This file is indexed.

/usr/include/trilinos/Epetra_BlockMap.h is in libtrilinos-epetra-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
/*
//@HEADER
// ************************************************************************
//
//               Epetra: Linear Algebra Services Package
//                 Copyright 2011 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
*/

#ifndef EPETRA_BLOCKMAP_H
#define EPETRA_BLOCKMAP_H

#include "Epetra_ConfigDefs.h"
#include "Epetra_Object.h"
#include "Epetra_BlockMapData.h"


//! Epetra_BlockMap: A class for partitioning block element vectors and matrices.

/*! It is often the case that multiple matrix and vector objects have an identical distribution
  of elements on a parallel machine. The Epetra_BlockMap class keeps information that describes
  this distribution for matrices and vectors that have block elements.  The definition of an
  element can vary depending on the situation.  For vectors (and multi-vectors), an element
  is a span of one or more contiguous entries. For matrices, it is a span of one or more matrix rows.
  More generally, an element in the BlockMap class is an ordered list of points. (NOTE:
  Points do not have global ID's.)  Two additional definitions useful in understanding
  the BlockMap class follow:
  <ul>
  <li> BlockMap - A distributed ordered list of elements.
  <li> First Point - First ordered point in an element
  </ul>

  This class has a variety of constructors that can be separated into two categories:
  <ol>
  <li> Fixed element size constructors:
       All map elements have an identical size.
       This corresponds to a block partitioning of matrices and vectors where the element
       size is the same for all elements. A common example is multiple degrees of freedom
       per mesh node in finite element computations where the number of degrees of
       freedom is the same for all nodes.
  <li> Variable element size constructor:
       Map element sizes may vary and are individually defined via a list of element sizes.
       This is the most general case and corresponds to a variable block partitioning of the
       matrices and vectors. A common example is
       multiple degrees of freedom per mesh node in finite element computations where the
       number of degrees of freedom varies.  This happens, for example, if regions have differing
       material types or there are chemical reactions in the simulation.
  </ol>

  Epetra_BlockMap allows the storage and retrieval of the following information.  Depending on the
  constructor that is used, some of the information is defined by the user and some is
  determined by the constructor.  Once an Epetra_BlockMap is constructed any of the following can
  be obtained
  by calling a query function that has the same name as the attribute, e.g. to get the
  value of NumGlobalElements, you can call a function NumGlobalElements().  For attributes that
  are lists, the query functions return the list values in a user allocated array.

  <ul>
  <li> NumGlobalElements - The total number of elements across all processors. If this parameter and
       NumMyElements are both passed in to the constructor, one of the three cases will apply:
       <ol>
       <li> If NumGlobalElements = NumMyElements (and not equal to zero)
            the map is defined to be a local replicated
            map.  In this case, objects constructed using this map will be identically replicated across
      all processors in the communicator.
       <li> If NumGlobalElements = -1 and NumMyElements is passed in then NumGlobalElements will
            be computed as the sum of NumMyElements across all processors.
       <li> If neither of the above is true, NumGlobalElements will be checked against the sum of
            NumMyElements across all processors.  An error is issued if the comparison is not equal.
       </ol>
  <li> NumMyElements - The number of elements owned by the calling processor.
  <li> MyGlobalElements - A list of length NumMyElements that contains the global element IDs
       of the elements owned by the calling processor.
  <li> ElementSize - The size of elements if the size of all elements is the same.
       This will be the case if the query function ConstantElementSize() returns true.
       Otherwise this value will be set to zero.
  <li> ElementSizeList - A list of the element sizes for elements owned by the calling
       processor.  This list is always accessible, even if the element sizes are all one
       or of constant value.  However, in these cases, the ElementSizeList will not be
       generated unless a query for the list is called.
  <li> IndexBase - The base integer value for indexed array references.  Typically this is 0
       for C/C++ and 1 for Fortran, but it can be set to any integer value.
  <li> Comm - The Epetra_Comm communicator.  This communicator can in turn be queried for
       processor rank and size information.
  </ul>


  In addition to the information above that is passed in to or created by the Epetra_BlockMap constructor,
  the following attributes are computed and available via query to the user using the same scheme
  as above, e.g., use NumGlobalPoints() to get the value of NumGlobalPoints.

  <ul>
  <li> NumGlobalPoints - The total number of points across all processors.
  <li> NumMyPoints - The number of points on the calling processor.
  <li> MinAllGID - The minimum global index value across all processors.
  <li> MaxAllGID - The maximum global index value across all processors.
  <li> MinMyGID - The minimum global index value on the calling processor.
  <li> MaxMyGID - The maximum global index value on the calling processor.
  <li> MinLID - The minimum local index value on the calling processor.
  <li> MaxLID - The maximum local index value on the calling processor.
  <li> MinElementSize - The minimum element size across all processors.
  <li> MaxElementSize - The maximum element size across all processors.
  </ul>

  The following functions allow boolean tests for certain properties.

  <ul>
  <li> ConstantElementSize() - Returns true if the element size for this map is the same
       for all elements.
  <li> LinearMap() - Returns true if the elements are distributed linear across processors, i.e.,
       processor 0 gets the first n/p elements, processor 1 gets the next n/p elements, etc. where
       n is the number of elements and p is the number of processors.
  <li> DistributedGlobal() - Returns true if the element space of the map spans more than one processor.
       This will be true in most cases, but will be false on in serial and for objects
       that are created via the derived Epetra_LocalMap class.
  </ul>

  \warning A Epetra_Comm object is required for all Epetra_BlockMap constructors.

  \bf {error handling}

  Most methods in Epetra_BlockMap return an integer error code.  If the error code is 0, then no error occurred.
  If > 0 then a warning error occurred.  If < 0 then a fatal error occurred.

  Epetra_BlockMap constructors will throw an exception of an error occurrs.  These exceptions will alway be negative integer values
  as follows:
  <ol>
  <li> -1  NumGlobalElements < -1.  Should be >= -1 (Should be >= 0 for first BlockMap constructor).
  <li> -2  NumMyElements < 0.  Should be >= 0.
  <li> -3  ElementSize <= 0. Should be > 0.
  <li> -4  Invalid NumGlobalElements.  Should equal sum of MyGlobalElements, or set to -1 to compute automatically.
  <li> -5  Minimum global element index is less than index base.
  <li> -99 Internal Epetra_BlockMap error.  Contact developer.
  </ol>

  For robust code, Epetra_BlockMap constructor calls should be caught using the try {...} catch {...} mechanism.  For example:

\verbatim
  try {

    Epetra_BlockMap * map = new Epetra_BlockMap(NumGlobalElements, ElementSize, IndexBase, Comm);
  }
  catch (int Error) {
    if (Error==-1) { // handle error }
    if (Error==-2) ...
\endverbatim


  \note
    {
    In the current implementation, Epetra_BlockMap is the base class for:
    <ul>
    <li> Epetra_Map.
    <li> Epetra_LocalBlockMap.
    </ul>
    }

*/

class EPETRA_LIB_DLL_EXPORT Epetra_BlockMap: public Epetra_Object {
  friend class Epetra_Directory;
  friend class Epetra_LocalMap;
 public:
  //! @name Constructors/destructors
  //@{
  //! Epetra_BlockMap constructor for a Epetra-defined uniform linear distribution of constant size elements.
  /*! Creates a map that distributes NumGlobalElements elements evenly across all processors in the
      Epetra_Comm communicator. If NumGlobalElements does not divide exactly into the number of processors,
      the first processors in the communicator get one extra element until the remainder is gone.

      The elements are defined to have a constant fixed size specified by ElementSize.

    \param In
            NumGlobalElements - Number of elements to distribute.

    \param In
            ElementSize - Number of points or vector entries per element.

    \param In
            IndexBase - Minimum index value used for arrays that use this map.  Typically 0 for
      C/C++ and 1 for Fortran.

    \param In
            Comm - Epetra_Comm communicator containing information on the number of
      processors.

    \return Pointer to a Epetra_BlockMap object.

  */
#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
  Epetra_BlockMap(int NumGlobalElements, int ElementSize, int IndexBase, const Epetra_Comm& Comm);
#endif
#ifndef EPETRA_NO_64BIT_GLOBAL_INDICES
  Epetra_BlockMap(long long NumGlobalElements, int ElementSize, int IndexBase, const Epetra_Comm& Comm);
  Epetra_BlockMap(long long NumGlobalElements, int ElementSize, long long IndexBase, const Epetra_Comm& Comm);
#endif

  //! Epetra_BlockMap constructor for a user-defined linear distribution of constant size elements.
  /*! Creates a map that puts NumMyElements on the calling processor.  If
      NumGlobalElements=-1, the number of global elements will be
      the computed sum of NumMyElements across all processors in the
      Epetra_Comm communicator.

      The elements are defined to have a constant fixed size specified by ElementSize.

    \param In
            NumGlobalElements - Number of elements to distribute.  Must be
     either -1 or equal to the computed sum of NumMyElements across all
     processors in the Epetra_Comm communicator.

    \param In
            NumMyElements - Number of elements owned by the calling processor.

    \param In
            ElementSize - Number of points or vector entries per element.

    \param In
            IndexBase - Minimum index value used for arrays that use this map.  Typically 0 for
      C/C++ and 1 for Fortran.

    \param In
            Comm - Epetra_Comm communicator containing information on the number of
      processors.

    \return Pointer to a Epetra_BlockMap object.

  */
#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
  Epetra_BlockMap(int NumGlobalElements, int NumMyElements,
     int ElementSize, int IndexBase, const Epetra_Comm& Comm);
#endif
#ifndef EPETRA_NO_64BIT_GLOBAL_INDICES
  Epetra_BlockMap(long long NumGlobalElements, int NumMyElements,
    int ElementSize, int IndexBase, const Epetra_Comm& Comm);
  Epetra_BlockMap(long long NumGlobalElements, int NumMyElements,
    int ElementSize, long long IndexBase, const Epetra_Comm& Comm);
#endif

  //! Epetra_BlockMap constructor for a user-defined arbitrary distribution of constant size elements.
  /*! Creates a map that puts NumMyElements on the calling processor. The indices of the elements
      are determined from the list MyGlobalElements.  If NumGlobalElements=-1,
      the number of global elements will be the computed sum of NumMyElements
      across all processors in the Epetra_Comm communicator.

      The elements are defined to have a constant fixed size specified by ElementSize.

    \param In
            NumGlobalElements - Number of elements to distribute.  Must be
     either -1 or equal to the computed sum of NumMyElements across all
     processors in the Epetra_Comm communicator.

    \param In
            NumMyElements - Number of elements owned by the calling processor.

    \param In
            MyGlobalElements - Integer array of length NumMyElements.  The ith entry contains the
      global index value of the ith element on this processor.  Index values are not required to
      be contiguous on a processor, or to be within the range of 0 to NumGlobalElements.  As
      long as the index values are consistently defined and used, any set of NumGlobalElements
      distinct integer values is acceptable.

    \param In
            ElementSize - Number of points or vector entries per element.

    \param In
            IndexBase - Minimum index value used for arrays that use this map.  Typically 0 for
      C/C++ and 1 for Fortran.

    \param In
            Comm - Epetra_Comm communicator containing information on the number of
      processors.

    \return Pointer to a Epetra_BlockMap object.

  */
#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
  Epetra_BlockMap(int NumGlobalElements, int NumMyElements,
                  const int *MyGlobalElements,
       int ElementSize, int IndexBase, const Epetra_Comm& Comm);
#endif
#ifndef EPETRA_NO_64BIT_GLOBAL_INDICES
  Epetra_BlockMap(long long NumGlobalElements, int NumMyElements,
                  const long long *MyGlobalElements,
      int ElementSize, int IndexBase, const Epetra_Comm& Comm);
  Epetra_BlockMap(long long NumGlobalElements, int NumMyElements,
                  const long long *MyGlobalElements,
      int ElementSize, long long IndexBase, const Epetra_Comm& Comm);
#endif

  //! Epetra_BlockMap constructor for a user-defined arbitrary distribution of variable size elements.
  /*! Creates a map that puts NumMyElements on the calling processor. If
     NumGlobalElements=-1, the number of global elements will be
     the computed sum of NumMyElements across all processors in the
     Epetra_Comm communicator.

      The elements are defined to have a variable size defined by ElementSizeList.

    \param In
            NumGlobalElements - Number of elements to distribute.  Must be
     either -1 or equal to the computed sum of NumMyElements across all
     processors in the Epetra_Comm communicator.

    \param In
            NumMyElements - Number of elements owned by the calling processor.

    \param In
            MyGlobalElements - Integer array of length NumMyElements.  The ith entry contains the
      global index value of the ith element on this processor.  Index values are not required to
      be contiguous on a processor, or to be within the range of 0 to NumGlobalElements.  As
      long as the index values are consistently defined and used, any set of NumGlobalElements
      distinct integer values is acceptable.

    \param In
            ElementSizeList - A list of the element sizes for elements owned by the calling
      processor. The ith entry contains the element size of the ith element on this processor.

    \param In
            IndexBase - Minimum index value used for arrays that use this map.  Typically 0 for
      C/C++ and 1 for Fortran.

    \param In
            Comm - Epetra_Comm communicator containing information on the number of
      processors.

    \return Pointer to a Epetra_BlockMap object.

  */
#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
  Epetra_BlockMap(int NumGlobalElements, int NumMyElements,
                  const int *MyGlobalElements,
      const int *ElementSizeList, int IndexBase,
                  const Epetra_Comm& Comm);
#endif
#ifndef EPETRA_NO_64BIT_GLOBAL_INDICES
  Epetra_BlockMap(long long NumGlobalElements, int NumMyElements,
                  const long long *MyGlobalElements,
      const int *ElementSizeList, int IndexBase,
                  const Epetra_Comm& Comm);
  Epetra_BlockMap(long long NumGlobalElements, int NumMyElements,
                  const long long *MyGlobalElements,
      const int *ElementSizeList, long long IndexBase,
                  const Epetra_Comm& Comm);
#endif

#if defined(EPETRA_NO_32BIT_GLOBAL_INDICES) && defined(EPETRA_NO_64BIT_GLOBAL_INDICES)
  // default implementation so that no compiler/linker error in case neither 32 nor 64
  // bit indices present.
  Epetra_BlockMap() {}
#endif
  //! Epetra_BlockMap constructor for a user-defined arbitrary distribution of constant size elements, where the user provides all the globals.
  /*! \warning This method is intended for expert developer use only, and should never be called by user code.
   */
#ifndef EPETRA_NO_64BIT_GLOBAL_INDICES
  Epetra_BlockMap(long long NumGlobal_Elements, int NumMy_Elements,
                  const long long * myGlobalElements,
                  int ElementSize, int indexBase,
                  const Epetra_Comm& comm,
                  bool UserIsDistributedGlobal,
                  long long UserMinAllGID, long long UserMaxAllGID);
  Epetra_BlockMap(long long NumGlobal_Elements, int NumMy_Elements,
                  const long long * myGlobalElements,
                  int ElementSize, long long indexBase,
                  const Epetra_Comm& comm,
                  bool UserIsDistributedGlobal,
                  long long UserMinAllGID, long long UserMaxAllGID);
#endif

#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
  Epetra_BlockMap(int NumGlobal_Elements, int NumMy_Elements,
                 const int * myGlobalElements,
                 int ElementSize, int indexBase,
                 const Epetra_Comm& comm,
                 bool UserIsDistributedGlobal,
                 int UserMinAllGID, int UserMaxAllGID);
#endif


  //! Epetra_BlockMap copy constructor.
  Epetra_BlockMap(const Epetra_BlockMap& map);

  //! Epetra_BlockMap destructor.
  virtual ~Epetra_BlockMap(void);
  //@}

  //! @name Local/Global ID accessor methods
  //@{
  //! Returns the processor IDs and corresponding local index value for a given list of global indices
  /*! For each element (GID) of a given list of global element numbers (stored in GIDList) of length NumIDs,
      this function returns (in PIDList) the ID (rank) of the processor that owns the GID for this map and returns the
      local index (in LIDList) of the GID on that processor.

      If a GID is present on more than one processor, the lowest rank processor ID is used, as is the LID for that processor.
      If a GID is not present on any processor, the corresponding PID will return as -1.
  */
#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
  int RemoteIDList(int NumIDs, const int * GIDList, int * PIDList, int * LIDList) const {
    return(RemoteIDList(NumIDs, GIDList, PIDList, LIDList, 0));
  };
#endif
#ifndef EPETRA_NO_64BIT_GLOBAL_INDICES
  int RemoteIDList(int NumIDs, const long long * GIDList, int * PIDList, int * LIDList) const {
    return(RemoteIDList(NumIDs, GIDList, PIDList, LIDList, 0));
  };
#endif

  //! Returns the processor IDs, corresponding local index value, and element size for a given list of global indices
  /*! For each element (GID) of a given a list of global element numbers (stored in GIDList) of length NumIDs,
      this function returns (in PIDList) the with processor that owns the GID for this map and returns the
      local index (in LIDList) of the GID on that processor.  Finally it returns the element sizes in
      SizeList.
  */
#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
  int RemoteIDList(int NumIDs, const int * GIDList, int * PIDList, int * LIDList, int * SizeList) const;
#endif
#ifndef EPETRA_NO_64BIT_GLOBAL_INDICES
  int RemoteIDList(int NumIDs, const long long * GIDList, int * PIDList, int * LIDList, int * SizeList) const;
#endif

  //! Returns local ID of global ID, return -1 if not found on this processor.
#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
  int  LID(int GID) const;
#endif
#ifndef EPETRA_NO_64BIT_GLOBAL_INDICES
  int  LID(long long GID) const;
#endif

#if defined(EPETRA_NO_32BIT_GLOBAL_INDICES) && defined(EPETRA_NO_64BIT_GLOBAL_INDICES)
  // default implementation so that no compiler/linker error in case neither 32 nor 64
  // bit indices present.
  int  LID(long long GID) const { return -1; }
  bool MyGID(long long GID_in) const { return false; }
#endif

  //! Returns global ID of local ID, return IndexBase-1 if not found on this processor.
#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
  int  GID(int LID) const;
#endif
  long long  GID64(int LID) const;

  //! Returns the LID of the element that contains the given local PointID, and the Offset of the point in that element.
  int FindLocalElementID(int PointID, int & ElementID, int & ElementOffset)  const;

  //! Returns true if the GID passed in belongs to the calling processor in this map, otherwise returns false.
#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
  bool  MyGID(int GID_in) const {return(LID(GID_in)!=-1);};
#endif
#ifndef EPETRA_NO_64BIT_GLOBAL_INDICES
  bool  MyGID(long long GID_in) const {return(LID(GID_in)!=-1);};
#endif

  //! Returns true if the LID passed in belongs to the calling processor in this map, otherwise returns false.
  // bool  MyLID(int LID_in) const {return(GID64(LID_in)!=BlockMapData_->IndexBase_-1);};
  bool MyLID(int lid) const {
    if ((BlockMapData_->NumMyElements_ == 0) ||
        (lid < BlockMapData_->MinLID_) || (lid > BlockMapData_->MaxLID_)) {
      return false;
    }
    return true;
  }

  //!Returns the minimum global ID across the entire map.
#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
  int  MinAllGID() const {
    if(GlobalIndicesInt())
      return (int) MinAllGID64();
    throw "Epetra_BlockMap::MinAllGID: GlobalIndices not int.";
  }
#endif
  long long  MinAllGID64() const {return(BlockMapData_->MinAllGID_);};

  //! Returns the maximum global ID across the entire map.
#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
  int  MaxAllGID() const {
    if(GlobalIndicesInt())
      return (int) MaxAllGID64();
    throw "Epetra_BlockMap::MaxAllGID: GlobalIndices not int.";
  }
#endif
  long long  MaxAllGID64() const {return(BlockMapData_->MaxAllGID_);};

  //! Returns the minimum global ID owned by this processor.
#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
  int  MinMyGID() const {
    if(GlobalIndicesInt())
      return (int) MinMyGID64();
    throw "Epetra_BlockMap::MinMyGID: GlobalIndices not int.";
  }
#endif
  long long  MinMyGID64() const {return(BlockMapData_->MinMyGID_);};

  //! Returns the maximum global ID owned by this processor.
#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
  int  MaxMyGID() const {
    if(GlobalIndicesInt())
      return (int) MaxMyGID64();
    throw "Epetra_BlockMap::MaxMyGID: GlobalIndices not int.";
  }
#endif
  long long  MaxMyGID64() const {return(BlockMapData_->MaxMyGID_);};

  //!  The minimum local index value on the calling processor.
  int  MinLID() const {return(BlockMapData_->MinLID_);};

  //! The maximum local index value on the calling processor.
  int  MaxLID() const {return(BlockMapData_->MaxLID_);};
  //@}

  //! @name Size and dimension accessor functions
  //@{
  //! Number of elements across all processors.
#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
  int  NumGlobalElements() const {
    if(GlobalIndicesInt())
      return (int) NumGlobalElements64();
    throw "Epetra_BlockMap::NumGlobalElements: GlobalIndices not int.";
  }
#endif
  long long  NumGlobalElements64() const {return(BlockMapData_->NumGlobalElements_);};

  //! Number of elements on the calling processor.
  int  NumMyElements() const {return(BlockMapData_->NumMyElements_);};

  //! Puts list of global elements on this processor into the user-provided array.
#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
  int MyGlobalElements(int * MyGlobalElementList) const;
#endif
#ifndef EPETRA_NO_64BIT_GLOBAL_INDICES
  int MyGlobalElements(long long * MyGlobalElementList) const;
#endif

#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
  int MyGlobalElementsPtr(int *& MyGlobalElementList) const;
#endif
#ifndef EPETRA_NO_64BIT_GLOBAL_INDICES
  int MyGlobalElementsPtr(long long *& MyGlobalElementList) const;
#endif

  //! Returns the size of elements in the map; only valid if map has constant element size.
  int  ElementSize() const {return(BlockMapData_->ElementSize_);};

  //! Size of element for specified LID.
  int  ElementSize(int LID) const;

  //! Returns the requested entry in the FirstPointInElementList; see FirstPointInElementList() for details.
  /*! This function provides similar functionality to FirstPointInElementList(), but for simple maps may avoid
      the explicit construction of the FirstPointInElementList array.  Returns -1 if LID is out-of-range.
  */
  int  FirstPointInElement(int LID) const;

#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
  //! Index base for this map.
  int  IndexBase() const {
    if(GlobalIndicesInt() || IndexBase64() == (long long) static_cast<int>(IndexBase64()))
      return (int) IndexBase64();
    throw "Epetra_BlockMap::IndexBase: GlobalIndices not int and IndexBase cannot fit an int.";
  }
#endif
  long long  IndexBase64() const {return(BlockMapData_->IndexBase_);};

  //! Number of global points for this map; equals the sum of all element sizes across all processors.
#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
  int  NumGlobalPoints() const {
    if(GlobalIndicesInt())
      return (int) NumGlobalPoints64();
    throw "Epetra_BlockMap::NumGlobalPoints: GlobalIndices not int.";
  }
#endif
  long long  NumGlobalPoints64() const {return(BlockMapData_->NumGlobalPoints_);};

  //! Number of local points for this map; equals the sum of all element sizes on the calling processor.
  int  NumMyPoints() const {return(BlockMapData_->NumMyPoints_);};

  //! Minimum element size on the calling processor.
  int  MinMyElementSize() const {return(BlockMapData_->MinMyElementSize_);};

  //! Maximum element size on the calling processor.
  int  MaxMyElementSize() const {return(BlockMapData_->MaxMyElementSize_);};

  //! Minimum element size across all processors.
  int  MinElementSize() const {return(BlockMapData_->MinElementSize_);};

  //! Maximum element size across all processors.
  int  MaxElementSize() const {return(BlockMapData_->MaxElementSize_);};
  //@}

  //! @name Miscellaneous boolean tests
  //@{
  //! Returns true if map GIDs are 1-to-1.
  /*! Certain operations involving Epetra_BlockMap and Epetra_Map objects are well-defined only if
      the map GIDs are uniquely present in the map.  In other words, if a GID occurs in the map, it occurs
      only once on a single processor and nowhere else.  This boolean test returns true if this property
      is true, otherwise it returns false.
  */
  bool  UniqueGIDs() const {return(IsOneToOne());};

/*
*******************************************************************************
  Ideally GlobalIndicesInt and GlobalIndicesLongLong should be within the
  preprocessor macros and any code using them should also be within the
  corresponding macro.  However, when initially moving to 64-bit we did not
  have macros and all the code is written using run-time checks.  In future,
  the code can be converted to follow the macro system.  Hence this comment.
  -- Chetan Jhurani

  Future code:

#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
  //! Returns true if map create with int NumGlobalElements
  bool  GlobalIndicesInt()      const { return BlockMapData_->GlobalIndicesInt_; }
#endif
#ifndef EPETRA_NO_64BIT_GLOBAL_INDICES
  //! Returns true if map create with long long NumGlobalElements
  bool  GlobalIndicesLongLong() const { return BlockMapData_->GlobalIndicesLongLong_; }
#endif
*******************************************************************************
*/

  //! Returns true if map create with int NumGlobalElements
  bool  GlobalIndicesInt()      const { return BlockMapData_->GlobalIndicesInt_; }
  //! Returns true if map create with long long NumGlobalElements
  bool  GlobalIndicesLongLong() const { return BlockMapData_->GlobalIndicesLongLong_; }

  template<typename int_type>
  bool GlobalIndicesIsType() const;

  bool GlobalIndicesTypeValid() const { return BlockMapData_->GlobalIndicesInt_ || BlockMapData_->GlobalIndicesLongLong_; }

  bool GlobalIndicesTypeMatch(const Epetra_BlockMap& other) const
  {
    return
#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
      GlobalIndicesInt() == other.GlobalIndicesInt() &&
#endif
#ifndef EPETRA_NO_64BIT_GLOBAL_INDICES
      GlobalIndicesLongLong() == other.GlobalIndicesLongLong() &&
#endif
      true;
  }

  //! Returns true if map has constant element size.
  bool  ConstantElementSize() const {return(BlockMapData_->ConstantElementSize_);};

  //! Returns true if \e this and Map are identical maps
  bool SameAs(const Epetra_BlockMap & Map) const;

  //! Returns true if \e this and Map have identical point-wise structure
  /*! If both maps have the same number of global points and the same point
    distribution across processors then this method returns true.
  */
  bool PointSameAs(const Epetra_BlockMap & Map) const;

  //! Returns true if the global ID space is contiguously divided (but not necessarily uniformly) across all processors.
  bool  LinearMap() const {return(BlockMapData_->LinearMap_);};

  //! Returns true if map is defined across more than one processor.
  bool  DistributedGlobal() const {return(BlockMapData_->DistributedGlobal_);};
  //@}

  //! @name Array accessor functions
  //@{

  //! Pointer to internal array containing list of global IDs assigned to the calling processor.
#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
  int * MyGlobalElements() const;
#endif
#ifndef EPETRA_NO_64BIT_GLOBAL_INDICES
  long long * MyGlobalElements64() const;
#endif

  // Helper function to avoid scattering ifdef in other code.
  void MyGlobalElements(const int*& IntGIDs, const long long*& LLGIDs) const {
#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
    if(GlobalIndicesInt()) {
      IntGIDs = MyGlobalElements();
      return;
    }
#endif
#ifndef EPETRA_NO_64BIT_GLOBAL_INDICES
    if(GlobalIndicesLongLong()) {
      LLGIDs = MyGlobalElements64();
      return;
    }
#endif
  }

  // Helper function to avoid scattering ifdef in other code.
  void MyGlobalElements(int*& IntGIDs, long long*& LLGIDs) {
#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
    if(GlobalIndicesInt()) {
      IntGIDs = MyGlobalElements();
      return;
    }
#endif
#ifndef EPETRA_NO_64BIT_GLOBAL_INDICES
    if(GlobalIndicesLongLong()) {
      LLGIDs = MyGlobalElements64();
      return;
    }
#endif
  }

  //! Pointer to internal array containing a mapping between the local elements and the first local point number in each element.
  /*! This array is a scan sum of the ElementSizeList such that the ith entry in FirstPointInElementList is the sum of the first
      i-1 entries of ElementSizeList().
  */
  int * FirstPointInElementList() const;

  //! List of the element sizes corresponding to the array MyGlobalElements().
  int * ElementSizeList() const;

  //! For each local point, indicates the local element ID that the point belongs to.
  int * PointToElementList() const;

  //! Same as ElementSizeList() except it fills the user array that is passed in.
  int ElementSizeList(int * ElementSizeList)const;

  //! Same as FirstPointInElementList() except it fills the user array that is passed in.
  int FirstPointInElementList(int * FirstPointInElementList)const;

  //! Same as PointToElementList() except it fills the user array that is passed in.
  int PointToElementList(int * PointToElementList) const;

  //@}

  //! @name Miscellaneous
  //@{

  //! Print object to an output stream
  virtual void Print(std::ostream & os) const;

  //! Access function for Epetra_Comm communicator.
  const Epetra_Comm & Comm() const {return(*BlockMapData_->Comm_);}

  bool IsOneToOne() const;

  //! Assignment Operator
  Epetra_BlockMap & operator=(const Epetra_BlockMap & map);

  //@}

  //! @name Expert Users and Developers Only
  //@{

  //! Returns the reference count of BlockMapData.
  /*! (Intended for testing purposes.) */
  int ReferenceCount() const {return(BlockMapData_->ReferenceCount());}

  //! Returns a pointer to the BlockMapData instance this BlockMap uses.
  /*! (Intended for developer use only for testing purposes.) */
  const Epetra_BlockMapData * DataPtr() const {return(BlockMapData_);}

  /// \brief Return a new BlockMap with processes with zero elements removed.
  ///
  /// \warning This method is only for expert users.  Understanding
  ///   how to use this method correctly requires some familiarity
  ///   with semantics of MPI communicators.
  ///
  /// \warning We make no promises of backwards compatibility for
  ///   this method.  It may go away or change at any time.
  ///
  /// This method first computes a new communicator, which contains
  /// only those processes in this Map's communicator (the "original
  /// communicator") that have a nonzero number of elements in this
  /// BlockMap (the "original BlockMap").  It then returns a new BlockMap
  /// distributed over the new communicator.  The new BlockMap represents
  /// the same distribution as the original BlockMap, except that
  /// processes containing zero elements are not included in the new
  /// BlockMap or its communicator.  On processes not included in the new
  /// BlockMap or communicator, this method returns NULL.
  ///
  /// The returned BlockMap always has a distinct communicator from this
  /// BlockMap's original communicator.  The new communicator contains a
  /// subset of processes from the original communicator.  Even if
  /// the number of processes in the new communicator equals the
  /// number of processes in the original communicator, the new
  /// communicator is distinct.  (In an MPI implementation, the new
  /// communicator is created using MPI_Comm_split.)
  ///
  /// This method must be called collectively on the original
  /// communicator.  It leaves the original Map and communicator
  /// unchanged.
  ///
  /// This method was intended for applications such as algebraic
  /// multigrid or other multilevel preconditioners.  Construction
  /// of each level of the multilevel preconditioner typically
  /// requires constructing sparse matrices, which in turn requires
  /// all-reduces over all participating processes at that level.
  /// Matrix sizes at successively coarser levels shrink
  /// geometrically.  At the coarsest levels, some processes might
  /// be left with zero rows of the matrix, or the multigrid
  /// implementation might "rebalance" (redistribute the matrix) and
  /// intentionally leave some processes with zero rows.  Removing
  /// processes with zero rows makes the all-reduces and other
  /// communication operations cheaper.
  Epetra_BlockMap * RemoveEmptyProcesses() const;

  /// \brief Replace this BlockMap's communicator with a subset communicator.
  ///
  /// \warning This method is only for expert users.  Understanding
  ///   how to use this method correctly requires some familiarity
  ///   with semantics of MPI communicators.
  ///
  /// \warning We make no promises of backwards compatibility for
  ///   this method.  It may go away or change at any time.
  ///
  /// \pre The input communicator's processes are a subset of this
  ///   BlockMap's current communicator's processes.
  /// \pre On processes which are not included in the input
  ///   communicator, the input communicator is null.
  ///
  /// This method must be called collectively on the original
  /// communicator.  It leaves the original BlockMap and communicator
  /// unchanged.
  ///
  /// \note This method differs from removeEmptyProcesses(), in that
  ///   it does not assume that excluded processes have zero
  ///   entries.  For example, one might wish to remove empty
  ///   processes from the row BlockMap of a CrsGraph using
  ///   removeEmptyProcesses(), and then apply the resulting subset
  ///   communicator to the column, domain, and range Maps of the
  ///   same graph.  For the latter three Maps, one would in general
  ///   use this method instead of removeEmptyProcesses(), giving
  ///   the new row BlockMap's communicator to this method.
  Epetra_BlockMap* ReplaceCommWithSubset(const Epetra_Comm * Comm) const;

  //@}

 private: // These need to be accessible to derived map classes.

  void GlobalToLocalSetup();
  bool DetermineIsOneToOne() const;
  bool IsDistributedGlobal(long long NumGlobalElements, int NumMyElements) const;
  void CheckValidNGE(long long NumGlobalElements);
  void EndOfConstructorOps();

 protected:
  void CleanupData();

  Epetra_BlockMapData * BlockMapData_;

private:


  void ConstructAutoUniform(long long NumGlobal_Elements, int Element_Size,
      long long Index_Base, const Epetra_Comm& comm, bool IsLongLong);

  void ConstructUserLinear(long long NumGlobal_Elements, int NumMy_Elements,
      int Element_Size, long long Index_Base, const Epetra_Comm& comm, bool IsLongLong);

  template<typename int_type>
  void ConstructUserConstant(int_type NumGlobal_Elements, int NumMy_Elements,
      const int_type * myGlobalElements,
      int Element_Size, int_type indexBase,
      const Epetra_Comm& comm, bool IsLongLong);

  template<typename int_type>
  void ConstructUserVariable(int_type NumGlobal_Elements, int NumMy_Elements,
      const int_type * myGlobalElements,
      const int *elementSizeList, int_type indexBase,
      const Epetra_Comm& comm, bool IsLongLong);

  template<typename int_type>
  void ConstructUserConstantNoComm(int_type NumGlobal_Elements, int NumMy_Elements,
      const int_type * myGlobalElements,
      int ElementSize, int_type indexBase,
      const Epetra_Comm& comm, bool IsLongLong,
      bool UserIsDistributedGlobal,
      int_type UserMinAllGID, int_type UserMaxAllGID);

  template<typename int_type>
  int_type& MyGlobalElementVal(int i);

  template<typename int_type>
  int_type MyGlobalElementValGet(int i);

  template<typename int_type>
  int SizeMyGlobalElement(int n);

  template<typename int_type>
  void TGlobalToLocalSetup();
};

#ifndef EPETRA_NO_64BIT_GLOBAL_INDICES
template<> inline bool       Epetra_BlockMap::GlobalIndicesIsType<long long>() const { return BlockMapData_->GlobalIndicesLongLong_; }
template<> inline long long& Epetra_BlockMap::MyGlobalElementVal<long long>(int i) { return BlockMapData_->MyGlobalElements_LL_[i]; }
template<> inline long long  Epetra_BlockMap::MyGlobalElementValGet<long long>(int i) { return BlockMapData_->MyGlobalElements_LL_[i]; }
template<> inline int        Epetra_BlockMap::SizeMyGlobalElement<long long>(int n) { return BlockMapData_->MyGlobalElements_LL_.Size(n); }
#endif

#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
template<> inline bool Epetra_BlockMap::GlobalIndicesIsType<int>()       const { return BlockMapData_->GlobalIndicesInt_; }
template<> inline int& Epetra_BlockMap::MyGlobalElementVal<int>      (int i) { return BlockMapData_->MyGlobalElements_int_[i]; }
template<> inline int  Epetra_BlockMap::MyGlobalElementValGet<int>      (int i) { return BlockMapData_->MyGlobalElements_int_[i]; }
template<> inline int  Epetra_BlockMap::SizeMyGlobalElement<int>      (int n) { return BlockMapData_->MyGlobalElements_int_.Size(n); }
#endif

#endif /* EPETRA_BLOCKMAP_H */