxResNormOnly_default_;
static const int verbosity_default_;
static const int outputStyle_default_;
static const int outputFreq_default_;
static const int defQuorum_default_;
static const std::string resScale_default_;
static const std::string label_default_;
static const Teuchos::RCP<std::ostream> outputStream_default_;
// Current solver values.
MagnitudeType convtol_;
int maxIters_, numIters_;
int verbosity_, outputStyle_, outputFreq_, defQuorum_;
bool assertPositiveDefiniteness_, showMaxResNormOnly_;
std::string resScale_;
// Timers.
std::string label_;
Teuchos::RCP<Teuchos::Time> timerSolve_;
// Internal state variables.
bool isSet_;
// Stashed copy of the stochastic vector
Teuchos::RCP<MV> Y_;
};
// Default solver values.
template<class ScalarType, class MV, class OP>
const typename PseudoBlockStochasticCGSolMgr<ScalarType,MV,OP>::MagnitudeType PseudoBlockStochasticCGSolMgr<ScalarType,MV,OP>::convtol_default_ = 1e-8;
template<class ScalarType, class MV, class OP>
const int PseudoBlockStochasticCGSolMgr<ScalarType,MV,OP>::maxIters_default_ = 1000;
template<class ScalarType, class MV, class OP>
const bool PseudoBlockStochasticCGSolMgr<ScalarType,MV,OP>::assertPositiveDefiniteness_default_ = true;
template<class ScalarType, class MV, class OP>
const bool PseudoBlockStochasticCGSolMgr<ScalarType,MV,OP>::showMaxResNormOnly_default_ = false;
template<class ScalarType, class MV, class OP>
const int PseudoBlockStochasticCGSolMgr<ScalarType,MV,OP>::verbosity_default_ = Belos::Errors;
template<class ScalarType, class MV, class OP>
const int PseudoBlockStochasticCGSolMgr<ScalarType,MV,OP>::outputStyle_default_ = Belos::General;
template<class ScalarType, class MV, class OP>
const int PseudoBlockStochasticCGSolMgr<ScalarType,MV,OP>::outputFreq_default_ = -1;
template<class ScalarType, class MV, class OP>
const int PseudoBlockStochasticCGSolMgr<ScalarType,MV,OP>::defQuorum_default_ = 1;
template<class ScalarType, class MV, class OP>
const std::string PseudoBlockStochasticCGSolMgr<ScalarType,MV,OP>::resScale_default_ = "Norm of Initial Residual";
template<class ScalarType, class MV, class OP>
const std::string PseudoBlockStochasticCGSolMgr<ScalarType,MV,OP>::label_default_ = "Belos";
template<class ScalarType, class MV, class OP>
const Teuchos::RCP<std::ostream> PseudoBlockStochasticCGSolMgr<ScalarType,MV,OP>::outputStream_default_ = Teuchos::rcp(&std::cout,false);
// Empty Constructor
template<class ScalarType, class MV, class OP>
PseudoBlockStochasticCGSolMgr<ScalarType,MV,OP>::PseudoBlockStochasticCGSolMgr() :
outputStream_(outputStream_default_),
convtol_(convtol_default_),
maxIters_(maxIters_default_),
numIters_(0),
verbosity_(verbosity_default_),
outputStyle_(outputStyle_default_),
outputFreq_(outputFreq_default_),
defQuorum_(defQuorum_default_),
assertPositiveDefiniteness_(assertPositiveDefiniteness_default_),
showMaxResNormOnly_(showMaxResNormOnly_default_),
resScale_(resScale_default_),
label_(label_default_),
isSet_(false)
{}
// Basic Constructor
template<class ScalarType, class MV, class OP>
PseudoBlockStochasticCGSolMgr<ScalarType,MV,OP>::
PseudoBlockStochasticCGSolMgr (const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem,
const Teuchos::RCP<Teuchos::ParameterList> &pl ) :
problem_(problem),
outputStream_(outputStream_default_),
convtol_(convtol_default_),
maxIters_(maxIters_default_),
numIters_(0),
verbosity_(verbosity_default_),
outputStyle_(outputStyle_default_),
outputFreq_(outputFreq_default_),
defQuorum_(defQuorum_default_),
assertPositiveDefiniteness_(assertPositiveDefiniteness_default_),
showMaxResNormOnly_(showMaxResNormOnly_default_),
resScale_(resScale_default_),
label_(label_default_),
isSet_(false)
{
TEUCHOS_TEST_FOR_EXCEPTION(
problem_.is_null (), std::invalid_argument,
"Belos::PseudoBlockStochasticCGSolMgr two-argument constructor: "
"'problem' is null. You must supply a non-null Belos::LinearProblem "
"instance when calling this constructor.");
if (! pl.is_null ()) {
// Set the parameters using the list that was passed in.
setParameters (pl);
}
}
template<class ScalarType, class MV, class OP>
void PseudoBlockStochasticCGSolMgr<ScalarType,MV,OP>::setParameters( const Teuchos::RCP<Teuchos::ParameterList> ¶ms )
{
using Teuchos::ParameterList;
using Teuchos::parameterList;
using Teuchos::RCP;
RCP<const ParameterList> defaultParams = getValidParameters();
// Create the internal parameter list if one doesn't already exist.
if (params_.is_null()) {
params_ = parameterList (*defaultParams);
} else {
params->validateParameters (*defaultParams);
}
// Check for maximum number of iterations
if (params->isParameter("Maximum Iterations")) {
maxIters_ = params->get("Maximum Iterations",maxIters_default_);
// Update parameter in our list and in status test.
params_->set("Maximum Iterations", maxIters_);
if (maxIterTest_!=Teuchos::null)
maxIterTest_->setMaxIters( maxIters_ );
}
// Check if positive definiteness assertions are to be performed
if (params->isParameter("Assert Positive Definiteness")) {
assertPositiveDefiniteness_ = params->get("Assert Positive Definiteness",assertPositiveDefiniteness_default_);
// Update parameter in our list.
params_->set("Assert Positive Definiteness", assertPositiveDefiniteness_);
}
// Check to see if the timer label changed.
if (params->isParameter("Timer Label")) {
std::string tempLabel = params->get("Timer Label", label_default_);
// Update parameter in our list and solver timer
if (tempLabel != label_) {
label_ = tempLabel;
params_->set("Timer Label", label_);
std::string solveLabel = label_ + ": PseudoBlockStochasticCGSolMgr total solve time";
#ifdef BELOS_TEUCHOS_TIME_MONITOR
timerSolve_ = Teuchos::TimeMonitor::getNewCounter(solveLabel);
#endif
if (ortho_ != Teuchos::null) {
ortho_->setLabel( label_ );
}
}
}
// Check for a change in verbosity level
if (params->isParameter("Verbosity")) {
if (Teuchos::isParameterType<int>(*params,"Verbosity")) {
verbosity_ = params->get("Verbosity", verbosity_default_);
} else {
verbosity_ = (int)Teuchos::getParameter<Belos::MsgType>(*params,"Verbosity");
}
// Update parameter in our list.
params_->set("Verbosity", verbosity_);
if (printer_ != Teuchos::null)
printer_->setVerbosity(verbosity_);
}
// Check for a change in output style
if (params->isParameter("Output Style")) {
if (Teuchos::isParameterType<int>(*params,"Output Style")) {
outputStyle_ = params->get("Output Style", outputStyle_default_);
} else {
outputStyle_ = (int)Teuchos::getParameter<Belos::OutputType>(*params,"Output Style");
}
// Reconstruct the convergence test if the explicit residual test is not being used.
params_->set("Output Style", outputStyle_);
outputTest_ = Teuchos::null;
}
// output stream
if (params->isParameter("Output Stream")) {
outputStream_ = Teuchos::getParameter<Teuchos::RCP<std::ostream> >(*params,"Output Stream");
// Update parameter in our list.
params_->set("Output Stream", outputStream_);
if (printer_ != Teuchos::null)
printer_->setOStream( outputStream_ );
}
// frequency level
if (verbosity_ & Belos::StatusTestDetails) {
if (params->isParameter("Output Frequency")) {
outputFreq_ = params->get("Output Frequency", outputFreq_default_);
}
// Update parameter in out list and output status test.
params_->set("Output Frequency", outputFreq_);
if (outputTest_ != Teuchos::null)
outputTest_->setOutputFrequency( outputFreq_ );
}
// Create output manager if we need to.
if (printer_ == Teuchos::null) {
printer_ = Teuchos::rcp( new OutputManager<ScalarType>(verbosity_, outputStream_) );
}
// Convergence
typedef Belos::StatusTestCombo<ScalarType,MV,OP> StatusTestCombo_t;
typedef Belos::StatusTestGenResNorm<ScalarType,MV,OP> StatusTestResNorm_t;
// Check for convergence tolerance
if (params->isParameter("Convergence Tolerance")) {
convtol_ = params->get("Convergence Tolerance",convtol_default_);
// Update parameter in our list and residual tests.
params_->set("Convergence Tolerance", convtol_);
if (convTest_ != Teuchos::null)
convTest_->setTolerance( convtol_ );
}
if (params->isParameter("Show Maximum Residual Norm Only")) {
showMaxResNormOnly_ = Teuchos::getParameter<bool>(*params,"Show Maximum Residual Norm Only");
// Update parameter in our list and residual tests
params_->set("Show Maximum Residual Norm Only", showMaxResNormOnly_);
if (convTest_ != Teuchos::null)
convTest_->setShowMaxResNormOnly( showMaxResNormOnly_ );
}
// Check for a change in scaling, if so we need to build new residual tests.
bool newResTest = false;
{
// "Residual Scaling" is the old parameter name; "Implicit
// Residual Scaling" is the new name. We support both options for
// backwards compatibility.
std::string tempResScale = resScale_;
bool implicitResidualScalingName = false;
if (params->isParameter ("Residual Scaling")) {
tempResScale = params->get<std::string> ("Residual Scaling");
}
else if (params->isParameter ("Implicit Residual Scaling")) {
tempResScale = params->get<std::string> ("Implicit Residual Scaling");
implicitResidualScalingName = true;
}
// Only update the scaling if it's different.
if (resScale_ != tempResScale) {
Belos::ScaleType resScaleType = convertStringToScaleType( tempResScale );
resScale_ = tempResScale;
// Update parameter in our list and residual tests, using the
// given parameter name.
if (implicitResidualScalingName) {
params_->set ("Implicit Residual Scaling", resScale_);
}
else {
params_->set ("Residual Scaling", resScale_);
}
if (! convTest_.is_null()) {
try {
convTest_->defineScaleForm( resScaleType, Belos::TwoNorm );
}
catch (std::exception& e) {
// Make sure the convergence test gets constructed again.
newResTest = true;
}
}
}
}
// Get the deflation quorum, or number of converged systems before deflation is allowed
if (params->isParameter("Deflation Quorum")) {
defQuorum_ = params->get("Deflation Quorum", defQuorum_);
params_->set("Deflation Quorum", defQuorum_);
if (convTest_ != Teuchos::null)
convTest_->setQuorum( defQuorum_ );
}
// Create status tests if we need to.
// Basic test checks maximum iterations and native residual.
if (maxIterTest_ == Teuchos::null)
maxIterTest_ = Teuchos::rcp( new StatusTestMaxIters<ScalarType,MV,OP>( maxIters_ ) );
// Implicit residual test, using the native residual to determine if convergence was achieved.
if (convTest_ == Teuchos::null || newResTest) {
convTest_ = Teuchos::rcp( new StatusTestResNorm_t( convtol_, defQuorum_, showMaxResNormOnly_ ) );
convTest_->defineScaleForm( convertStringToScaleType( resScale_ ), Belos::TwoNorm );
}
if (sTest_ == Teuchos::null || newResTest)
sTest_ = Teuchos::rcp( new StatusTestCombo_t( StatusTestCombo_t::OR, maxIterTest_, convTest_ ) );
if (outputTest_ == Teuchos::null || newResTest) {
// Create the status test output class.
// This class manages and formats the output from the status test.
StatusTestOutputFactory<ScalarType,MV,OP> stoFactory( outputStyle_ );
outputTest_ = stoFactory.create( printer_, sTest_, outputFreq_, Passed+Failed+Undefined );
// Set the solver string for the output test
std::string solverDesc = " Pseudo Block CG ";
outputTest_->setSolverDesc( solverDesc );
}
// Create the timer if we need to.
if (timerSolve_ == Teuchos::null) {
std::string solveLabel = label_ + ": PseudoBlockStochasticCGSolMgr total solve time";
#ifdef BELOS_TEUCHOS_TIME_MONITOR
timerSolve_ = Teuchos::TimeMonitor::getNewCounter(solveLabel);
#endif
}
// Inform the solver manager that the current parameters were set.
isSet_ = true;
}
template<class ScalarType, class MV, class OP>
Teuchos::RCP<const Teuchos::ParameterList>
PseudoBlockStochasticCGSolMgr<ScalarType,MV,OP>::getValidParameters() const
{
using Teuchos::ParameterList;
using Teuchos::parameterList;
using Teuchos::RCP;
if (validParams_.is_null()) {
// Set all the valid parameters and their default values.
RCP<ParameterList> pl = parameterList ();
pl->set("Convergence Tolerance", convtol_default_,
"The relative residual tolerance that needs to be achieved by the\n"
"iterative solver in order for the linera system to be declared converged.");
pl->set("Maximum Iterations", maxIters_default_,
"The maximum number of block iterations allowed for each\n"
"set of RHS solved.");
pl->set("Assert Positive Definiteness", assertPositiveDefiniteness_default_,
"Whether or not to assert that the linear operator\n"
"and the preconditioner are indeed positive definite.");
pl->set("Verbosity", verbosity_default_,
"What type(s) of solver information should be outputted\n"
"to the output stream.");
pl->set("Output Style", outputStyle_default_,
"What style is used for the solver information outputted\n"
"to the output stream.");
pl->set("Output Frequency", outputFreq_default_,
"How often convergence information should be outputted\n"
"to the output stream.");
pl->set("Deflation Quorum", defQuorum_default_,
"The number of linear systems that need to converge before\n"
"they are deflated. This number should be <= block size.");
pl->set("Output Stream", outputStream_default_,
"A reference-counted pointer to the output stream where all\n"
"solver output is sent.");
pl->set("Show Maximum Residual Norm Only", showMaxResNormOnly_default_,
"When convergence information is printed, only show the maximum\n"
"relative residual norm when the block size is greater than one.");
pl->set("Implicit Residual Scaling", resScale_default_,
"The type of scaling used in the residual convergence test.");
// We leave the old name as a valid parameter for backwards
// compatibility (so that validateParametersAndSetDefaults()
// doesn't raise an exception if it encounters "Residual
// Scaling"). The new name was added for compatibility with other
// solvers, none of which use "Residual Scaling".
pl->set("Residual Scaling", resScale_default_,
"The type of scaling used in the residual convergence test. This "
"name is deprecated; the new name is \"Implicit Residual Scaling\".");
pl->set("Timer Label", label_default_,
"The string to use as a prefix for the timer labels.");
// defaultParams_->set("Restart Timers", restartTimers_);
validParams_ = pl;
}
return validParams_;
}
// solve()
template<class ScalarType, class MV, class OP>
ReturnType PseudoBlockStochasticCGSolMgr<ScalarType,MV,OP>::solve() {
// Set the current parameters if they were not set before.
// NOTE: This may occur if the user generated the solver manager with the default constructor and
// then didn't set any parameters using setParameters().
if (!isSet_) { setParameters( params_ ); }
Teuchos::BLAS<int,ScalarType> blas;
TEUCHOS_TEST_FOR_EXCEPTION(!problem_->isProblemSet(),PseudoBlockStochasticCGSolMgrLinearProblemFailure,
"Belos::PseudoBlockStochasticCGSolMgr::solve(): Linear problem is not ready, setProblem() has not been called.");
// Create indices for the linear systems to be solved.
int startPtr = 0;
int numRHS2Solve = MVT::GetNumberVecs( *(problem_->getRHS()) );
int numCurrRHS = numRHS2Solve;
std::vector<int> currIdx( numRHS2Solve ), currIdx2( numRHS2Solve );
for (int i=0; i<numRHS2Solve; ++i) {
currIdx[i] = startPtr+i;
currIdx2[i]=i;
}
// Inform the linear problem of the current linear system to solve.
problem_->setLSIndex( currIdx );
//////////////////////////////////////////////////////////////////////////////////////
// Parameter list
Teuchos::ParameterList plist;
plist.set("Assert Positive Definiteness",assertPositiveDefiniteness_);
// Reset the status test.
outputTest_->reset();
// Assume convergence is achieved, then let any failed convergence set this to false.
bool isConverged = true;
//////////////////////////////////////////////////////////////////////////////////////
// Pseudo-Block CG solver
Teuchos::RCP<PseudoBlockStochasticCGIter<ScalarType,MV,OP> > block_cg_iter
= Teuchos::rcp( new PseudoBlockStochasticCGIter<ScalarType,MV,OP>(problem_,printer_,outputTest_,plist) );
// Enter solve() iterations
{
#ifdef BELOS_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor slvtimer(*timerSolve_);
#endif
while ( numRHS2Solve > 0 ) {
// Reset the active / converged vectors from this block
std::vector<int> convRHSIdx;
std::vector<int> currRHSIdx( currIdx );
currRHSIdx.resize(numCurrRHS);
// Reset the number of iterations.
block_cg_iter->resetNumIters();
// Reset the number of calls that the status test output knows about.
outputTest_->resetNumCalls();
// Get the current residual for this block of linear systems.
Teuchos::RCP<MV> R_0 = MVT::CloneViewNonConst( *(Teuchos::rcp_const_cast<MV>(problem_->getInitResVec())), currIdx );
// Get a new state struct and initialize the solver.
StochasticCGIterationState<ScalarType,MV> newState;
newState.R = R_0;
block_cg_iter->initializeCG(newState);
while(1) {
// tell block_gmres_iter to iterate
try {
block_cg_iter->iterate();
////////////////////////////////////////////////////////////////////////////////////
//
// check convergence first
//
////////////////////////////////////////////////////////////////////////////////////
if ( convTest_->getStatus() == Passed ) {
// Figure out which linear systems converged.
std::vector<int> convIdx = Teuchos::rcp_dynamic_cast<StatusTestGenResNorm<ScalarType,MV,OP> >(convTest_)->convIndices();
// If the number of converged linear systems is equal to the
// number of current linear systems, then we are done with this block.
if (convIdx.size() == currRHSIdx.size())
break; // break from while(1){block_cg_iter->iterate()}
// Inform the linear problem that we are finished with this current linear system.
problem_->setCurrLS();
// Reset currRHSIdx to have the right-hand sides that are left to converge for this block.
int have = 0;
std::vector<int> unconvIdx(currRHSIdx.size());
for (unsigned int i=0; i<currRHSIdx.size(); ++i) {
bool found = false;
for (unsigned int j=0; j<convIdx.size(); ++j) {
if (currRHSIdx[i] == convIdx[j]) {
found = true;
break;
}
}
if (!found) {
currIdx2[have] = currIdx2[i];
currRHSIdx[have++] = currRHSIdx[i];
}
}
currRHSIdx.resize(have);
currIdx2.resize(have);
// Set the remaining indices after deflation.
problem_->setLSIndex( currRHSIdx );
// Get the current residual vector.
std::vector<MagnitudeType> norms;
R_0 = MVT::CloneCopy( *(block_cg_iter->getNativeResiduals(&norms)),currIdx2 );
for (int i=0; i<have; ++i) { currIdx2[i] = i; }
// Set the new state and initialize the solver.
StochasticCGIterationState<ScalarType,MV> defstate;
defstate.R = R_0;
block_cg_iter->initializeCG(defstate);
}
////////////////////////////////////////////////////////////////////////////////////
//
// check for maximum iterations
//
////////////////////////////////////////////////////////////////////////////////////
else if ( maxIterTest_->getStatus() == Passed ) {
// we don't have convergence
isConverged = false;
break; // break from while(1){block_cg_iter->iterate()}
}
////////////////////////////////////////////////////////////////////////////////////
//
// we returned from iterate(), but none of our status tests Passed.
// something is wrong, and it is probably our fault.
//
////////////////////////////////////////////////////////////////////////////////////
else {
TEUCHOS_TEST_FOR_EXCEPTION(true,std::logic_error,
"Belos::PseudoBlockStochasticCGSolMgr::solve(): Invalid return from PseudoBlockStochasticCGIter::iterate().");
}
}
catch (const std::exception &e) {
printer_->stream(Errors) << "Error! Caught std::exception in PseudoBlockStochasticCGIter::iterate() at iteration "
<< block_cg_iter->getNumIters() << std::endl
<< e.what() << std::endl;
throw;
}
}
// Inform the linear problem that we are finished with this block linear system.
problem_->setCurrLS();
// Update indices for the linear systems to be solved.
startPtr += numCurrRHS;
numRHS2Solve -= numCurrRHS;
if ( numRHS2Solve > 0 ) {
numCurrRHS = numRHS2Solve;
currIdx.resize( numCurrRHS );
currIdx2.resize( numCurrRHS );
for (int i=0; i<numCurrRHS; ++i)
{ currIdx[i] = startPtr+i; currIdx2[i] = i; }
// Set the next indices.
problem_->setLSIndex( currIdx );
}
else {
currIdx.resize( numRHS2Solve );
}
}// while ( numRHS2Solve > 0 )
}
// get the final stochastic vector
Y_=block_cg_iter->getStochasticVector();
// print final summary
sTest_->print( printer_->stream(FinalSummary) );
// print timing information
#ifdef BELOS_TEUCHOS_TIME_MONITOR
// Calling summarize() can be expensive, so don't call unless the
// user wants to print out timing details. summarize() will do all
// the work even if it's passed a "black hole" output stream.
if (verbosity_ & TimingDetails)
Teuchos::TimeMonitor::summarize( printer_->stream(TimingDetails) );
#endif
// get iteration information for this solve
numIters_ = maxIterTest_->getNumIters();
if (!isConverged ) {
return Unconverged; // return from PseudoBlockStochasticCGSolMgr::solve()
}
return Converged; // return from PseudoBlockStochasticCGSolMgr::solve()
}
// This method requires the solver manager to return a std::string that describes itself.
template<class ScalarType, class MV, class OP>
std::string PseudoBlockStochasticCGSolMgr<ScalarType,MV,OP>::description() const
{
std::ostringstream oss;
oss << "Belos::PseudoBlockStochasticCGSolMgr<...,"<<Teuchos::ScalarTraits<ScalarType>::name()<<">";
oss << "{";
oss << "}";
return oss.str();
}
} // end Belos namespace
#endif /* BELOS_PSEUDO_BLOCK_CG_SOLMGR_HPP */
|