This file is indexed.

/usr/include/trilinos/Intrepid_AdaptiveSparseGridDef.hpp is in libtrilinos-intrepid-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
// @HEADER
// ************************************************************************
//
//                           Intrepid Package
//                 Copyright (2007) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Pavel Bochev  (pbboche@sandia.gov)
//                    Denis Ridzal  (dridzal@sandia.gov), or
//                    Kara Peterson (kjpeter@sandia.gov)
//
// ************************************************************************
// @HEADER

/** \file   Intrepid_AdaptiveSparseGridDef.hpp
    \brief  Definition file for the Intrepid::AdaptiveSparseGrid class.
    \author Created by D. Kouri and D. Ridzal.
*/

namespace Intrepid {

template<class Scalar, class UserVector>
bool AdaptiveSparseGrid<Scalar,UserVector>::isAdmissible(
               std::vector<int> index, 
	       int direction, 
	       std::set<std::vector<int> > inOldIndex,
	       AdaptiveSparseGridInterface<Scalar,UserVector> & problem_data) {
  /*
    Check if inOldIndex remains admissible if index is added, i.e.
       index-ek in inOldIndex for all k=1,...,dim.
  */
  int dimension = problem_data.getDimension();
  for (int i=0; i<dimension; i++) {
    if (index[i]>1 && i!=direction) {
      index[i]--;
      if (!inOldIndex.count(index)) {
	return false;
      }
      index[i]++;
    }
  }
  return true;
}

template<class Scalar, class UserVector>
void AdaptiveSparseGrid<Scalar,UserVector>::build_diffRule(
	       CubatureTensorSorted<Scalar> & outRule, 
	       std::vector<int> index,
	       AdaptiveSparseGridInterface<Scalar,UserVector> & problem_data) {
	       
  int numPoints     = 0;
  int dimension     = problem_data.getDimension();
  bool isNormalized = problem_data.isNormalized();
  std::vector<EIntrepidBurkardt> rule1D; problem_data.getRule(rule1D);
  std::vector<EIntrepidGrowth> growth1D; problem_data.getGrowth(growth1D);

  for (int i=0; i<dimension; i++) {
    // Compute 1D rules
    numPoints = growthRule1D(index[i],growth1D[i],rule1D[i]);
    CubatureLineSorted<Scalar> diffRule1(rule1D[i],numPoints,isNormalized);
 
    if (numPoints!=1) { // Compute differential rule
      numPoints = growthRule1D(index[i]-1,growth1D[i],rule1D[i]);
      CubatureLineSorted<Scalar> rule1(rule1D[i],numPoints,isNormalized);
      diffRule1.update(-1.0,rule1,1.0);
    }
    // Build Tensor Rule
    outRule = kron_prod<Scalar>(outRule,diffRule1); 
  }
}

template<class Scalar, class UserVector>
void AdaptiveSparseGrid<Scalar,UserVector>::build_diffRule(
	       CubatureTensorSorted<Scalar> & outRule, 
	       std::vector<int> index, int dimension,
	       std::vector<EIntrepidBurkardt> rule1D, 
	       std::vector<EIntrepidGrowth> growth1D,
	       bool isNormalized) {
	       
  int numPoints = 0;
  for (int i=0; i<dimension; i++) {
    // Compute 1D rules
    numPoints = growthRule1D(index[i],growth1D[i],rule1D[i]);
    CubatureLineSorted<Scalar> diffRule1(rule1D[i],numPoints,isNormalized);
 
    if (numPoints!=1) { // Differential Rule
      numPoints = growthRule1D(index[i]-1,growth1D[i],rule1D[i]);
      CubatureLineSorted<Scalar> rule1(rule1D[i],numPoints,isNormalized);
      diffRule1.update(-1.0,rule1,1.0);
    }
    // Build Tensor Rule
    outRule = kron_prod<Scalar>(outRule,diffRule1); 
  }
}
 
// Update Index Set - no knowledge of active or old indices
template<class Scalar, class UserVector>
Scalar AdaptiveSparseGrid<Scalar,UserVector>::refine_grid(
   	         typename std::multimap<Scalar,std::vector<int> >  & indexSet, 
		 UserVector & integralValue,
		 AdaptiveSparseGridInterface<Scalar,UserVector> & problem_data) {
  
  int dimension = problem_data.getDimension();
  std::vector<EIntrepidBurkardt> rule1D; problem_data.getRule(rule1D);
  std::vector<EIntrepidGrowth> growth1D; problem_data.getGrowth(growth1D);
  
  // Copy Multimap into a Set for ease of use
  typename std::multimap<Scalar,std::vector<int> >::iterator it;
  std::set<std::vector<int> > oldSet;
  std::set<std::vector<int> >::iterator it1(oldSet.begin());
  for (it=indexSet.begin(); it!=indexSet.end(); it++) {
    oldSet.insert(it1,it->second);
    it1++;
  }
  indexSet.clear();
  
  // Find Possible Active Points
  int flag = 1;
  std::vector<int> index(dimension,0);
  typename std::multimap<Scalar,std::vector<int> > activeSet;
  for (it1=oldSet.begin(); it1!=oldSet.end(); it1++) {
    index = *it1;
    for (int i=0; i<dimension; i++) {
      index[i]++;
      flag = (int)(!oldSet.count(index));
      index[i]--;
      if (flag) {
	activeSet.insert(std::pair<Scalar,std::vector<int> >(1.0,index));
	oldSet.erase(it1);
	break;
      }
    }
  }

  // Compute local and global error indicators for active set
  typename std::multimap<Scalar,std::vector<int> >::iterator it2;
  Scalar eta = 0.0;
  Scalar G   = 0.0;
  Teuchos::RCP<UserVector> s = integralValue.Create();
  for (it2=activeSet.begin(); it2!=activeSet.end(); it2++) {
    // Build Differential Quarature Rule
    index = it2->second;
    CubatureTensorSorted<Scalar> diffRule(0,dimension);
    build_diffRule(diffRule,index,problem_data);
    
    // Apply Rule to function
    problem_data.eval_cubature(*s,diffRule);
    
    // Update local error indicator and index set
    G  = problem_data.error_indicator(*s);
    activeSet.erase(it2);
    activeSet.insert(it2,std::pair<Scalar,std::vector<int> >(G,index));
    eta += G;
  }

  // Refine Sparse Grid
  eta = refine_grid(activeSet,oldSet,integralValue,eta,
		    dimension,rule1D,growth1D);

  // Insert New Active and Old Index sets into indexSet
  indexSet.insert(activeSet.begin(),activeSet.end());
  for (it1=oldSet.begin(); it1!=oldSet.end(); it1++) {
    index = *it1;
    indexSet.insert(std::pair<Scalar,std::vector<int> >(-1.0,index));
  }
    
  return eta;
}

// Update index set and output integral
template<class Scalar, class UserVector> 
Scalar AdaptiveSparseGrid<Scalar,UserVector>::refine_grid(
          typename std::multimap<Scalar,std::vector<int> > & activeIndex, 
      	  std::set<std::vector<int> > & oldIndex, 
	  UserVector & integralValue,
	  Scalar globalErrorIndicator,
	  AdaptiveSparseGridInterface<Scalar,UserVector> & problem_data) {
 
 TEUCHOS_TEST_FOR_EXCEPTION((activeIndex.empty()),std::out_of_range,
              ">>> ERROR (AdaptiveSparseGrid): Active Index set is empty.");  

  int dimension = problem_data.getDimension();
  std::vector<EIntrepidBurkardt> rule1D; problem_data.getRule(rule1D);
  std::vector<EIntrepidGrowth> growth1D; problem_data.getGrowth(growth1D);

  // Initialize Flags
  bool maxLevelFlag     = true;
  bool isAdmissibleFlag = true;

  // Initialize Cubature Rule
  Teuchos::RCP<UserVector> s = integralValue.Create();
  // Initialize iterator at end of inOldIndex
  std::set<std::vector<int> >::iterator it1(oldIndex.end()); 

  // Initialize iterator at end of inActiveIndex
  typename std::multimap<Scalar,std::vector<int> >::iterator it;

  // Obtain Global Error Indicator as sum of key values of inActiveIndex
  Scalar eta = globalErrorIndicator;

  // Select Index to refine
  it = activeIndex.end(); it--;        // Decrement to position of final value
  Scalar G               = it->first;  // Largest Error Indicator is at End 
  eta                   -= G;          // Update global error indicator
  std::vector<int> index = it->second; // Get Corresponding index
  activeIndex.erase(it);               // Erase Index from active index set
  // Insert Index into old index set
  oldIndex.insert(it1,index); it1 = oldIndex.end();   

  // Refinement process
  for (int k=0; k<dimension; k++) {
    index[k]++; // index + ek
    // Check Max Level
    maxLevelFlag = problem_data.max_level(index);
    if (maxLevelFlag) {
      // Check Admissibility
      isAdmissibleFlag = isAdmissible(index,k,oldIndex,problem_data);
      if (isAdmissibleFlag) { // If admissible
	// Build Differential Quarature Rule
	CubatureTensorSorted<Scalar> diffRule(0,dimension);
	build_diffRule(diffRule,index,problem_data);	

	// Apply Rule to function
	problem_data.eval_cubature(*s,diffRule);
	
	// Update integral value
	integralValue.Update(*s);

	// Update local error indicator and index set
	G  = problem_data.error_indicator(*s); 
	if (activeIndex.end()!=activeIndex.begin()) 
	  activeIndex.insert(activeIndex.end()--,
			   std::pair<Scalar,std::vector<int> >(G,index));
	else
	  activeIndex.insert(std::pair<Scalar,std::vector<int> >(G,index));

	// Update global error indicators
	eta += G;
      }
    }
    else { // Max Level Exceeded 
      //std::cout << "Maximum Level Exceeded" << std::endl;
    }
    index[k]--;
  }
  return eta;
}

// Update index set and output integral/sparse grid
template<class Scalar, class UserVector> 
Scalar AdaptiveSparseGrid<Scalar,UserVector>::refine_grid(
	typename std::multimap<Scalar,std::vector<int> > & activeIndex, 
	std::set<std::vector<int> > & oldIndex, 
	UserVector & integralValue,
	CubatureTensorSorted<Scalar> & cubRule,
	Scalar globalErrorIndicator,
	AdaptiveSparseGridInterface<Scalar,UserVector> & problem_data) {

  TEUCHOS_TEST_FOR_EXCEPTION((activeIndex.empty()),std::out_of_range,
              ">>> ERROR (AdaptiveSparseGrid): Active Index set is empty.");  

  int dimension = problem_data.getDimension();
  std::vector<EIntrepidBurkardt> rule1D; problem_data.getRule(rule1D);
  std::vector<EIntrepidGrowth> growth1D; problem_data.getGrowth(growth1D);

  // Initialize Flags
  bool maxLevelFlag     = true;
  bool isAdmissibleFlag = true;

  // Initialize Cubature Rule
  Teuchos::RCP<UserVector> s = integralValue.Create();

  // Initialize iterator at end of inOldIndex
  std::set<std::vector<int> >::iterator it1(oldIndex.end());  

  // Initialize iterator at end of inActiveIndex
  typename std::multimap<Scalar,std::vector<int> >::iterator it;

  // Obtain Global Error Indicator as sum of key values of inActiveIndex
  Scalar eta = globalErrorIndicator;

  // Select Index to refine
  it = activeIndex.end(); it--;        // Decrement to position of final value 
  Scalar G               = it->first;  // Largest Error Indicator is at End
  eta                   -= G;          // Update global error indicator
  std::vector<int> index = it->second; // Get Corresponding index
  activeIndex.erase(it);               // Erase Index from active index set
  // Insert Index into old index set
  oldIndex.insert(it1,index); it1 = oldIndex.end(); 
  
  // Refinement process
  for (int k=0; k<dimension; k++) {
    index[k]++; // index + ek
    // Check Max Level
    maxLevelFlag = problem_data.max_level(index);
    if (maxLevelFlag) {
      // Check Admissibility
      isAdmissibleFlag = isAdmissible(index,k,oldIndex,problem_data);
      if (isAdmissibleFlag) { // If admissible
	// Build Differential Quarature Rule
	CubatureTensorSorted<Scalar> diffRule(0,dimension);
	build_diffRule(diffRule,index,problem_data);
	
	// Apply Rule to function
	problem_data.eval_cubature(*s,diffRule);
	
	// Update integral value
	integralValue.Update(*s);
	
	// Update local error indicator and index set
	G  = problem_data.error_indicator(*s); 	
	if (activeIndex.end()!=activeIndex.begin()) 
	  activeIndex.insert(activeIndex.end()--,
			   std::pair<Scalar,std::vector<int> >(G,index));
	else
	  activeIndex.insert(std::pair<Scalar,std::vector<int> >(G,index));
		
	// Update global error indicators
	eta += G;

	// Update adapted quadrature rule nodes and weights
	cubRule.update(1.0,diffRule,1.0);
      }
    }
    else { // Max Level Exceeded 
      //std::cout << "Maximum Level Exceeded" << std::endl;
    }
    index[k]--;
  }
  return eta;
}

template<class Scalar, class UserVector>
void AdaptiveSparseGrid<Scalar,UserVector>::buildSparseGrid(
	      CubatureTensorSorted<Scalar> & output,
	      int dimension, int maxlevel,
	      std::vector<EIntrepidBurkardt> rule1D, 
	      std::vector<EIntrepidGrowth> growth1D,
	      bool isNormalized) {

  if (dimension == 2) {
    std::vector<int> index(dimension,0);
    for (int i=0; i<maxlevel; i++) {
      for (int j=0; j<maxlevel; j++) {
	if(i+j+dimension <= maxlevel+dimension-1) {
	  index[0] = i+1; index[1] = j+1; 
	  CubatureTensorSorted<Scalar> diffRule(0,dimension);
	  build_diffRule(diffRule,index,dimension,rule1D,growth1D,isNormalized);
	  output.update(1.0,diffRule,1.0);
	}
      }
    } 
  }
  else if (dimension == 3) {    
    std::vector<int> index(dimension,0);
    for (int i=0; i<maxlevel; i++) {
      for (int j=0; j<maxlevel; j++) {
	for (int k=0; k<maxlevel; k++) {
	  if(i+j+k+dimension <= maxlevel+dimension-1) {
	    index[0] = i+1; index[1] = j+1; index[2] = k+1;
	    CubatureTensorSorted<Scalar> diffRule(0,dimension);
	    build_diffRule(diffRule,index,dimension,rule1D,
			  growth1D,isNormalized);
	    output.update(1.0,diffRule,1.0);
	  }
	}
      }
    } 
  }
  else if (dimension == 4) {
    std::vector<int> index(dimension,0);
    for (int i=0; i<maxlevel; i++) {
      for (int j=0; j<maxlevel; j++) {
	for (int k=0; k<maxlevel; k++) {
	  for (int l=0; l<maxlevel; l++) {
	    if(i+j+k+l+dimension <= maxlevel+dimension-1) {
	      index[0] = i+1; index[1] = j+1; index[2] = k+1; index[3] = l+1;
	      CubatureTensorSorted<Scalar> diffRule(0,dimension);
	      build_diffRule(diffRule,index,dimension,rule1D,
			    growth1D,isNormalized);
	      output.update(1.0,diffRule,1.0);
	    }
	  }
	}
      } 
    }
  }
  else if (dimension == 5) {
    std::vector<int> index(dimension,0);
    for (int i=0; i<maxlevel; i++) {
      for (int j=0; j<maxlevel; j++) {
	for (int k=0; k<maxlevel; k++) {
	  for (int l=0; l<maxlevel; l++) {
	    for (int m=0; m<maxlevel; m++) {
	      if(i+j+k+l+m+dimension <= maxlevel+dimension-1) {
		index[0] = i+1; index[1] = j+1; index[2] = k+1; 
		index[3] = l+1; index[4] = m+1;
		CubatureTensorSorted<Scalar> diffRule(0,dimension);
		build_diffRule(diffRule,index,dimension,rule1D,
			      growth1D,isNormalized);
		output.update(1.0,diffRule,1.0);
	      }
	    }
	  }
	} 
      }
    }
  }
  else 
    std::cout << "Dimension Must Be Less Than 5\n";
}

} // end Intrepid namespace