/usr/include/trilinos/Intrepid_CubatureControlVolumeSideDef.hpp is in libtrilinos-intrepid-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 | // @HEADER
// ************************************************************************
//
// Intrepid Package
// Copyright (2007) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Pavel Bochev (pbboche@sandia.gov)
// Denis Ridzal (dridzal@sandia.gov), or
// Kara Peterson (kjpeter@sandia.gov)
//
// ************************************************************************
// @HEADER
/** \file Intrepid_CubatureControlVolumeSide.hpp
\brief Header file for the Intrepid::CubatureControlVolumeSide class.
\author Created by K. Peterson, P. Bochev and D. Ridzal.
*/
#ifndef INTREPID_CUBATURE_CONTROLVOLUMESIDEDEF_HPP
#define INTREPID_CUBATURE_CONTROLVOLUMESIDEDEF_HPP
namespace Intrepid{
template<class Scalar, class ArrayPoint, class ArrayWeight>
CubatureControlVolumeSide<Scalar,ArrayPoint,ArrayWeight>::CubatureControlVolumeSide(const Teuchos::RCP<const shards::CellTopology>& cellTopology)
{
// topology of primary cell
primaryCellTopo_ = cellTopology;
// get topology of sub-control volume (will be quad or hex depending on dimension)
const CellTopologyData &myCellData =
(primaryCellTopo_->getDimension() > 2) ? *shards::getCellTopologyData<shards::Hexahedron<8> >() :
*shards::getCellTopologyData<shards::Quadrilateral<4> >();
subCVCellTopo_ = Teuchos::rcp(new shards::CellTopology(&myCellData));
degree_ = 1;
numPoints_ = primaryCellTopo_->getEdgeCount();
cubDimension_ = primaryCellTopo_->getDimension();
}
template<class Scalar, class ArrayPoint, class ArrayWeight>
void CubatureControlVolumeSide<Scalar,ArrayPoint,ArrayWeight>::getCubature(ArrayPoint& cubPoints,
ArrayWeight& cubWeights) const
{
TEUCHOS_TEST_FOR_EXCEPTION( (true), std::logic_error,
">>> ERROR (CubatureControlVolumeSide): Cubature defined in physical space calling method for reference space cubature.");
}
template<class Scalar, class ArrayPoint, class ArrayWeight>
void CubatureControlVolumeSide<Scalar,ArrayPoint,ArrayWeight>::getCubature(ArrayPoint& cubPoints,
ArrayWeight& cubWeights,
ArrayPoint& cellCoords) const
{
// get array dimensions
int numCells = cellCoords.dimension(0);
int numNodesPerCell = cellCoords.dimension(1);
int spaceDim = cellCoords.dimension(2);
int numNodesPerSubCV = subCVCellTopo_->getNodeCount();
// get sub-control volume coordinates (one sub-control volume per node of primary cell)
Intrepid::FieldContainer<Scalar> subCVCoords(numCells,numNodesPerCell,numNodesPerSubCV,spaceDim);
Intrepid::CellTools<Scalar>::getSubCVCoords(subCVCoords,cellCoords,*(primaryCellTopo_));
// num edges per primary cell
int numEdgesPerCell = primaryCellTopo_->getEdgeCount();
// Loop over cells
for (int icell = 0; icell < numCells; icell++){
// Get subcontrol volume side midpoints and normals
int iside = 1;
int numNodesPerSide = subCVCellTopo_->getNodeCount(spaceDim-1,iside);
Intrepid::FieldContainer<int> sideNodes(numNodesPerSide);
for (int i=0; i<numNodesPerSide; i++){
sideNodes(i) = subCVCellTopo_->getNodeMap(spaceDim-1,iside,i);
}
// Loop over primary cell nodes and get side midpoints
// In each primary cell the number of control volume side integration
// points is equal to the number of primary cell edges. In 2d the
// number of edges = number of nodes and this loop defines all side
// points. In 3d this loop computes the side points for all
// subcontrol volume sides for iside = 1. Additional code below
// computes the remaining points for particular 3d topologies.
for (int inode=0; inode < numNodesPerCell; inode++){
for(int idim=0; idim < spaceDim; idim++){
Scalar midpt = 0.0;
for (int i=0; i<numNodesPerSide; i++){
midpt += subCVCoords(icell,inode,sideNodes(i),idim);
}
cubPoints(icell,inode,idim) = midpt/numNodesPerSide;
}
}
// Map side center to reference subcell
//Intrepid::FieldContainer<Scalar> sideCenterLocal(1,spaceDim-1);
Intrepid::FieldContainer<double> sideCenterLocal(1,spaceDim-1);
for (int idim = 0; idim < spaceDim-1; idim++){
sideCenterLocal(0,idim) = 0.0;
}
Intrepid::FieldContainer<Scalar> refSidePoints(1,spaceDim);
iside = 1;
Intrepid::CellTools<Scalar>::mapToReferenceSubcell(refSidePoints,
sideCenterLocal,
spaceDim-1, iside, *(subCVCellTopo_));
// Array of cell control volume coordinates
Intrepid::FieldContainer<Scalar> cellCVCoords(numNodesPerCell, numNodesPerSubCV, spaceDim);
for (int isubcv = 0; isubcv < numNodesPerCell; isubcv++) {
for (int inode = 0; inode < numNodesPerSubCV; inode++){
for (int idim = 0; idim < spaceDim; idim++){
cellCVCoords(isubcv,inode,idim) = subCVCoords(icell,isubcv,inode,idim);
}
}
}
// calculate Jacobian at side centers
Intrepid::FieldContainer<Scalar> subCVsideJacobian(numNodesPerCell, 1, spaceDim, spaceDim);
Intrepid::CellTools<Scalar>::setJacobian(subCVsideJacobian, refSidePoints, cellCVCoords, *(subCVCellTopo_));
// Get subcontrol volume side normals
Intrepid::FieldContainer<Scalar> normals(numNodesPerCell, 1, spaceDim);
Intrepid::CellTools<Scalar>::getPhysicalSideNormals(normals,subCVsideJacobian,iside,*(subCVCellTopo_));
for (int inode = 0; inode < numNodesPerCell; inode++) {
for (int idim = 0; idim < spaceDim; idim++){
cubWeights(icell,inode,idim) = normals(inode,0,idim)*pow(2,spaceDim-1);
}
}
if (primaryCellTopo_->getKey()==shards::Hexahedron<8>::key)
{
// first set of side midpoints and normals (above) associated with
// primary cell edges 0-7 are obtained from side 1 of the
// eight control volumes
// second set of side midpoints and normals associated with
// primary cell edges 8-11 are obtained from side 5 of the
// first four control volumes.
iside = 5;
for (int i=0; i<numNodesPerSide; i++){
sideNodes(i) = subCVCellTopo_->getNodeMap(spaceDim-1,iside,i);
}
int numExtraSides = numEdgesPerCell - numNodesPerCell;
for (int icount=0; icount < numExtraSides; icount++){
int iedge = icount + numNodesPerCell;
for(int idim=0; idim < spaceDim; idim++){
Scalar midpt = 0.0;
for (int i=0; i<numNodesPerSide; i++){
midpt += subCVCoords(icell,icount,sideNodes(i),idim)/numNodesPerSide;
}
cubPoints(icell,iedge,idim) = midpt;
}
}
// Map side center to reference subcell
iside = 5;
Intrepid::CellTools<Scalar>::mapToReferenceSubcell(refSidePoints,
sideCenterLocal,
spaceDim-1, iside, *(subCVCellTopo_));
// calculate Jacobian at side centers
Intrepid::CellTools<Scalar>::setJacobian(subCVsideJacobian, refSidePoints, cellCVCoords, *(subCVCellTopo_));
// Get subcontrol volume side normals
Intrepid::CellTools<Scalar>::getPhysicalSideNormals(normals,subCVsideJacobian,iside,*(subCVCellTopo_));
for (int icount = 0; icount < numExtraSides; icount++) {
int iedge = icount + numNodesPerCell;
for (int idim = 0; idim < spaceDim; idim++){
cubWeights(icell,iedge,idim) = normals(icount,0,idim)*pow(2,spaceDim-1);
}
}
} // end if Hex
if (primaryCellTopo_->getKey()==shards::Tetrahedron<4>::key)
{
// first set of side midpoints and normals associated with
// primary cell edges 0-2 are obtained from side 1 of the
// eight control volumes (above)
// second set of side midpoints and normals associated with
// primary cell edges 3-5 are obtained from side 5 of the
// first three control volumes.
iside = 5;
for (int i=0; i<numNodesPerSide; i++){
sideNodes(i) = subCVCellTopo_->getNodeMap(spaceDim-1,iside,i);
}
for (int icount=0; icount < 3; icount++){
int iedge = icount + 3;
for(int idim=0; idim < spaceDim; idim++){
Scalar midpt = 0.0;
for (int i=0; i<numNodesPerSide; i++){
midpt += subCVCoords(icell,icount,sideNodes(i),idim)/numNodesPerSide;
}
cubPoints(icell,iedge,idim) = midpt;
}
}
// Map side center to reference subcell
iside = 5;
Intrepid::CellTools<Scalar>::mapToReferenceSubcell(refSidePoints,
sideCenterLocal,
spaceDim-1, iside, *(subCVCellTopo_));
// calculate Jacobian at side centers
Intrepid::CellTools<Scalar>::setJacobian(subCVsideJacobian, refSidePoints, cellCVCoords, *(subCVCellTopo_));
// Get subcontrol volume side normals
Intrepid::CellTools<Scalar>::getPhysicalSideNormals(normals,subCVsideJacobian,iside,*(subCVCellTopo_));
for (int icount = 0; icount < 3; icount++) {
int iedge = icount + 3;
for (int idim = 0; idim < spaceDim; idim++){
cubWeights(icell,iedge,idim) = normals(icount,0,idim)*pow(2,spaceDim-1);
}
}
}// if tetrahedron
} // end loop over cells
} // end getCubature
template<class Scalar, class ArrayPoint, class ArrayWeight>
int CubatureControlVolumeSide<Scalar,ArrayPoint,ArrayWeight>::getNumPoints()const{
return numPoints_;
} // end getNumPoints
template<class Scalar, class ArrayPoint, class ArrayWeight>
int CubatureControlVolumeSide<Scalar,ArrayPoint,ArrayWeight>::getDimension()const{
return cubDimension_;
} // end getNumPoints
template<class Scalar, class ArrayPoint, class ArrayWeight>
void CubatureControlVolumeSide<Scalar,ArrayPoint,ArrayWeight>::getAccuracy(std::vector<int>& accuracy)const{
accuracy.assign(1,degree_);
} // end getAccuracy
} // end namespace Intrepid
#endif
|