/usr/include/trilinos/BelosRCGSolMgr.hpp is in libtrilinos-belos-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 | //@HEADER
// ************************************************************************
//
// Belos: Block Linear Solvers Package
// Copyright 2004 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
#ifndef BELOS_RCG_SOLMGR_HPP
#define BELOS_RCG_SOLMGR_HPP
/*! \file BelosRCGSolMgr.hpp
* \brief The Belos::RCGSolMgr provides a solver manager for the RCG (Recycling Conjugate Gradient) linear solver.
*/
#include "BelosConfigDefs.hpp"
#include "BelosTypes.hpp"
#include "BelosLinearProblem.hpp"
#include "BelosSolverManager.hpp"
#include "BelosRCGIter.hpp"
#include "BelosDGKSOrthoManager.hpp"
#include "BelosICGSOrthoManager.hpp"
#include "BelosIMGSOrthoManager.hpp"
#include "BelosStatusTestMaxIters.hpp"
#include "BelosStatusTestGenResNorm.hpp"
#include "BelosStatusTestCombo.hpp"
#include "BelosStatusTestOutputFactory.hpp"
#include "BelosOutputManager.hpp"
#include "Teuchos_BLAS.hpp"
#include "Teuchos_LAPACK.hpp"
#include "Teuchos_as.hpp"
#ifdef BELOS_TEUCHOS_TIME_MONITOR
#include "Teuchos_TimeMonitor.hpp"
#endif
/*! \class Belos::RCGSolMgr
\brief Implementation of the RCG (Recycling Conjugate Gradient) iterative linear solver.
\ingroup belos_solver_framework
\author Michael Parks and Heidi Thornquist
\section Belos_GCRODR_summary Summary
This class implements the GCRODR (Recycling GMRES) iterative linear
solver. This solver is suited for solving sequences of related linear
systems \f$A_i x_i = b_i\f$, where each matrix \f$A_i\f$ is symmetric
positive definite.
\section Belos_RCG_real ScalarType must be real
This RCG implementation currently only supports real-valued (not
complex-valued) ScalarType types. You may check whether ScalarType is
complex using the following code:
\code
if (Teuchos::ScalarTraits<ScalarType>::isComplex) {
// ScalarType is complex valued.
} else {
// ScalarType is real valued.
}
\endcode
This is not a limitation of the RCG method itself, just of the current
implementation. If there is sufficient interest, we can remedy this
deficiency. For now, if you attempt to invoke the constructor when
<tt>ScalarType</tt> is complex, the constructor will throw an
exception. This is why this class inherits from
Details::RealSolverManager. RCGSolMgr can still compile if
<tt>ScalarType</tt> is complex, but you will not be able to construct
a RCGSolMgr instance in that case, due to the aforementioned run-time
error that the constructor raises. We do this so that the class will
still compile, whether ScalarType is real or complex. This helps make
SolverFactory valid to compile, whether ScalarType is real or complex.
*/
namespace Belos {
//! @name RCGSolMgr Exceptions
//@{
/** \brief RCGSolMgrLinearProblemFailure is thrown when the linear problem is
* not setup (i.e. setProblem() was not called) when solve() is called.
*
* This exception is thrown from the RCGSolMgr::solve() method.
*
*/
class RCGSolMgrLinearProblemFailure : public BelosError {public:
RCGSolMgrLinearProblemFailure(const std::string& what_arg) : BelosError(what_arg)
{}};
/** \brief RCGSolMgrLAPACKFailure is thrown when a nonzero value is retuned
* from an LAPACK call.
*
* This exception is thrown from the RCGSolMgr::solve() method.
*
*/
class RCGSolMgrLAPACKFailure : public BelosError {public:
RCGSolMgrLAPACKFailure(const std::string& what_arg) : BelosError(what_arg)
{}};
/** \brief RCGSolMgrRecyclingFailure is thrown when any problem occurs in using/creating
* the recycling subspace.
*
* This exception is thrown from the RCGSolMgr::solve() method.
*
*/
class RCGSolMgrRecyclingFailure : public BelosError {public:
RCGSolMgrRecyclingFailure(const std::string& what_arg) : BelosError(what_arg)
{}};
//@}
// Partial specialization for unsupported ScalarType types.
// This contains a stub implementation.
template<class ScalarType, class MV, class OP,
const bool supportsScalarType =
Belos::Details::LapackSupportsScalar<ScalarType>::value &&
! Teuchos::ScalarTraits<ScalarType>::isComplex>
class RCGSolMgr :
public Details::SolverManagerRequiresRealLapack<ScalarType, MV, OP,
Belos::Details::LapackSupportsScalar<ScalarType>::value &&
! Teuchos::ScalarTraits<ScalarType>::isComplex>
{
static const bool scalarTypeIsSupported =
Belos::Details::LapackSupportsScalar<ScalarType>::value &&
! Teuchos::ScalarTraits<ScalarType>::isComplex;
typedef Details::SolverManagerRequiresRealLapack<ScalarType, MV, OP,
scalarTypeIsSupported> base_type;
public:
RCGSolMgr () :
base_type ()
{}
RCGSolMgr (const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem,
const Teuchos::RCP<Teuchos::ParameterList> &pl) :
base_type ()
{}
virtual ~RCGSolMgr () {}
};
// Partial specialization for real ScalarType.
// This contains the actual working implementation of RCG.
// See discussion in the class documentation above.
template<class ScalarType, class MV, class OP>
class RCGSolMgr<ScalarType, MV, OP, true> :
public Details::SolverManagerRequiresRealLapack<ScalarType, MV, OP, true> {
private:
typedef MultiVecTraits<ScalarType,MV> MVT;
typedef OperatorTraits<ScalarType,MV,OP> OPT;
typedef Teuchos::ScalarTraits<ScalarType> SCT;
typedef typename Teuchos::ScalarTraits<ScalarType>::magnitudeType MagnitudeType;
typedef Teuchos::ScalarTraits<MagnitudeType> MT;
public:
//! @name Constructors/Destructor
//@{
/*! \brief Empty constructor for RCGSolMgr.
* This constructor takes no arguments and sets the default values for the solver.
* The linear problem must be passed in using setProblem() before solve() is called on this object.
* The solver values can be changed using setParameters().
*/
RCGSolMgr();
/*! \brief Basic constructor for RCGSolMgr.
*
* This constructor accepts the LinearProblem to be solved in addition
* to a parameter list of options for the solver manager. These options include the following:
* - "Num Blocks" - a \c int specifying length of a cycle (and thus number of max number of search vectors kept). Default: 25
* - "Num Recycled Blocks" - a \c int specifying the number of vectors selected for recycling. Default: 3
* - "Maximum Iterations" - an \c int specifying the maximum number of iterations the
* underlying solver is allowed to perform. Default: 1000
* - "Verbosity" - a sum of MsgType specifying the verbosity. Default: Belos::Errors
* - "Output Style" - a OutputType specifying the style of output. Default: Belos::General
* - "Convergence Tolerance" - a \c MagnitudeType specifying the level that residual norms must reach to decide convergence. Default: 1e-8.
* - "Output Stream" - a reference-counted pointer to the output stream where all
* solver output is sent. Default: Teuchos::rcp(&std::cout,false)
* - "Output Frequency" - an \c int specifying how often convergence information should be
* outputted. Default: -1 (never)
* - "Show Maximum Residual Norm Only" - a \c bool specifying whether that only the maximum
* relative residual norm is printed if convergence
* information is printed. Default: false
* - "Timer Label" - a \c std::string to use as a prefix for the timer labels. Default: "Belos"
*/
RCGSolMgr( const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem,
const Teuchos::RCP<Teuchos::ParameterList> &pl );
//! Destructor.
virtual ~RCGSolMgr() {};
//@}
//! @name Accessor methods
//@{
const LinearProblem<ScalarType,MV,OP>& getProblem() const {
return *problem_;
}
/*! \brief Get a parameter list containing the valid parameters for this object. */
Teuchos::RCP<const Teuchos::ParameterList> getValidParameters() const;
/*! \brief Get a parameter list containing the current parameters for this object. */
Teuchos::RCP<const Teuchos::ParameterList> getCurrentParameters() const { return params_; }
/*! \brief Return the timers for this object.
*
* The timers are ordered as follows:
* - time spent in solve() routine
*/
Teuchos::Array<Teuchos::RCP<Teuchos::Time> > getTimers() const {
return Teuchos::tuple(timerSolve_);
}
/// \brief Tolerance achieved by the last \c solve() invocation.
///
/// This is set whether or not the solve actually managed to
/// achieve the desired convergence tolerance.
MagnitudeType achievedTol() const {
return achievedTol_;
}
//! Get the iteration count for the most recent call to \c solve().
int getNumIters() const {
return numIters_;
}
/*! \brief Return whether a loss of accuracy was detected by this solver during the most current solve. */
bool isLOADetected() const { return false; }
//@}
//! @name Set methods
//@{
//! Set the linear problem that needs to be solved.
void setProblem( const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem ) { problem_ = problem; }
//! Set the parameters the solver manager should use to solve the linear problem.
void setParameters( const Teuchos::RCP<Teuchos::ParameterList> ¶ms );
//@}
//! @name Reset method
//@{
/*! \brief Performs a reset of the solver manager specified by the \c ResetType. This informs the
* solver manager that the solver should prepare for the next call to solve by resetting certain elements
* of the iterative solver strategy. Belos::Problem forces a call to setProblem on the linear problem, and
* Belos::RecycleSubspace causes the solver manager to "forget" the recycle space generated by previous calls to the solver.
* In the latter case, the next call to solve() will act as if the solver has never been called before.
*/
void reset( const ResetType type ) {
if ((type & Belos::Problem) && !Teuchos::is_null(problem_)) problem_->setProblem();
else if (type & Belos::RecycleSubspace) existU_ = false;
}
//@}
//! @name Solver application methods
//@{
/*! \brief This method performs possibly repeated calls to the underlying linear solver's
* iterate() routine until the problem has been solved (as decided by the solver manager)
* or the solver manager decides to quit.
*
* This method calls RCGIter::iterate(), which will return either because a
* specially constructed status test evaluates to ::Passed or an std::exception is thrown.
*
* A return from RCGIter::iterate() signifies one of the following scenarios:
* - the maximum number of iterations has been exceeded. In this scenario, the current solutions
* to the linear system will be placed in the linear problem and return ::Unconverged.
* - global convergence has been met. In this case, the current solutions to the linear system
* will be placed in the linear problem and the solver manager will return ::Converged
*
* \returns ::ReturnType specifying:
* - ::Converged: the linear problem was solved to the specification required by the solver manager.
* - ::Unconverged: the linear problem was not solved to the specification desired by the solver manager.
*/
ReturnType solve();
//@}
/** \name Overridden from Teuchos::Describable */
//@{
/** \brief Method to return description of the RCG solver manager */
std::string description() const;
//@}
private:
// Called by all constructors; Contains init instructions common to all constructors
void init();
// Computes harmonic eigenpairs of projected matrix created during one cycle.
// Y contains the harmonic Ritz vectors corresponding to the recycleBlocks eigenvalues of smallest magnitude.
void getHarmonicVecs(const Teuchos::SerialDenseMatrix<int,ScalarType> &F,
const Teuchos::SerialDenseMatrix<int,ScalarType> &G,
Teuchos::SerialDenseMatrix<int,ScalarType>& Y);
// Sort list of n floating-point numbers and return permutation vector
void sort(std::vector<ScalarType>& dlist, int n, std::vector<int>& iperm);
// Initialize solver state storage
void initializeStateStorage();
// Linear problem.
Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > problem_;
// Output manager.
Teuchos::RCP<OutputManager<ScalarType> > printer_;
Teuchos::RCP<std::ostream> outputStream_;
// Status test.
Teuchos::RCP<StatusTest<ScalarType,MV,OP> > sTest_;
Teuchos::RCP<StatusTestMaxIters<ScalarType,MV,OP> > maxIterTest_;
Teuchos::RCP<StatusTestGenResNorm<ScalarType,MV,OP> > convTest_;
Teuchos::RCP<StatusTestOutput<ScalarType,MV,OP> > outputTest_;
// Current parameter list.
Teuchos::RCP<Teuchos::ParameterList> params_;
// Default solver values.
static const MagnitudeType convtol_default_;
static const int maxIters_default_;
static const int blockSize_default_;
static const int numBlocks_default_;
static const int recycleBlocks_default_;
static const bool showMaxResNormOnly_default_;
static const int verbosity_default_;
static const int outputStyle_default_;
static const int outputFreq_default_;
static const std::string label_default_;
static const Teuchos::RCP<std::ostream> outputStream_default_;
//
// Current solver values.
//
//! Convergence tolerance (read from parameter list).
MagnitudeType convtol_;
/// \brief Tolerance achieved by the last \c solve() invocation.
///
/// This is set whether or not the solve actually managed to
/// achieve the desired convergence tolerance.
MagnitudeType achievedTol_;
//! Maximum iteration count (read from parameter list).
int maxIters_;
//! Number of iterations taken by the last \c solve() invocation.
int numIters_;
int numBlocks_, recycleBlocks_;
bool showMaxResNormOnly_;
int verbosity_, outputStyle_, outputFreq_;
/////////////////////////////////////////////////////////////////////////
// Solver State Storage
/////////////////////////////////////////////////////////////////////////
// Search vectors
Teuchos::RCP<MV> P_;
//
// A times current search direction
Teuchos::RCP<MV> Ap_;
//
// Residual vector
Teuchos::RCP<MV> r_;
//
// Preconditioned residual
Teuchos::RCP<MV> z_;
//
// Flag indicating that the recycle space should be used
bool existU_;
//
// Flag indicating that the updated recycle space has been created
bool existU1_;
//
// Recycled subspace and its image
Teuchos::RCP<MV> U_, AU_;
//
// Recycled subspace for next system and its image
Teuchos::RCP<MV> U1_;
//
// Coefficients arising in RCG iteration
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > Alpha_;
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > Beta_;
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > D_;
//
// Solutions to local least-squares problems
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > Delta_;
//
// The matrix U^T A U
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > UTAU_;
//
// LU factorization of U^T A U
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > LUUTAU_;
//
// Data from LU factorization of UTAU
Teuchos::RCP<std::vector<int> > ipiv_;
//
// The matrix (AU)^T AU
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > AUTAU_;
//
// The scalar r'*z
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > rTz_old_;
//
// Matrices needed for calculation of harmonic Ritz eigenproblem
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > F_,G_,Y_;
//
// Matrices needed for updating recycle space
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > L2_,DeltaL2_,AU1TUDeltaL2_;
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > AU1TAU1_, AU1TU1_, AU1TAP_;
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > FY_,GY_;
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > APTAP_;
Teuchos::RCP<MV> U1Y1_, PY2_;
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > AUTAP_, AU1TU_;
ScalarType dold;
/////////////////////////////////////////////////////////////////////////
// Timers.
std::string label_;
Teuchos::RCP<Teuchos::Time> timerSolve_;
// Internal state variables.
bool params_Set_;
};
// Default solver values.
template<class ScalarType, class MV, class OP>
const typename RCGSolMgr<ScalarType,MV,OP,true>::MagnitudeType
RCGSolMgr<ScalarType,MV,OP,true>::convtol_default_ = 1e-8;
template<class ScalarType, class MV, class OP>
const int RCGSolMgr<ScalarType,MV,OP,true>::maxIters_default_ = 1000;
template<class ScalarType, class MV, class OP>
const int RCGSolMgr<ScalarType,MV,OP,true>::numBlocks_default_ = 25;
template<class ScalarType, class MV, class OP>
const int RCGSolMgr<ScalarType,MV,OP,true>::blockSize_default_ = 1;
template<class ScalarType, class MV, class OP>
const int RCGSolMgr<ScalarType,MV,OP,true>::recycleBlocks_default_ = 3;
template<class ScalarType, class MV, class OP>
const bool RCGSolMgr<ScalarType,MV,OP,true>::showMaxResNormOnly_default_ = false;
template<class ScalarType, class MV, class OP>
const int RCGSolMgr<ScalarType,MV,OP,true>::verbosity_default_ = Belos::Errors;
template<class ScalarType, class MV, class OP>
const int RCGSolMgr<ScalarType,MV,OP,true>::outputStyle_default_ = Belos::General;
template<class ScalarType, class MV, class OP>
const int RCGSolMgr<ScalarType,MV,OP,true>::outputFreq_default_ = -1;
template<class ScalarType, class MV, class OP>
const std::string RCGSolMgr<ScalarType,MV,OP,true>::label_default_ = "Belos";
template<class ScalarType, class MV, class OP>
const Teuchos::RCP<std::ostream> RCGSolMgr<ScalarType,MV,OP,true>::outputStream_default_ = Teuchos::rcp(&std::cout,false);
// Empty Constructor
template<class ScalarType, class MV, class OP>
RCGSolMgr<ScalarType,MV,OP,true>::RCGSolMgr():
achievedTol_(0.0),
numIters_(0)
{
init();
}
// Basic Constructor
template<class ScalarType, class MV, class OP>
RCGSolMgr<ScalarType,MV,OP,true>::RCGSolMgr(
const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem,
const Teuchos::RCP<Teuchos::ParameterList> &pl ) :
problem_(problem),
achievedTol_(0.0),
numIters_(0)
{
init();
TEUCHOS_TEST_FOR_EXCEPTION(problem_ == Teuchos::null, std::invalid_argument, "Problem not given to solver manager.");
// If the parameter list pointer is null, then set the current parameters to the default parameter list.
if ( !is_null(pl) ) {
setParameters( pl );
}
}
// Common instructions executed in all constructors
template<class ScalarType, class MV, class OP>
void RCGSolMgr<ScalarType,MV,OP,true>::init()
{
outputStream_ = outputStream_default_;
convtol_ = convtol_default_;
maxIters_ = maxIters_default_;
numBlocks_ = numBlocks_default_;
recycleBlocks_ = recycleBlocks_default_;
verbosity_ = verbosity_default_;
outputStyle_= outputStyle_default_;
outputFreq_= outputFreq_default_;
showMaxResNormOnly_ = showMaxResNormOnly_default_;
label_ = label_default_;
params_Set_ = false;
P_ = Teuchos::null;
Ap_ = Teuchos::null;
r_ = Teuchos::null;
z_ = Teuchos::null;
existU_ = false;
existU1_ = false;
U_ = Teuchos::null;
AU_ = Teuchos::null;
U1_ = Teuchos::null;
Alpha_ = Teuchos::null;
Beta_ = Teuchos::null;
D_ = Teuchos::null;
Delta_ = Teuchos::null;
UTAU_ = Teuchos::null;
LUUTAU_ = Teuchos::null;
ipiv_ = Teuchos::null;
AUTAU_ = Teuchos::null;
rTz_old_ = Teuchos::null;
F_ = Teuchos::null;
G_ = Teuchos::null;
Y_ = Teuchos::null;
L2_ = Teuchos::null;
DeltaL2_ = Teuchos::null;
AU1TUDeltaL2_ = Teuchos::null;
AU1TAU1_ = Teuchos::null;
AU1TU1_ = Teuchos::null;
AU1TAP_ = Teuchos::null;
FY_ = Teuchos::null;
GY_ = Teuchos::null;
APTAP_ = Teuchos::null;
U1Y1_ = Teuchos::null;
PY2_ = Teuchos::null;
AUTAP_ = Teuchos::null;
AU1TU_ = Teuchos::null;
dold = 0.;
}
template<class ScalarType, class MV, class OP>
void RCGSolMgr<ScalarType,MV,OP,true>::setParameters( const Teuchos::RCP<Teuchos::ParameterList> ¶ms )
{
// Create the internal parameter list if ones doesn't already exist.
if (params_ == Teuchos::null) {
params_ = Teuchos::rcp( new Teuchos::ParameterList(*getValidParameters()) );
}
else {
params->validateParameters(*getValidParameters());
}
// Check for maximum number of iterations
if (params->isParameter("Maximum Iterations")) {
maxIters_ = params->get("Maximum Iterations",maxIters_default_);
// Update parameter in our list and in status test.
params_->set("Maximum Iterations", maxIters_);
if (maxIterTest_!=Teuchos::null)
maxIterTest_->setMaxIters( maxIters_ );
}
// Check for the maximum number of blocks.
if (params->isParameter("Num Blocks")) {
numBlocks_ = params->get("Num Blocks",numBlocks_default_);
TEUCHOS_TEST_FOR_EXCEPTION(numBlocks_ <= 0, std::invalid_argument,
"Belos::RCGSolMgr: \"Num Blocks\" must be strictly positive.");
// Update parameter in our list.
params_->set("Num Blocks", numBlocks_);
}
// Check for the maximum number of blocks.
if (params->isParameter("Num Recycled Blocks")) {
recycleBlocks_ = params->get("Num Recycled Blocks",recycleBlocks_default_);
TEUCHOS_TEST_FOR_EXCEPTION(recycleBlocks_ <= 0, std::invalid_argument,
"Belos::RCGSolMgr: \"Num Recycled Blocks\" must be strictly positive.");
TEUCHOS_TEST_FOR_EXCEPTION(recycleBlocks_ >= numBlocks_, std::invalid_argument,
"Belos::RCGSolMgr: \"Num Recycled Blocks\" must be less than \"Num Blocks\".");
// Update parameter in our list.
params_->set("Num Recycled Blocks", recycleBlocks_);
}
// Check to see if the timer label changed.
if (params->isParameter("Timer Label")) {
std::string tempLabel = params->get("Timer Label", label_default_);
// Update parameter in our list and solver timer
if (tempLabel != label_) {
label_ = tempLabel;
params_->set("Timer Label", label_);
std::string solveLabel = label_ + ": RCGSolMgr total solve time";
#ifdef BELOS_TEUCHOS_TIME_MONITOR
timerSolve_ = Teuchos::TimeMonitor::getNewCounter(solveLabel);
#endif
}
}
// Check for a change in verbosity level
if (params->isParameter("Verbosity")) {
if (Teuchos::isParameterType<int>(*params,"Verbosity")) {
verbosity_ = params->get("Verbosity", verbosity_default_);
} else {
verbosity_ = (int)Teuchos::getParameter<Belos::MsgType>(*params,"Verbosity");
}
// Update parameter in our list.
params_->set("Verbosity", verbosity_);
if (printer_ != Teuchos::null)
printer_->setVerbosity(verbosity_);
}
// Check for a change in output style
if (params->isParameter("Output Style")) {
if (Teuchos::isParameterType<int>(*params,"Output Style")) {
outputStyle_ = params->get("Output Style", outputStyle_default_);
} else {
outputStyle_ = (int)Teuchos::getParameter<Belos::OutputType>(*params,"Output Style");
}
// Reconstruct the convergence test if the explicit residual test is not being used.
params_->set("Output Style", outputStyle_);
outputTest_ = Teuchos::null;
}
// output stream
if (params->isParameter("Output Stream")) {
outputStream_ = Teuchos::getParameter<Teuchos::RCP<std::ostream> >(*params,"Output Stream");
// Update parameter in our list.
params_->set("Output Stream", outputStream_);
if (printer_ != Teuchos::null)
printer_->setOStream( outputStream_ );
}
// frequency level
if (verbosity_ & Belos::StatusTestDetails) {
if (params->isParameter("Output Frequency")) {
outputFreq_ = params->get("Output Frequency", outputFreq_default_);
}
// Update parameter in out list and output status test.
params_->set("Output Frequency", outputFreq_);
if (outputTest_ != Teuchos::null)
outputTest_->setOutputFrequency( outputFreq_ );
}
// Create output manager if we need to.
if (printer_ == Teuchos::null) {
printer_ = Teuchos::rcp( new OutputManager<ScalarType>(verbosity_, outputStream_) );
}
// Convergence
typedef Belos::StatusTestCombo<ScalarType,MV,OP> StatusTestCombo_t;
typedef Belos::StatusTestGenResNorm<ScalarType,MV,OP> StatusTestResNorm_t;
// Check for convergence tolerance
if (params->isParameter("Convergence Tolerance")) {
convtol_ = params->get("Convergence Tolerance",convtol_default_);
// Update parameter in our list and residual tests.
params_->set("Convergence Tolerance", convtol_);
if (convTest_ != Teuchos::null)
convTest_->setTolerance( convtol_ );
}
if (params->isParameter("Show Maximum Residual Norm Only")) {
showMaxResNormOnly_ = Teuchos::getParameter<bool>(*params,"Show Maximum Residual Norm Only");
// Update parameter in our list and residual tests
params_->set("Show Maximum Residual Norm Only", showMaxResNormOnly_);
if (convTest_ != Teuchos::null)
convTest_->setShowMaxResNormOnly( showMaxResNormOnly_ );
}
// Create status tests if we need to.
// Basic test checks maximum iterations and native residual.
if (maxIterTest_ == Teuchos::null)
maxIterTest_ = Teuchos::rcp( new StatusTestMaxIters<ScalarType,MV,OP>( maxIters_ ) );
// Implicit residual test, using the native residual to determine if convergence was achieved.
if (convTest_ == Teuchos::null)
convTest_ = Teuchos::rcp( new StatusTestResNorm_t( convtol_, 1 ) );
if (sTest_ == Teuchos::null)
sTest_ = Teuchos::rcp( new StatusTestCombo_t( StatusTestCombo_t::OR, maxIterTest_, convTest_ ) );
if (outputTest_ == Teuchos::null) {
// Create the status test output class.
// This class manages and formats the output from the status test.
StatusTestOutputFactory<ScalarType,MV,OP> stoFactory( outputStyle_ );
outputTest_ = stoFactory.create( printer_, sTest_, outputFreq_, Passed+Failed+Undefined );
// Set the solver string for the output test
std::string solverDesc = " Recycling CG ";
outputTest_->setSolverDesc( solverDesc );
}
// Create the timer if we need to.
if (timerSolve_ == Teuchos::null) {
std::string solveLabel = label_ + ": RCGSolMgr total solve time";
#ifdef BELOS_TEUCHOS_TIME_MONITOR
timerSolve_ = Teuchos::TimeMonitor::getNewCounter(solveLabel);
#endif
}
// Inform the solver manager that the current parameters were set.
params_Set_ = true;
}
template<class ScalarType, class MV, class OP>
Teuchos::RCP<const Teuchos::ParameterList>
RCGSolMgr<ScalarType,MV,OP,true>::getValidParameters() const
{
static Teuchos::RCP<const Teuchos::ParameterList> validPL;
// Set all the valid parameters and their default values.
if(is_null(validPL)) {
Teuchos::RCP<Teuchos::ParameterList> pl = Teuchos::parameterList();
pl->set("Convergence Tolerance", convtol_default_,
"The relative residual tolerance that needs to be achieved by the\n"
"iterative solver in order for the linear system to be declared converged.");
pl->set("Maximum Iterations", maxIters_default_,
"The maximum number of block iterations allowed for each\n"
"set of RHS solved.");
pl->set("Block Size", blockSize_default_,
"Block Size Parameter -- currently must be 1 for RCG");
pl->set("Num Blocks", numBlocks_default_,
"The length of a cycle (and this max number of search vectors kept)\n");
pl->set("Num Recycled Blocks", recycleBlocks_default_,
"The number of vectors in the recycle subspace.");
pl->set("Verbosity", verbosity_default_,
"What type(s) of solver information should be outputted\n"
"to the output stream.");
pl->set("Output Style", outputStyle_default_,
"What style is used for the solver information outputted\n"
"to the output stream.");
pl->set("Output Frequency", outputFreq_default_,
"How often convergence information should be outputted\n"
"to the output stream.");
pl->set("Output Stream", outputStream_default_,
"A reference-counted pointer to the output stream where all\n"
"solver output is sent.");
pl->set("Show Maximum Residual Norm Only", showMaxResNormOnly_default_,
"When convergence information is printed, only show the maximum\n"
"relative residual norm when the block size is greater than one.");
pl->set("Timer Label", label_default_,
"The string to use as a prefix for the timer labels.");
// pl->set("Restart Timers", restartTimers_);
validPL = pl;
}
return validPL;
}
// initializeStateStorage
template<class ScalarType, class MV, class OP>
void RCGSolMgr<ScalarType,MV,OP,true>::initializeStateStorage() {
// Check if there is any multivector to clone from.
Teuchos::RCP<const MV> rhsMV = problem_->getRHS();
if (rhsMV == Teuchos::null) {
// Nothing to do
return;
}
else {
// Initialize the state storage
TEUCHOS_TEST_FOR_EXCEPTION(static_cast<ptrdiff_t>(numBlocks_) > MVT::GetGlobalLength(*rhsMV),std::invalid_argument,
"Belos::RCGSolMgr::initializeStateStorage(): Cannot generate a Krylov basis with dimension larger the operator!");
// If the subspace has not been initialized before, generate it using the RHS from lp_.
if (P_ == Teuchos::null) {
P_ = MVT::Clone( *rhsMV, numBlocks_+2 );
}
else {
// Generate P_ by cloning itself ONLY if more space is needed.
if (MVT::GetNumberVecs(*P_) < numBlocks_+2) {
Teuchos::RCP<const MV> tmp = P_;
P_ = MVT::Clone( *tmp, numBlocks_+2 );
}
}
// Generate Ap_ only if it doesn't exist
if (Ap_ == Teuchos::null)
Ap_ = MVT::Clone( *rhsMV, 1 );
// Generate r_ only if it doesn't exist
if (r_ == Teuchos::null)
r_ = MVT::Clone( *rhsMV, 1 );
// Generate z_ only if it doesn't exist
if (z_ == Teuchos::null)
z_ = MVT::Clone( *rhsMV, 1 );
// If the recycle space has not been initialized before, generate it using the RHS from lp_.
if (U_ == Teuchos::null) {
U_ = MVT::Clone( *rhsMV, recycleBlocks_ );
}
else {
// Generate U_ by cloning itself ONLY if more space is needed.
if (MVT::GetNumberVecs(*U_) < recycleBlocks_) {
Teuchos::RCP<const MV> tmp = U_;
U_ = MVT::Clone( *tmp, recycleBlocks_ );
}
}
// If the recycle space has not be initialized before, generate it using the RHS from lp_.
if (AU_ == Teuchos::null) {
AU_ = MVT::Clone( *rhsMV, recycleBlocks_ );
}
else {
// Generate AU_ by cloning itself ONLY if more space is needed.
if (MVT::GetNumberVecs(*AU_) < recycleBlocks_) {
Teuchos::RCP<const MV> tmp = AU_;
AU_ = MVT::Clone( *tmp, recycleBlocks_ );
}
}
// If the recycle space has not been initialized before, generate it using the RHS from lp_.
if (U1_ == Teuchos::null) {
U1_ = MVT::Clone( *rhsMV, recycleBlocks_ );
}
else {
// Generate U1_ by cloning itself ONLY if more space is needed.
if (MVT::GetNumberVecs(*U1_) < recycleBlocks_) {
Teuchos::RCP<const MV> tmp = U1_;
U1_ = MVT::Clone( *tmp, recycleBlocks_ );
}
}
// Generate Alpha_ only if it doesn't exist, otherwise resize it.
if (Alpha_ == Teuchos::null)
Alpha_ = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( numBlocks_, 1 ) );
else {
if ( (Alpha_->numRows() != numBlocks_) || (Alpha_->numCols() != 1) )
Alpha_->reshape( numBlocks_, 1 );
}
// Generate Beta_ only if it doesn't exist, otherwise resize it.
if (Beta_ == Teuchos::null)
Beta_ = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( numBlocks_ + 1, 1 ) );
else {
if ( (Beta_->numRows() != (numBlocks_+1)) || (Beta_->numCols() != 1) )
Beta_->reshape( numBlocks_ + 1, 1 );
}
// Generate D_ only if it doesn't exist, otherwise resize it.
if (D_ == Teuchos::null)
D_ = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( numBlocks_ , 1 ) );
else {
if ( (D_->numRows() != numBlocks_) || (D_->numCols() != 1) )
D_->reshape( numBlocks_, 1 );
}
// Generate Delta_ only if it doesn't exist, otherwise resize it.
if (Delta_ == Teuchos::null)
Delta_ = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( recycleBlocks_, numBlocks_ + 1 ) );
else {
if ( (Delta_->numRows() != recycleBlocks_) || (Delta_->numCols() != (numBlocks_ + 1)) )
Delta_->reshape( recycleBlocks_, numBlocks_ + 1 );
}
// Generate UTAU_ only if it doesn't exist, otherwise resize it.
if (UTAU_ == Teuchos::null)
UTAU_ = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( recycleBlocks_, recycleBlocks_ ) );
else {
if ( (UTAU_->numRows() != recycleBlocks_) || (UTAU_->numCols() != recycleBlocks_) )
UTAU_->reshape( recycleBlocks_, recycleBlocks_ );
}
// Generate LUUTAU_ only if it doesn't exist, otherwise resize it.
if (LUUTAU_ == Teuchos::null)
LUUTAU_ = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( recycleBlocks_, recycleBlocks_ ) );
else {
if ( (LUUTAU_->numRows() != recycleBlocks_) || (LUUTAU_->numCols() != recycleBlocks_) )
LUUTAU_->reshape( recycleBlocks_, recycleBlocks_ );
}
// Generate ipiv_ only if it doesn't exist, otherwise resize it.
if (ipiv_ == Teuchos::null)
ipiv_ = Teuchos::rcp( new std::vector<int>(recycleBlocks_) );
else {
if ( (int)ipiv_->size() != recycleBlocks_ ) // if ipiv not correct size, always resize it
ipiv_->resize(recycleBlocks_);
}
// Generate AUTAU_ only if it doesn't exist, otherwise resize it.
if (AUTAU_ == Teuchos::null)
AUTAU_ = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( recycleBlocks_, recycleBlocks_ ) );
else {
if ( (AUTAU_->numRows() != recycleBlocks_) || (AUTAU_->numCols() != recycleBlocks_) )
AUTAU_->reshape( recycleBlocks_, recycleBlocks_ );
}
// Generate rTz_old_ only if it doesn't exist
if (rTz_old_ == Teuchos::null)
rTz_old_ = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( 1, 1 ) );
else {
if ( (rTz_old_->numRows() != 1) || (rTz_old_->numCols() != 1) )
rTz_old_->reshape( 1, 1 );
}
// Generate F_ only if it doesn't exist
if (F_ == Teuchos::null)
F_ = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( numBlocks_+recycleBlocks_, numBlocks_+recycleBlocks_ ) );
else {
if ( (F_->numRows() != (numBlocks_+recycleBlocks_)) || (F_->numCols() != numBlocks_+recycleBlocks_) )
F_->reshape( numBlocks_+recycleBlocks_, numBlocks_+recycleBlocks_ );
}
// Generate G_ only if it doesn't exist
if (G_ == Teuchos::null)
G_ = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( numBlocks_+recycleBlocks_, numBlocks_+recycleBlocks_ ) );
else {
if ( (G_->numRows() != (numBlocks_+recycleBlocks_)) || (G_->numCols() != numBlocks_+recycleBlocks_) )
G_->reshape( numBlocks_+recycleBlocks_, numBlocks_+recycleBlocks_ );
}
// Generate Y_ only if it doesn't exist
if (Y_ == Teuchos::null)
Y_ = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( numBlocks_+recycleBlocks_, recycleBlocks_ ) );
else {
if ( (Y_->numRows() != (numBlocks_+recycleBlocks_)) || (Y_->numCols() != numBlocks_+recycleBlocks_) )
Y_->reshape( numBlocks_+recycleBlocks_, numBlocks_+recycleBlocks_ );
}
// Generate L2_ only if it doesn't exist
if (L2_ == Teuchos::null)
L2_ = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( numBlocks_+1, numBlocks_ ) );
else {
if ( (L2_->numRows() != (numBlocks_+1)) || (L2_->numCols() != numBlocks_) )
L2_->reshape( numBlocks_+1, numBlocks_ );
}
// Generate DeltaL2_ only if it doesn't exist
if (DeltaL2_ == Teuchos::null)
DeltaL2_ = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( recycleBlocks_, numBlocks_ ) );
else {
if ( (DeltaL2_->numRows() != (recycleBlocks_)) || (DeltaL2_->numCols() != (numBlocks_) ) )
DeltaL2_->reshape( recycleBlocks_, numBlocks_ );
}
// Generate AU1TUDeltaL2_ only if it doesn't exist
if (AU1TUDeltaL2_ == Teuchos::null)
AU1TUDeltaL2_ = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( recycleBlocks_, numBlocks_ ) );
else {
if ( (AU1TUDeltaL2_->numRows() != (recycleBlocks_)) || (AU1TUDeltaL2_->numCols() != (numBlocks_) ) )
AU1TUDeltaL2_->reshape( recycleBlocks_, numBlocks_ );
}
// Generate AU1TAU1_ only if it doesn't exist
if (AU1TAU1_ == Teuchos::null)
AU1TAU1_ = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( recycleBlocks_, recycleBlocks_ ) );
else {
if ( (AU1TAU1_->numRows() != (recycleBlocks_)) || (AU1TAU1_->numCols() != (recycleBlocks_) ) )
AU1TAU1_->reshape( recycleBlocks_, recycleBlocks_ );
}
// Generate GY_ only if it doesn't exist
if (GY_ == Teuchos::null)
GY_ = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( numBlocks_ + recycleBlocks_, recycleBlocks_ ) );
else {
if ( (GY_->numRows() != (numBlocks_ + recycleBlocks_)) || (GY_->numCols() != (recycleBlocks_) ) )
GY_->reshape( numBlocks_+recycleBlocks_, recycleBlocks_ );
}
// Generate AU1TU1_ only if it doesn't exist
if (AU1TU1_ == Teuchos::null)
AU1TU1_ = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( recycleBlocks_, recycleBlocks_ ) );
else {
if ( (AU1TU1_->numRows() != (recycleBlocks_)) || (AU1TU1_->numCols() != (recycleBlocks_) ) )
AU1TU1_->reshape( recycleBlocks_, recycleBlocks_ );
}
// Generate FY_ only if it doesn't exist
if (FY_ == Teuchos::null)
FY_ = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( numBlocks_ + recycleBlocks_, recycleBlocks_ ) );
else {
if ( (FY_->numRows() != (numBlocks_ + recycleBlocks_)) || (FY_->numCols() != (recycleBlocks_) ) )
FY_->reshape( numBlocks_+recycleBlocks_, recycleBlocks_ );
}
// Generate AU1TAP_ only if it doesn't exist
if (AU1TAP_ == Teuchos::null)
AU1TAP_ = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( recycleBlocks_, numBlocks_ ) );
else {
if ( (AU1TAP_->numRows() != (recycleBlocks_)) || (AU1TAP_->numCols() != (numBlocks_) ) )
AU1TAP_->reshape( recycleBlocks_, numBlocks_ );
}
// Generate APTAP_ only if it doesn't exist
if (APTAP_ == Teuchos::null)
APTAP_ = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( numBlocks_, numBlocks_ ) );
else {
if ( (APTAP_->numRows() != (numBlocks_)) || (APTAP_->numCols() != (numBlocks_) ) )
APTAP_->reshape( numBlocks_, numBlocks_ );
}
// If the subspace has not been initialized before, generate it using the RHS from lp_.
if (U1Y1_ == Teuchos::null) {
U1Y1_ = MVT::Clone( *rhsMV, recycleBlocks_ );
}
else {
// Generate U1Y1_ by cloning itself ONLY if more space is needed.
if (MVT::GetNumberVecs(*U1Y1_) < recycleBlocks_) {
Teuchos::RCP<const MV> tmp = U1Y1_;
U1Y1_ = MVT::Clone( *tmp, recycleBlocks_ );
}
}
// If the subspace has not been initialized before, generate it using the RHS from lp_.
if (PY2_ == Teuchos::null) {
PY2_ = MVT::Clone( *rhsMV, recycleBlocks_ );
}
else {
// Generate PY2_ by cloning itself ONLY if more space is needed.
if (MVT::GetNumberVecs(*PY2_) < recycleBlocks_) {
Teuchos::RCP<const MV> tmp = PY2_;
PY2_ = MVT::Clone( *tmp, recycleBlocks_ );
}
}
// Generate AUTAP_ only if it doesn't exist
if (AUTAP_ == Teuchos::null)
AUTAP_ = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( recycleBlocks_, numBlocks_ ) );
else {
if ( (AUTAP_->numRows() != (recycleBlocks_)) || (AUTAP_->numCols() != (numBlocks_) ) )
AUTAP_->reshape( recycleBlocks_, numBlocks_ );
}
// Generate AU1TU_ only if it doesn't exist
if (AU1TU_ == Teuchos::null)
AU1TU_ = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( recycleBlocks_, recycleBlocks_ ) );
else {
if ( (AU1TU_->numRows() != (recycleBlocks_)) || (AU1TU_->numCols() != (recycleBlocks_) ) )
AU1TU_->reshape( recycleBlocks_, recycleBlocks_ );
}
}
}
template<class ScalarType, class MV, class OP>
ReturnType RCGSolMgr<ScalarType,MV,OP,true>::solve() {
Teuchos::LAPACK<int,ScalarType> lapack;
std::vector<int> index(recycleBlocks_);
ScalarType one = Teuchos::ScalarTraits<ScalarType>::one();
ScalarType zero = Teuchos::ScalarTraits<ScalarType>::zero();
// Count of number of cycles performed on current rhs
int cycle = 0;
// Set the current parameters if they were not set before.
// NOTE: This may occur if the user generated the solver manager with the default constructor and
// then didn't set any parameters using setParameters().
if (!params_Set_) {
setParameters(Teuchos::parameterList(*getValidParameters()));
}
TEUCHOS_TEST_FOR_EXCEPTION(problem_ == Teuchos::null,RCGSolMgrLinearProblemFailure,
"Belos::RCGSolMgr::solve(): Linear problem is not a valid object.");
TEUCHOS_TEST_FOR_EXCEPTION(!problem_->isProblemSet(),RCGSolMgrLinearProblemFailure,
"Belos::RCGSolMgr::solve(): Linear problem is not ready, setProblem() has not been called.");
TEUCHOS_TEST_FOR_EXCEPTION((problem_->getLeftPrec() != Teuchos::null)&&(problem_->getRightPrec() != Teuchos::null),
RCGSolMgrLinearProblemFailure,
"Belos::RCGSolMgr::solve(): RCG does not support split preconditioning, only set left or right preconditioner.");
// Grab the preconditioning object
Teuchos::RCP<OP> precObj;
if (problem_->getLeftPrec() != Teuchos::null) {
precObj = Teuchos::rcp_const_cast<OP>(problem_->getLeftPrec());
}
else if (problem_->getRightPrec() != Teuchos::null) {
precObj = Teuchos::rcp_const_cast<OP>(problem_->getRightPrec());
}
// Create indices for the linear systems to be solved.
int numRHS2Solve = MVT::GetNumberVecs( *(problem_->getRHS()) );
std::vector<int> currIdx(1);
currIdx[0] = 0;
// Inform the linear problem of the current linear system to solve.
problem_->setLSIndex( currIdx );
// Check the number of blocks and change them if necessary.
ptrdiff_t dim = MVT::GetGlobalLength( *(problem_->getRHS()) );
if (numBlocks_ > dim) {
numBlocks_ = Teuchos::asSafe<int>(dim);
params_->set("Num Blocks", numBlocks_);
printer_->stream(Warnings) <<
"Warning! Requested Krylov subspace dimension is larger than operator dimension!" << std::endl <<
" The maximum number of blocks allowed for the Krylov subspace will be adjusted to " << numBlocks_ << std::endl;
}
// Initialize storage for all state variables
initializeStateStorage();
// Parameter list
Teuchos::ParameterList plist;
plist.set("Num Blocks",numBlocks_);
plist.set("Recycled Blocks",recycleBlocks_);
// Reset the status test.
outputTest_->reset();
// Assume convergence is achieved, then let any failed convergence set this to false.
bool isConverged = true;
// Compute AU = A*U, UTAU = U'*AU, AUTAU = (AU)'*(AU)
if (existU_) {
index.resize(recycleBlocks_);
for (int i=0; i<recycleBlocks_; ++i) { index[i] = i; }
Teuchos::RCP<const MV> Utmp = MVT::CloneView( *U_, index );
index.resize(recycleBlocks_);
for (int i=0; i<recycleBlocks_; ++i) { index[i] = i; }
Teuchos::RCP<MV> AUtmp = MVT::CloneViewNonConst( *AU_, index );
// Initialize AU
problem_->applyOp( *Utmp, *AUtmp );
// Initialize UTAU
Teuchos::SerialDenseMatrix<int,ScalarType> UTAUtmp( Teuchos::View, *UTAU_, recycleBlocks_, recycleBlocks_ );
MVT::MvTransMv( one, *Utmp, *AUtmp, UTAUtmp );
// Initialize AUTAU ( AUTAU = AU'*(M\AU) )
Teuchos::SerialDenseMatrix<int,ScalarType> AUTAUtmp( Teuchos::View, *AUTAU_, recycleBlocks_, recycleBlocks_ );
if ( precObj != Teuchos::null ) {
index.resize(recycleBlocks_);
for (int i=0; i<recycleBlocks_; ++i) { index[i] = i; }
index.resize(recycleBlocks_);
for (int ii=0; ii<recycleBlocks_; ++ii) { index[ii] = ii; }
Teuchos::RCP<MV> PCAU = MVT::CloneViewNonConst( *U1_, index ); // use U1 as temp storage
OPT::Apply( *precObj, *AUtmp, *PCAU );
MVT::MvTransMv( one, *AUtmp, *PCAU, AUTAUtmp );
} else {
MVT::MvTransMv( one, *AUtmp, *AUtmp, AUTAUtmp );
}
}
//////////////////////////////////////////////////////////////////////////////////////
// RCG solver
Teuchos::RCP<RCGIter<ScalarType,MV,OP> > rcg_iter;
rcg_iter = Teuchos::rcp( new RCGIter<ScalarType,MV,OP>(problem_,printer_,outputTest_,plist) );
// Enter solve() iterations
{
#ifdef BELOS_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor slvtimer(*timerSolve_);
#endif
while ( numRHS2Solve > 0 ) {
// Debugging output to tell use if recycle space exists and will be used
if (printer_->isVerbosity( Debug ) ) {
if (existU_) printer_->print( Debug, "Using recycle space generated from previous call to solve()." );
else printer_->print( Debug, "No recycle space exists." );
}
// Reset the number of iterations.
rcg_iter->resetNumIters();
// Set the current number of recycle blocks and subspace dimension with the RCG iteration.
rcg_iter->setSize( recycleBlocks_, numBlocks_ );
// Reset the number of calls that the status test output knows about.
outputTest_->resetNumCalls();
// indicate that updated recycle space has not yet been generated for this linear system
existU1_ = false;
// reset cycle count
cycle = 0;
// Get the current residual
problem_->computeCurrResVec( &*r_ );
// If U exists, find best soln over this space first
if (existU_) {
// Solve linear system UTAU * y = (U'*r)
Teuchos::SerialDenseMatrix<int,ScalarType> Utr(recycleBlocks_,1);
index.resize(recycleBlocks_);
for (int ii=0; ii<recycleBlocks_; ++ii) { index[ii] = ii; }
Teuchos::RCP<const MV> Utmp = MVT::CloneView( *U_, index );
MVT::MvTransMv( one, *Utmp, *r_, Utr );
Teuchos::SerialDenseMatrix<int,ScalarType> UTAUtmp( Teuchos::View, *UTAU_, recycleBlocks_, recycleBlocks_ );
Teuchos::SerialDenseMatrix<int,ScalarType> LUUTAUtmp( Teuchos::View, *LUUTAU_, recycleBlocks_, recycleBlocks_ );
LUUTAUtmp.assign(UTAUtmp);
int info = 0;
lapack.GESV(recycleBlocks_, 1, LUUTAUtmp.values(), LUUTAUtmp.stride(), &(*ipiv_)[0], Utr.values(), Utr.stride(), &info);
TEUCHOS_TEST_FOR_EXCEPTION(info != 0, RCGSolMgrLAPACKFailure,
"Belos::RCGSolMgr::solve(): LAPACK GESV failed to compute a solution.");
// Update solution (x = x + U*y)
MVT::MvTimesMatAddMv( one, *Utmp, Utr, one, *problem_->getCurrLHSVec() );
// Update residual ( r = r - AU*y )
index.resize(recycleBlocks_);
for (int ii=0; ii<recycleBlocks_; ++ii) { index[ii] = ii; }
Teuchos::RCP<const MV> AUtmp = MVT::CloneView( *AU_, index );
MVT::MvTimesMatAddMv( -one, *AUtmp, Utr, one, *r_ );
}
if ( precObj != Teuchos::null ) {
OPT::Apply( *precObj, *r_, *z_ );
} else {
z_ = r_;
}
// rTz_old = r'*z
MVT::MvTransMv( one, *r_, *z_, *rTz_old_ );
if ( existU_ ) {
// mu = UTAU\(AU'*z);
Teuchos::SerialDenseMatrix<int,ScalarType> mu( Teuchos::View, *Delta_, recycleBlocks_, 1);
index.resize(recycleBlocks_);
for (int ii=0; ii<recycleBlocks_; ++ii) { index[ii] = ii; }
Teuchos::RCP<const MV> AUtmp = MVT::CloneView( *AU_, index );
MVT::MvTransMv( one, *AUtmp, *z_, mu );
Teuchos::SerialDenseMatrix<int,ScalarType> LUUTAUtmp( Teuchos::View, *LUUTAU_, recycleBlocks_, recycleBlocks_ );
char TRANS = 'N';
int info;
lapack.GETRS( TRANS, recycleBlocks_, 1, LUUTAUtmp.values(), LUUTAUtmp.stride(), &(*ipiv_)[0], mu.values(), mu.stride(), &info );
TEUCHOS_TEST_FOR_EXCEPTION(info != 0, RCGSolMgrLAPACKFailure,
"Belos::RCGSolMgr::solve(): LAPACK GETRS failed to compute a solution.");
// p = z - U*mu;
index.resize( 1 );
index[0] = 0;
Teuchos::RCP<MV> Ptmp = MVT::CloneViewNonConst( *P_, index );
MVT::MvAddMv(one,*z_,zero,*z_,*Ptmp);
MVT::MvTimesMatAddMv( -one, *U_, mu, one, *Ptmp );
} else {
// p = z;
index.resize( 1 );
index[0] = 0;
Teuchos::RCP<MV> Ptmp = MVT::CloneViewNonConst( *P_, index );
MVT::MvAddMv(one,*z_,zero,*z_,*Ptmp);
}
// Set the new state and initialize the solver.
RCGIterState<ScalarType,MV> newstate;
// Create RCP views here
index.resize( numBlocks_+1 );
for (int ii=0; ii<(numBlocks_+1); ++ii) { index[ii] = ii; }
newstate.P = MVT::CloneViewNonConst( *P_, index );
index.resize( recycleBlocks_ );
for (int ii=0; ii<recycleBlocks_; ++ii) { index[ii] = ii; }
newstate.U = MVT::CloneViewNonConst( *U_, index );
index.resize( recycleBlocks_ );
for (int ii=0; ii<recycleBlocks_; ++ii) { index[ii] = ii; }
newstate.AU = MVT::CloneViewNonConst( *AU_, index );
newstate.Alpha = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( Teuchos::View, *Alpha_, numBlocks_, 1 ) );
newstate.Beta = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( Teuchos::View, *Beta_, numBlocks_, 1 ) );
newstate.D = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( Teuchos::View, *D_, numBlocks_, 1 ) );
newstate.Delta = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( Teuchos::View, *Delta_, recycleBlocks_, numBlocks_, 0, 1 ) );
newstate.LUUTAU = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( Teuchos::View, *LUUTAU_, recycleBlocks_, recycleBlocks_ ) );
// assign the rest of the values in the struct
newstate.curDim = 1; // We have initialized the first search vector
newstate.Ap = Ap_;
newstate.r = r_;
newstate.z = z_;
newstate.existU = existU_;
newstate.ipiv = ipiv_;
newstate.rTz_old = rTz_old_;
rcg_iter->initialize(newstate);
while(1) {
// tell rcg_iter to iterate
try {
rcg_iter->iterate();
////////////////////////////////////////////////////////////////////////////////////
//
// check convergence first
//
////////////////////////////////////////////////////////////////////////////////////
if ( convTest_->getStatus() == Passed ) {
// We have convergence
break; // break from while(1){rcg_iter->iterate()}
}
////////////////////////////////////////////////////////////////////////////////////
//
// check for maximum iterations
//
////////////////////////////////////////////////////////////////////////////////////
else if ( maxIterTest_->getStatus() == Passed ) {
// we don't have convergence
isConverged = false;
break; // break from while(1){rcg_iter->iterate()}
}
////////////////////////////////////////////////////////////////////////////////////
//
// check if cycle complete; update for next cycle
//
////////////////////////////////////////////////////////////////////////////////////
else if ( rcg_iter->getCurSubspaceDim() == rcg_iter->getMaxSubspaceDim() ) {
// index into P_ of last search vector generated this cycle
int lastp = -1;
// index into Beta_ of last entry generated this cycle
int lastBeta = -1;
if (recycleBlocks_ > 0) {
if (!existU_) {
if (cycle == 0) { // No U, no U1
Teuchos::SerialDenseMatrix<int,ScalarType> Ftmp( Teuchos::View, *F_, numBlocks_, numBlocks_ );
Teuchos::SerialDenseMatrix<int,ScalarType> Gtmp( Teuchos::View, *G_, numBlocks_, numBlocks_ );
Teuchos::SerialDenseMatrix<int,ScalarType> Dtmp( Teuchos::View, *D_, numBlocks_, 1 );
Teuchos::SerialDenseMatrix<int,ScalarType> Alphatmp( Teuchos::View, *Alpha_, numBlocks_, 1 );
Teuchos::SerialDenseMatrix<int,ScalarType> Betatmp( Teuchos::View, *Beta_, numBlocks_, 1 );
Ftmp.putScalar(zero);
Gtmp.putScalar(zero);
for (int ii=0;ii<numBlocks_;ii++) {
Gtmp(ii,ii) = (Dtmp(ii,0) / Alphatmp(ii,0))*(1 + Betatmp(ii,0));
if (ii > 0) {
Gtmp(ii-1,ii) = -Dtmp(ii,0)/Alphatmp(ii-1,0);
Gtmp(ii,ii-1) = -Dtmp(ii,0)/Alphatmp(ii-1,0);
}
Ftmp(ii,ii) = Dtmp(ii,0);
}
// compute harmonic Ritz vectors
Teuchos::SerialDenseMatrix<int,ScalarType> Ytmp( Teuchos::View, *Y_, numBlocks_, recycleBlocks_ );
getHarmonicVecs(Ftmp,Gtmp,Ytmp);
// U1 = [P(:,1:end-1)*Y];
index.resize( numBlocks_ );
for (int ii=0; ii<numBlocks_; ++ii) { index[ii] = ii; }
Teuchos::RCP<const MV> Ptmp = MVT::CloneView( *P_, index );
index.resize( recycleBlocks_ );
for (int ii=0; ii<recycleBlocks_; ++ii) { index[ii] = ii; }
Teuchos::RCP<MV> U1tmp = MVT::CloneViewNonConst( *U1_, index );
MVT::MvTimesMatAddMv( one, *Ptmp, Ytmp, zero, *U1tmp );
// Precompute some variables for next cycle
// AU1TAU1 = Y'*G*Y;
Teuchos::SerialDenseMatrix<int,ScalarType> GYtmp( Teuchos::View, *GY_, numBlocks_, recycleBlocks_ );
GYtmp.multiply(Teuchos::NO_TRANS,Teuchos::NO_TRANS,one,Gtmp,Ytmp,zero);
Teuchos::SerialDenseMatrix<int,ScalarType> AU1TAU1tmp( Teuchos::View, *AU1TAU1_, recycleBlocks_, recycleBlocks_ );
AU1TAU1tmp.multiply(Teuchos::TRANS,Teuchos::NO_TRANS,one,Ytmp,GYtmp,zero);
// AU1TU1 = Y'*F*Y;
Teuchos::SerialDenseMatrix<int,ScalarType> FYtmp( Teuchos::View, *FY_, numBlocks_, recycleBlocks_ );
FYtmp.multiply(Teuchos::NO_TRANS,Teuchos::NO_TRANS,one,Ftmp,Ytmp,zero);
Teuchos::SerialDenseMatrix<int,ScalarType> AU1TU1tmp( Teuchos::View, *AU1TU1_, recycleBlocks_, recycleBlocks_ );
AU1TU1tmp.multiply(Teuchos::TRANS,Teuchos::NO_TRANS,one,Ytmp,FYtmp,zero);
Teuchos::SerialDenseMatrix<int,ScalarType> AU1TAPtmp( Teuchos::View, *AU1TAP_, recycleBlocks_, 1 );
// Must reinitialize AU1TAP; can become dense later
AU1TAPtmp.putScalar(zero);
// AU1TAP(:,1) = Y(end,:)' * (-1/Alpha(end));
ScalarType alphatmp = -1.0 / Alphatmp(numBlocks_-1,0);
for (int ii=0; ii<recycleBlocks_; ++ii) {
AU1TAPtmp(ii,0) = Ytmp(numBlocks_-1,ii) * alphatmp;
}
// indicate that updated recycle space now defined
existU1_ = true;
// Indicate the size of the P, Beta structures generated this cycle
lastp = numBlocks_;
lastBeta = numBlocks_-1;
} // if (cycle == 0)
else { // No U, but U1 guaranteed to exist now
// Finish computation of subblocks
// AU1TAP = AU1TAP * D(1);
Teuchos::SerialDenseMatrix<int,ScalarType> Dtmp( Teuchos::View, *D_, numBlocks_, 1 );
Teuchos::SerialDenseMatrix<int,ScalarType> AU1TAPtmp( Teuchos::View, *AU1TAP_, recycleBlocks_, numBlocks_ );
AU1TAPtmp.scale(Dtmp(0,0));
Teuchos::SerialDenseMatrix<int,ScalarType> Alphatmp( Teuchos::View, *Alpha_, numBlocks_, 1 );
Teuchos::SerialDenseMatrix<int,ScalarType> Betatmp( Teuchos::View, *Beta_, numBlocks_+1, 1 );
Teuchos::SerialDenseMatrix<int,ScalarType> APTAPtmp( Teuchos::View, *APTAP_, numBlocks_, numBlocks_ );
APTAPtmp.putScalar(zero);
for (int ii=0; ii<numBlocks_; ii++) {
APTAPtmp(ii,ii) = (Dtmp(ii,0) / Alphatmp(ii,0))*(1 + Betatmp(ii+1,0));
if (ii > 0) {
APTAPtmp(ii-1,ii) = -Dtmp(ii,0)/Alphatmp(ii-1,0);
APTAPtmp(ii,ii-1) = -Dtmp(ii,0)/Alphatmp(ii-1,0);
}
}
// F = [AU1TU1 zeros(k,m); zeros(m,k) diag(D)];
Teuchos::SerialDenseMatrix<int,ScalarType> Ftmp( Teuchos::View, *F_, (numBlocks_+recycleBlocks_), (numBlocks_+recycleBlocks_) );
Teuchos::SerialDenseMatrix<int,ScalarType> F11( Teuchos::View, *F_, recycleBlocks_, recycleBlocks_ );
Teuchos::SerialDenseMatrix<int,ScalarType> F12( Teuchos::View, *F_, recycleBlocks_, numBlocks_, 0, recycleBlocks_ );
Teuchos::SerialDenseMatrix<int,ScalarType> F21( Teuchos::View, *F_, numBlocks_, recycleBlocks_, recycleBlocks_, 0 );
Teuchos::SerialDenseMatrix<int,ScalarType> F22( Teuchos::View, *F_, numBlocks_, numBlocks_, recycleBlocks_, recycleBlocks_ );
Teuchos::SerialDenseMatrix<int,ScalarType> AU1TU1tmp( Teuchos::View, *AU1TU1_, recycleBlocks_, recycleBlocks_ );
F11.assign(AU1TU1tmp);
F12.putScalar(zero);
F21.putScalar(zero);
F22.putScalar(zero);
for(int ii=0;ii<numBlocks_;ii++) {
F22(ii,ii) = Dtmp(ii,0);
}
// G = [AU1TAU1 AU1TAP; AU1TAP' APTAP];
Teuchos::SerialDenseMatrix<int,ScalarType> Gtmp( Teuchos::View, *G_, (numBlocks_+recycleBlocks_), (numBlocks_+recycleBlocks_) );
Teuchos::SerialDenseMatrix<int,ScalarType> AU1TAU1tmp( Teuchos::View, *AU1TAU1_, recycleBlocks_, recycleBlocks_ );
Teuchos::SerialDenseMatrix<int,ScalarType> G11( Teuchos::View, *G_, recycleBlocks_, recycleBlocks_ );
Teuchos::SerialDenseMatrix<int,ScalarType> G12( Teuchos::View, *G_, recycleBlocks_, numBlocks_, 0, recycleBlocks_ );
Teuchos::SerialDenseMatrix<int,ScalarType> G21( Teuchos::View, *G_, numBlocks_, recycleBlocks_, recycleBlocks_, 0 );
Teuchos::SerialDenseMatrix<int,ScalarType> G22( Teuchos::View, *G_, numBlocks_, numBlocks_, recycleBlocks_, recycleBlocks_ );
G11.assign(AU1TAU1tmp);
G12.assign(AU1TAPtmp);
// G21 = G12'; (no transpose operator exists for SerialDenseMatrix; Do copy manually)
for (int ii=0;ii<recycleBlocks_;++ii)
for (int jj=0;jj<numBlocks_;++jj)
G21(jj,ii) = G12(ii,jj);
G22.assign(APTAPtmp);
// compute harmonic Ritz vectors
Teuchos::SerialDenseMatrix<int,ScalarType> Ytmp( Teuchos::View, *Y_, (recycleBlocks_+numBlocks_), recycleBlocks_ );
getHarmonicVecs(Ftmp,Gtmp,Ytmp);
// U1 = [U1 P(:,2:end-1)]*Y;
index.resize( numBlocks_ );
for (int ii=0; ii<numBlocks_; ++ii) { index[ii] = ii+1; }
Teuchos::RCP<const MV> Ptmp = MVT::CloneView( *P_, index );
index.resize( recycleBlocks_ );
for (int ii=0; ii<recycleBlocks_; ++ii) { index[ii] = ii; }
Teuchos::RCP<MV> PY2tmp = MVT::CloneViewNonConst( *PY2_, index );
Teuchos::SerialDenseMatrix<int,ScalarType> Y2( Teuchos::View, *Y_, numBlocks_, recycleBlocks_, recycleBlocks_, 0 );
index.resize( recycleBlocks_ );
for (int ii=0; ii<recycleBlocks_; ++ii) { index[ii] = ii; }
Teuchos::RCP<MV> U1tmp = MVT::CloneViewNonConst( *U1_, index );
index.resize( recycleBlocks_ );
for (int ii=0; ii<recycleBlocks_; ++ii) { index[ii] = ii; }
Teuchos::RCP<MV> U1Y1tmp = MVT::CloneViewNonConst( *U1Y1_, index );
Teuchos::SerialDenseMatrix<int,ScalarType> Y1( Teuchos::View, *Y_, recycleBlocks_, recycleBlocks_ );
MVT::MvTimesMatAddMv( one, *Ptmp, Y2, zero, *PY2tmp );
MVT::MvTimesMatAddMv( one, *U1tmp, Y1, zero, *U1Y1tmp );
MVT::MvAddMv(one,*U1Y1tmp, one, *PY2tmp, *U1tmp);
// Precompute some variables for next cycle
// AU1TAU1 = Y'*G*Y;
Teuchos::SerialDenseMatrix<int,ScalarType> GYtmp( Teuchos::View, *GY_, (numBlocks_+recycleBlocks_), recycleBlocks_ );
GYtmp.multiply(Teuchos::NO_TRANS,Teuchos::NO_TRANS,one,Gtmp,Ytmp,zero);
AU1TAU1tmp.multiply(Teuchos::TRANS,Teuchos::NO_TRANS,one,Ytmp,GYtmp,zero);
// AU1TAP = zeros(k,m);
// AU1TAP(:,1) = Y(end,:)' * (-1/Alpha(end));
AU1TAPtmp.putScalar(zero);
ScalarType alphatmp = -1.0 / Alphatmp(numBlocks_-1,0);
for (int ii=0; ii<recycleBlocks_; ++ii) {
AU1TAPtmp(ii,0) = Ytmp(numBlocks_+recycleBlocks_-1,ii) * alphatmp;
}
// AU1TU1 = Y'*F*Y;
Teuchos::SerialDenseMatrix<int,ScalarType> FYtmp( Teuchos::View, *FY_, (numBlocks_+recycleBlocks_), recycleBlocks_ );
FYtmp.multiply(Teuchos::NO_TRANS,Teuchos::NO_TRANS,one,Ftmp,Ytmp,zero);
//Teuchos::SerialDenseMatrix<int,ScalarType> AU1TU1tmp( Teuchos::View, *AU1TU1_, recycleBlocks_, recycleBlocks_ );
AU1TU1tmp.multiply(Teuchos::TRANS,Teuchos::NO_TRANS,one,Ytmp,FYtmp,zero);
// Indicate the size of the P, Beta structures generated this cycle
lastp = numBlocks_+1;
lastBeta = numBlocks_;
} // if (cycle != 1)
} // if (!existU_)
else { // U exists
if (cycle == 0) { // No U1, but U exists
Teuchos::SerialDenseMatrix<int,ScalarType> Alphatmp( Teuchos::View, *Alpha_, numBlocks_, 1 );
Teuchos::SerialDenseMatrix<int,ScalarType> Betatmp( Teuchos::View, *Beta_, numBlocks_, 1 );
Teuchos::SerialDenseMatrix<int,ScalarType> Dtmp( Teuchos::View, *D_, numBlocks_, 1 );
Teuchos::SerialDenseMatrix<int,ScalarType> APTAPtmp( Teuchos::View, *APTAP_, numBlocks_, numBlocks_ );
APTAPtmp.putScalar(zero);
for (int ii=0; ii<numBlocks_; ii++) {
APTAPtmp(ii,ii) = (Dtmp(ii,0) / Alphatmp(ii,0))*(1 + Betatmp(ii,0));
if (ii > 0) {
APTAPtmp(ii-1,ii) = -Dtmp(ii,0)/Alphatmp(ii-1,0);
APTAPtmp(ii,ii-1) = -Dtmp(ii,0)/Alphatmp(ii-1,0);
}
}
Teuchos::SerialDenseMatrix<int,ScalarType> L2tmp( Teuchos::View, *L2_, numBlocks_+1, numBlocks_ );
L2tmp.putScalar(zero);
for(int ii=0;ii<numBlocks_;ii++) {
L2tmp(ii,ii) = 1./Alphatmp(ii,0);
L2tmp(ii+1,ii) = -1./Alphatmp(ii,0);
}
// AUTAP = UTAU*Delta*L2;
Teuchos::SerialDenseMatrix<int,ScalarType> AUTAPtmp( Teuchos::View, *AUTAP_, recycleBlocks_, numBlocks_ );
Teuchos::SerialDenseMatrix<int,ScalarType> UTAUtmp( Teuchos::View, *UTAU_, recycleBlocks_, recycleBlocks_ );
Teuchos::SerialDenseMatrix<int,ScalarType> Deltatmp( Teuchos::View, *Delta_, recycleBlocks_, numBlocks_+1 );
Teuchos::SerialDenseMatrix<int,ScalarType> DeltaL2tmp( Teuchos::View, *DeltaL2_, recycleBlocks_, numBlocks_ );
DeltaL2tmp.multiply(Teuchos::NO_TRANS,Teuchos::NO_TRANS,one,Deltatmp,L2tmp,zero);
AUTAPtmp.multiply(Teuchos::NO_TRANS,Teuchos::NO_TRANS,one,UTAUtmp,DeltaL2tmp,zero);
// F = [UTAU zeros(k,m); zeros(m,k) diag(D)];
Teuchos::SerialDenseMatrix<int,ScalarType> Ftmp( Teuchos::View, *F_, (numBlocks_+recycleBlocks_), (numBlocks_+recycleBlocks_) );
Teuchos::SerialDenseMatrix<int,ScalarType> F11( Teuchos::View, *F_, recycleBlocks_, recycleBlocks_ );
Teuchos::SerialDenseMatrix<int,ScalarType> F12( Teuchos::View, *F_, recycleBlocks_, numBlocks_, 0, recycleBlocks_ );
Teuchos::SerialDenseMatrix<int,ScalarType> F21( Teuchos::View, *F_, numBlocks_, recycleBlocks_, recycleBlocks_, 0 );
Teuchos::SerialDenseMatrix<int,ScalarType> F22( Teuchos::View, *F_, numBlocks_, numBlocks_, recycleBlocks_, recycleBlocks_ );
F11.assign(UTAUtmp);
F12.putScalar(zero);
F21.putScalar(zero);
F22.putScalar(zero);
for(int ii=0;ii<numBlocks_;ii++) {
F22(ii,ii) = Dtmp(ii,0);
}
// G = [AUTAU AUTAP; AUTAP' APTAP];
Teuchos::SerialDenseMatrix<int,ScalarType> Gtmp( Teuchos::View, *G_, (numBlocks_+recycleBlocks_), (numBlocks_+recycleBlocks_) );
Teuchos::SerialDenseMatrix<int,ScalarType> G11( Teuchos::View, *G_, recycleBlocks_, recycleBlocks_ );
Teuchos::SerialDenseMatrix<int,ScalarType> G12( Teuchos::View, *G_, recycleBlocks_, numBlocks_, 0, recycleBlocks_ );
Teuchos::SerialDenseMatrix<int,ScalarType> G21( Teuchos::View, *G_, numBlocks_, recycleBlocks_, recycleBlocks_, 0 );
Teuchos::SerialDenseMatrix<int,ScalarType> G22( Teuchos::View, *G_, numBlocks_, numBlocks_, recycleBlocks_, recycleBlocks_ );
Teuchos::SerialDenseMatrix<int,ScalarType> AUTAUtmp( Teuchos::View, *AUTAU_, recycleBlocks_, recycleBlocks_ );
G11.assign(AUTAUtmp);
G12.assign(AUTAPtmp);
// G21 = G12'; (no transpose operator exists for SerialDenseMatrix; Do copy manually)
for (int ii=0;ii<recycleBlocks_;++ii)
for (int jj=0;jj<numBlocks_;++jj)
G21(jj,ii) = G12(ii,jj);
G22.assign(APTAPtmp);
// compute harmonic Ritz vectors
Teuchos::SerialDenseMatrix<int,ScalarType> Ytmp( Teuchos::View, *Y_, (recycleBlocks_+numBlocks_), recycleBlocks_ );
getHarmonicVecs(Ftmp,Gtmp,Ytmp);
// U1 = [U P(:,1:end-1)]*Y;
index.resize( recycleBlocks_ );
for (int ii=0; ii<(recycleBlocks_); ++ii) { index[ii] = ii; }
Teuchos::RCP<const MV> Utmp = MVT::CloneView( *U_, index );
index.resize( numBlocks_ );
for (int ii=0; ii<numBlocks_; ++ii) { index[ii] = ii; }
Teuchos::RCP<const MV> Ptmp = MVT::CloneView( *P_, index );
index.resize( recycleBlocks_ );
for (int ii=0; ii<recycleBlocks_; ++ii) { index[ii] = ii; }
Teuchos::RCP<MV> PY2tmp = MVT::CloneViewNonConst( *PY2_, index );
Teuchos::SerialDenseMatrix<int,ScalarType> Y2( Teuchos::View, *Y_, numBlocks_, recycleBlocks_, recycleBlocks_, 0 );
index.resize( recycleBlocks_ );
for (int ii=0; ii<recycleBlocks_; ++ii) { index[ii] = ii; }
Teuchos::RCP<MV> UY1tmp = MVT::CloneViewNonConst( *U1Y1_, index );
Teuchos::SerialDenseMatrix<int,ScalarType> Y1( Teuchos::View, *Y_, recycleBlocks_, recycleBlocks_ );
index.resize( recycleBlocks_ );
for (int ii=0; ii<recycleBlocks_; ++ii) { index[ii] = ii; }
Teuchos::RCP<MV> U1tmp = MVT::CloneViewNonConst( *U1_, index );
MVT::MvTimesMatAddMv( one, *Ptmp, Y2, zero, *PY2tmp );
MVT::MvTimesMatAddMv( one, *Utmp, Y1, zero, *UY1tmp );
MVT::MvAddMv(one,*UY1tmp, one, *PY2tmp, *U1tmp);
// Precompute some variables for next cycle
// AU1TAU1 = Y'*G*Y;
Teuchos::SerialDenseMatrix<int,ScalarType> GYtmp( Teuchos::View, *GY_, (numBlocks_+recycleBlocks_), recycleBlocks_ );
GYtmp.multiply(Teuchos::NO_TRANS,Teuchos::NO_TRANS,one,Gtmp,Ytmp,zero);
Teuchos::SerialDenseMatrix<int,ScalarType> AU1TAU1tmp( Teuchos::View, *AU1TAU1_, recycleBlocks_, recycleBlocks_ );
AU1TAU1tmp.multiply(Teuchos::TRANS,Teuchos::NO_TRANS,one,Ytmp,GYtmp,zero);
// AU1TU1 = Y'*F*Y;
Teuchos::SerialDenseMatrix<int,ScalarType> FYtmp( Teuchos::View, *FY_, (numBlocks_+recycleBlocks_), recycleBlocks_ );
FYtmp.multiply(Teuchos::NO_TRANS,Teuchos::NO_TRANS,one,Ftmp,Ytmp,zero);
Teuchos::SerialDenseMatrix<int,ScalarType> AU1TU1tmp( Teuchos::View, *AU1TU1_, recycleBlocks_, recycleBlocks_ );
AU1TU1tmp.multiply(Teuchos::TRANS,Teuchos::NO_TRANS,one,Ytmp,FYtmp,zero);
// AU1TU = UTAU;
Teuchos::SerialDenseMatrix<int,ScalarType> AU1TUtmp( Teuchos::View, *AU1TU_, recycleBlocks_, recycleBlocks_ );
AU1TUtmp.assign(UTAUtmp);
// dold = D(end);
dold = Dtmp(numBlocks_-1,0);
// indicate that updated recycle space now defined
existU1_ = true;
// Indicate the size of the P, Beta structures generated this cycle
lastp = numBlocks_;
lastBeta = numBlocks_-1;
}
else { // Have U and U1
Teuchos::SerialDenseMatrix<int,ScalarType> Alphatmp( Teuchos::View, *Alpha_, numBlocks_, 1 );
Teuchos::SerialDenseMatrix<int,ScalarType> Betatmp( Teuchos::View, *Beta_, numBlocks_+1, 1 );
Teuchos::SerialDenseMatrix<int,ScalarType> Dtmp( Teuchos::View, *D_, numBlocks_, 1 );
Teuchos::SerialDenseMatrix<int,ScalarType> APTAPtmp( Teuchos::View, *APTAP_, numBlocks_, numBlocks_ );
for (int ii=0; ii<numBlocks_; ii++) {
APTAPtmp(ii,ii) = (Dtmp(ii,0) / Alphatmp(ii,0))*(1 + Betatmp(ii+1,0));
if (ii > 0) {
APTAPtmp(ii-1,ii) = -Dtmp(ii,0)/Alphatmp(ii-1,0);
APTAPtmp(ii,ii-1) = -Dtmp(ii,0)/Alphatmp(ii-1,0);
}
}
Teuchos::SerialDenseMatrix<int,ScalarType> L2tmp( Teuchos::View, *L2_, numBlocks_+1, numBlocks_ );
for(int ii=0;ii<numBlocks_;ii++) {
L2tmp(ii,ii) = 1./Alphatmp(ii,0);
L2tmp(ii+1,ii) = -1./Alphatmp(ii,0);
}
// M(end,1) = dold*(-Beta(1)/Alpha(1));
// AU1TAP = Y'*[AU1TU*Delta*L2; M];
Teuchos::SerialDenseMatrix<int,ScalarType> DeltaL2( Teuchos::View, *DeltaL2_, recycleBlocks_, numBlocks_ );
Teuchos::SerialDenseMatrix<int,ScalarType> Deltatmp( Teuchos::View, *Delta_, recycleBlocks_, numBlocks_+1 );
DeltaL2.multiply(Teuchos::NO_TRANS,Teuchos::NO_TRANS,one,Deltatmp,L2tmp,zero);
Teuchos::SerialDenseMatrix<int,ScalarType> AU1TUDeltaL2( Teuchos::View, *AU1TUDeltaL2_, recycleBlocks_, numBlocks_ );
Teuchos::SerialDenseMatrix<int,ScalarType> AU1TUtmp( Teuchos::View, *AU1TU_, recycleBlocks_, recycleBlocks_ );
AU1TUDeltaL2.multiply(Teuchos::NO_TRANS,Teuchos::NO_TRANS,one,AU1TUtmp,DeltaL2,zero);
Teuchos::SerialDenseMatrix<int,ScalarType> Y1( Teuchos::View, *Y_, recycleBlocks_, recycleBlocks_ );
Teuchos::SerialDenseMatrix<int,ScalarType> AU1TAPtmp( Teuchos::View, *AU1TAP_, recycleBlocks_, numBlocks_ );
AU1TAPtmp.putScalar(zero);
AU1TAPtmp.multiply(Teuchos::TRANS,Teuchos::NO_TRANS,one,Y1,AU1TUDeltaL2,zero);
Teuchos::SerialDenseMatrix<int,ScalarType> Y2( Teuchos::View, *Y_, numBlocks_, recycleBlocks_, recycleBlocks_, 0 );
ScalarType val = dold * (-Betatmp(0,0)/Alphatmp(0,0));
for(int ii=0;ii<recycleBlocks_;ii++) {
AU1TAPtmp(ii,0) += Y2(numBlocks_-1,ii)*val;
}
// AU1TU = Y1'*AU1TU
Teuchos::SerialDenseMatrix<int,ScalarType> Y1TAU1TU( Teuchos::View, *GY_, recycleBlocks_, recycleBlocks_ );
Y1TAU1TU.multiply(Teuchos::TRANS,Teuchos::NO_TRANS,one,Y1,AU1TUtmp,zero);
AU1TUtmp.assign(Y1TAU1TU);
// F = [AU1TU1 zeros(k,m); zeros(m,k) diag(D)];
Teuchos::SerialDenseMatrix<int,ScalarType> Ftmp( Teuchos::View, *F_, (numBlocks_+recycleBlocks_), (numBlocks_+recycleBlocks_) );
Teuchos::SerialDenseMatrix<int,ScalarType> F11( Teuchos::View, *F_, recycleBlocks_, recycleBlocks_ );
Teuchos::SerialDenseMatrix<int,ScalarType> F12( Teuchos::View, *F_, recycleBlocks_, numBlocks_, 0, recycleBlocks_ );
Teuchos::SerialDenseMatrix<int,ScalarType> F21( Teuchos::View, *F_, numBlocks_, recycleBlocks_, recycleBlocks_, 0 );
Teuchos::SerialDenseMatrix<int,ScalarType> F22( Teuchos::View, *F_, numBlocks_, numBlocks_, recycleBlocks_, recycleBlocks_ );
Teuchos::SerialDenseMatrix<int,ScalarType> AU1TU1tmp( Teuchos::View, *AU1TU1_, recycleBlocks_, recycleBlocks_ );
F11.assign(AU1TU1tmp);
for(int ii=0;ii<numBlocks_;ii++) {
F22(ii,ii) = Dtmp(ii,0);
}
// G = [AU1TAU1 AU1TAP; AU1TAP' APTAP];
Teuchos::SerialDenseMatrix<int,ScalarType> Gtmp( Teuchos::View, *G_, (numBlocks_+recycleBlocks_), (numBlocks_+recycleBlocks_) );
Teuchos::SerialDenseMatrix<int,ScalarType> G11( Teuchos::View, *G_, recycleBlocks_, recycleBlocks_ );
Teuchos::SerialDenseMatrix<int,ScalarType> G12( Teuchos::View, *G_, recycleBlocks_, numBlocks_, 0, recycleBlocks_ );
Teuchos::SerialDenseMatrix<int,ScalarType> G21( Teuchos::View, *G_, numBlocks_, recycleBlocks_, recycleBlocks_, 0 );
Teuchos::SerialDenseMatrix<int,ScalarType> G22( Teuchos::View, *G_, numBlocks_, numBlocks_, recycleBlocks_, recycleBlocks_ );
Teuchos::SerialDenseMatrix<int,ScalarType> AU1TAU1tmp( Teuchos::View, *AU1TAU1_, recycleBlocks_, recycleBlocks_ );
G11.assign(AU1TAU1tmp);
G12.assign(AU1TAPtmp);
// G21 = G12'; (no transpose operator exists for SerialDenseMatrix; Do copy manually)
for (int ii=0;ii<recycleBlocks_;++ii)
for (int jj=0;jj<numBlocks_;++jj)
G21(jj,ii) = G12(ii,jj);
G22.assign(APTAPtmp);
// compute harmonic Ritz vectors
Teuchos::SerialDenseMatrix<int,ScalarType> Ytmp( Teuchos::View, *Y_, (recycleBlocks_+numBlocks_), recycleBlocks_ );
getHarmonicVecs(Ftmp,Gtmp,Ytmp);
// U1 = [U1 P(:,2:end-1)]*Y;
index.resize( numBlocks_ );
for (int ii=0; ii<numBlocks_; ++ii) { index[ii] = ii+1; }
Teuchos::RCP<const MV> Ptmp = MVT::CloneView( *P_, index );
index.resize( recycleBlocks_ );
for (int ii=0; ii<recycleBlocks_; ++ii) { index[ii] = ii; }
Teuchos::RCP<MV> PY2tmp = MVT::CloneViewNonConst( *PY2_, index );
index.resize( recycleBlocks_ );
for (int ii=0; ii<recycleBlocks_; ++ii) { index[ii] = ii; }
Teuchos::RCP<MV> U1tmp = MVT::CloneViewNonConst( *U1_, index );
index.resize( recycleBlocks_ );
for (int ii=0; ii<recycleBlocks_; ++ii) { index[ii] = ii; }
Teuchos::RCP<MV> U1Y1tmp = MVT::CloneViewNonConst( *U1Y1_, index );
MVT::MvTimesMatAddMv( one, *Ptmp, Y2, zero, *PY2tmp );
MVT::MvTimesMatAddMv( one, *U1tmp, Y1, zero, *U1Y1tmp );
MVT::MvAddMv(one,*U1Y1tmp, one, *PY2tmp, *U1tmp);
// Precompute some variables for next cycle
// AU1TAU1 = Y'*G*Y;
Teuchos::SerialDenseMatrix<int,ScalarType> GYtmp( Teuchos::View, *GY_, (numBlocks_+recycleBlocks_), recycleBlocks_ );
GYtmp.multiply(Teuchos::NO_TRANS,Teuchos::NO_TRANS,one,Gtmp,Ytmp,zero);
AU1TAU1tmp.multiply(Teuchos::TRANS,Teuchos::NO_TRANS,one,Ytmp,GYtmp,zero);
// AU1TU1 = Y'*F*Y;
Teuchos::SerialDenseMatrix<int,ScalarType> FYtmp( Teuchos::View, *FY_, (numBlocks_+recycleBlocks_), recycleBlocks_ );
FYtmp.multiply(Teuchos::NO_TRANS,Teuchos::NO_TRANS,one,Ftmp,Ytmp,zero);
AU1TU1tmp.multiply(Teuchos::TRANS,Teuchos::NO_TRANS,one,Ytmp,FYtmp,zero);
// dold = D(end);
dold = Dtmp(numBlocks_-1,0);
// Indicate the size of the P, Beta structures generated this cycle
lastp = numBlocks_+1;
lastBeta = numBlocks_;
}
}
} // if (recycleBlocks_ > 0)
// Cleanup after end of cycle
// P = P(:,end-1:end);
index.resize( 2 );
index[0] = lastp-1; index[1] = lastp;
Teuchos::RCP<const MV> Ptmp2 = MVT::CloneView( *P_, index );
index[0] = 0; index[1] = 1;
MVT::SetBlock(*Ptmp2,index,*P_);
// Beta = Beta(end);
(*Beta_)(0,0) = (*Beta_)(lastBeta,0);
// Delta = Delta(:,end);
if (existU_) { // Delta only initialized if U exists
Teuchos::SerialDenseMatrix<int,ScalarType> mu1( Teuchos::View, *Delta_, recycleBlocks_, 1, 0, 0 );
Teuchos::SerialDenseMatrix<int,ScalarType> mu2( Teuchos::View, *Delta_, recycleBlocks_, 1, 0, numBlocks_ );
mu1.assign(mu2);
}
// Now reinitialize state variables for next cycle
newstate.P = Teuchos::null;
index.resize( numBlocks_+1 );
for (int ii=0; ii<(numBlocks_+1); ++ii) { index[ii] = ii+1; }
newstate.P = MVT::CloneViewNonConst( *P_, index );
newstate.Beta = Teuchos::null;
newstate.Beta = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( Teuchos::View, *Beta_, numBlocks_, 1, 1, 0 ) );
newstate.Delta = Teuchos::null;
newstate.Delta = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( Teuchos::View, *Delta_, recycleBlocks_, numBlocks_, 0, 1 ) );
newstate.curDim = 1; // We have initialized the first search vector
// Pass to iteration object
rcg_iter->initialize(newstate);
// increment cycle count
cycle = cycle + 1;
}
////////////////////////////////////////////////////////////////////////////////////
//
// we returned from iterate(), but none of our status tests Passed.
// something is wrong, and it is probably our fault.
//
////////////////////////////////////////////////////////////////////////////////////
else {
TEUCHOS_TEST_FOR_EXCEPTION(true,std::logic_error,
"Belos::RCGSolMgr::solve(): Invalid return from RCGIter::iterate().");
}
}
catch (const std::exception &e) {
printer_->stream(Errors) << "Error! Caught std::exception in RCGIter::iterate() at iteration "
<< rcg_iter->getNumIters() << std::endl
<< e.what() << std::endl;
throw;
}
}
// Inform the linear problem that we are finished with this block linear system.
problem_->setCurrLS();
// Update indices for the linear systems to be solved.
numRHS2Solve -= 1;
if ( numRHS2Solve > 0 ) {
currIdx[0]++;
// Set the next indices.
problem_->setLSIndex( currIdx );
}
else {
currIdx.resize( numRHS2Solve );
}
// Update the recycle space for the next linear system
if (existU1_) { // be sure updated recycle space was created
// U = U1
index.resize(recycleBlocks_);
for (int ii=0; ii<recycleBlocks_; ++ii) { index[ii] = ii; }
MVT::SetBlock(*U1_,index,*U_);
// Set flag indicating recycle space is now defined
existU_ = true;
if (numRHS2Solve > 0) { // also update AU, UTAU, and AUTAU
// Free pointers in newstate
newstate.P = Teuchos::null;
newstate.Ap = Teuchos::null;
newstate.r = Teuchos::null;
newstate.z = Teuchos::null;
newstate.U = Teuchos::null;
newstate.AU = Teuchos::null;
newstate.Alpha = Teuchos::null;
newstate.Beta = Teuchos::null;
newstate.D = Teuchos::null;
newstate.Delta = Teuchos::null;
newstate.LUUTAU = Teuchos::null;
newstate.ipiv = Teuchos::null;
newstate.rTz_old = Teuchos::null;
// Reinitialize AU, UTAU, AUTAU
index.resize(recycleBlocks_);
for (int i=0; i<recycleBlocks_; ++i) { index[i] = i; }
Teuchos::RCP<const MV> Utmp = MVT::CloneView( *U_, index );
index.resize(recycleBlocks_);
for (int i=0; i<recycleBlocks_; ++i) { index[i] = i; }
Teuchos::RCP<MV> AUtmp = MVT::CloneViewNonConst( *AU_, index );
// Initialize AU
problem_->applyOp( *Utmp, *AUtmp );
// Initialize UTAU
Teuchos::SerialDenseMatrix<int,ScalarType> UTAUtmp( Teuchos::View, *UTAU_, recycleBlocks_, recycleBlocks_ );
MVT::MvTransMv( one, *Utmp, *AUtmp, UTAUtmp );
// Initialize AUTAU ( AUTAU = AU'*(M\AU) )
Teuchos::SerialDenseMatrix<int,ScalarType> AUTAUtmp( Teuchos::View, *AUTAU_, recycleBlocks_, recycleBlocks_ );
if ( precObj != Teuchos::null ) {
index.resize(recycleBlocks_);
for (int i=0; i<recycleBlocks_; ++i) { index[i] = i; }
index.resize(recycleBlocks_);
for (int ii=0; ii<recycleBlocks_; ++ii) { index[ii] = ii; }
Teuchos::RCP<MV> LeftPCAU = MVT::CloneViewNonConst( *U1_, index ); // use U1 as temp storage
OPT::Apply( *precObj, *AUtmp, *LeftPCAU );
MVT::MvTransMv( one, *AUtmp, *LeftPCAU, AUTAUtmp );
} else {
MVT::MvTransMv( one, *AUtmp, *AUtmp, AUTAUtmp );
}
} // if (numRHS2Solve > 0)
} // if (existU1)
}// while ( numRHS2Solve > 0 )
}
// print final summary
sTest_->print( printer_->stream(FinalSummary) );
// print timing information
#ifdef BELOS_TEUCHOS_TIME_MONITOR
// Calling summarize() can be expensive, so don't call unless the
// user wants to print out timing details. summarize() will do all
// the work even if it's passed a "black hole" output stream.
if (verbosity_ & TimingDetails)
Teuchos::TimeMonitor::summarize( printer_->stream(TimingDetails) );
#endif
// get iteration information for this solve
numIters_ = maxIterTest_->getNumIters();
// Save the convergence test value ("achieved tolerance") for this solve.
{
using Teuchos::rcp_dynamic_cast;
typedef StatusTestGenResNorm<ScalarType,MV,OP> conv_test_type;
// testValues is nonnull and not persistent.
const std::vector<MagnitudeType>* pTestValues =
rcp_dynamic_cast<conv_test_type>(convTest_)->getTestValue();
TEUCHOS_TEST_FOR_EXCEPTION(pTestValues == NULL, std::logic_error,
"Belos::RCGSolMgr::solve(): The convergence test's getTestValue() "
"method returned NULL. Please report this bug to the Belos developers.");
TEUCHOS_TEST_FOR_EXCEPTION(pTestValues->size() < 1, std::logic_error,
"Belos::RCGSolMgr::solve(): The convergence test's getTestValue() "
"method returned a vector of length zero. Please report this bug to the "
"Belos developers.");
// FIXME (mfh 12 Dec 2011) Does pTestValues really contain the
// achieved tolerances for all vectors in the current solve(), or
// just for the vectors from the last deflation?
achievedTol_ = *std::max_element (pTestValues->begin(), pTestValues->end());
}
if (!isConverged) {
return Unconverged; // return from RCGSolMgr::solve()
}
return Converged; // return from RCGSolMgr::solve()
}
// Compute the harmonic eigenpairs of the projected, dense system.
template<class ScalarType, class MV, class OP>
void RCGSolMgr<ScalarType,MV,OP,true>::getHarmonicVecs(const Teuchos::SerialDenseMatrix<int,ScalarType>& F,
const Teuchos::SerialDenseMatrix<int,ScalarType>& G,
Teuchos::SerialDenseMatrix<int,ScalarType>& Y) {
// order of F,G
int n = F.numCols();
// The LAPACK interface
Teuchos::LAPACK<int,ScalarType> lapack;
// Magnitude of harmonic Ritz values
std::vector<MagnitudeType> w(n);
// Sorted order of harmonic Ritz values
std::vector<int> iperm(n);
// Compute k smallest harmonic Ritz pairs
// SUBROUTINE DSYGV( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK, LWORK, INFO )
int itype = 1; // solve A*x = (lambda)*B*x
char jobz='V'; // compute eigenvalues and eigenvectors
char uplo='U'; // since F,G symmetric, reference only their upper triangular data
std::vector<ScalarType> work(1);
int lwork = -1;
int info = 0;
// since SYGV destroys workspace, create copies of F,G
Teuchos::SerialDenseMatrix<int,ScalarType> F2( Teuchos::Copy, *F_ );
Teuchos::SerialDenseMatrix<int,ScalarType> G2( Teuchos::Copy, *G_ );
// query for optimal workspace size
lapack.SYGV(itype, jobz, uplo, n, G2.values(), G2.stride(), F2.values(), F2.stride(), &w[0], &work[0], lwork, &info);
TEUCHOS_TEST_FOR_EXCEPTION(info != 0, RCGSolMgrLAPACKFailure,
"Belos::RCGSolMgr::solve(): LAPACK SYGV failed to query optimal work size.");
lwork = (int)work[0];
work.resize(lwork);
lapack.SYGV(itype, jobz, uplo, n, G2.values(), G2.stride(), F2.values(), F2.stride(), &w[0], &work[0], lwork, &info);
TEUCHOS_TEST_FOR_EXCEPTION(info != 0, RCGSolMgrLAPACKFailure,
"Belos::RCGSolMgr::solve(): LAPACK SYGV failed to compute eigensolutions.");
// Construct magnitude of each harmonic Ritz value
this->sort(w,n,iperm);
// Select recycledBlocks_ smallest eigenvectors
for( int i=0; i<recycleBlocks_; i++ ) {
for( int j=0; j<n; j++ ) {
Y(j,i) = G2(j,iperm[i]);
}
}
}
// This method sorts list of n floating-point numbers and return permutation vector
template<class ScalarType, class MV, class OP>
void RCGSolMgr<ScalarType,MV,OP,true>::sort(std::vector<ScalarType>& dlist, int n, std::vector<int>& iperm)
{
int l, r, j, i, flag;
int RR2;
double dRR, dK;
// Initialize the permutation vector.
for(j=0;j<n;j++)
iperm[j] = j;
if (n <= 1) return;
l = n / 2 + 1;
r = n - 1;
l = l - 1;
dRR = dlist[l - 1];
dK = dlist[l - 1];
RR2 = iperm[l - 1];
while (r != 0) {
j = l;
flag = 1;
while (flag == 1) {
i = j;
j = j + j;
if (j > r + 1)
flag = 0;
else {
if (j < r + 1)
if (dlist[j] > dlist[j - 1]) j = j + 1;
if (dlist[j - 1] > dK) {
dlist[i - 1] = dlist[j - 1];
iperm[i - 1] = iperm[j - 1];
}
else {
flag = 0;
}
}
}
dlist[i - 1] = dRR;
iperm[i - 1] = RR2;
if (l == 1) {
dRR = dlist [r];
RR2 = iperm[r];
dK = dlist[r];
dlist[r] = dlist[0];
iperm[r] = iperm[0];
r = r - 1;
}
else {
l = l - 1;
dRR = dlist[l - 1];
RR2 = iperm[l - 1];
dK = dlist[l - 1];
}
}
dlist[0] = dRR;
iperm[0] = RR2;
}
// This method requires the solver manager to return a std::string that describes itself.
template<class ScalarType, class MV, class OP>
std::string RCGSolMgr<ScalarType,MV,OP,true>::description() const
{
std::ostringstream oss;
oss << "Belos::RCGSolMgr<...,"<<Teuchos::ScalarTraits<ScalarType>::name()<<">";
return oss.str();
}
} // end Belos namespace
#endif /* BELOS_RCG_SOLMGR_HPP */
|