This file is indexed.

/usr/include/trilinos/Intrepid_FunctionSpaceToolsInPlace.hpp is in libtrilinos-intrepid-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
// @HEADER
// ************************************************************************
//
//                           Intrepid Package
//                 Copyright (2007) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Pavel Bochev  (pbboche@sandia.gov)
//                    Denis Ridzal  (dridzal@sandia.gov), or
//                    Kara Peterson (kjpeter@sandia.gov)
//
// ************************************************************************
// @HEADER

/** \file   Intrepid_FunctionSpaceToolsInPlace.hpp
    \brief  Header file for the Intrepid::FunctionSpaceToolsInPlace class.
    \author Created by R. Kirby
*/

#ifndef INTREPID_FUNCTIONSPACETOOLSINPLACE_HPP
#define INTREPID_FUNCTIONSPACETOOLSINPLACE_HPP

#include "Intrepid_ConfigDefs.hpp"
#include "Intrepid_ArrayTools.hpp"
#include "Intrepid_RealSpaceTools.hpp"
#include "Intrepid_FieldContainer.hpp"
#include "Intrepid_CellTools.hpp"


namespace Intrepid {

/** \class Intrepid::FunctionSpaceToolsInPlace
    \brief Defines expert-level interfaces for the evaluation of functions
           and operators in physical space (supported for FE, FV, and FD methods)
           and FE reference space; in addition, provides several function
           transformation utilities.

           The functionality here largely mirrors that in Intrepid::FunctionSpaceTools,
	   except that the input data is overwrriten with the result of the particular
	   transformation.  This can reduce intermediate storage when the input values
	   are not required by later calculations.

	   A new feature compared to Intrepid::FunctionSpaceTools is that of "dual"
	   transforms that are useful in alternate workflow patterns.  At the innermost
	   loop nest, we may have a computation of the form (T_1 D_1 u).(T_2 D_2 v), and
	   we would like to rewrite this as (T_2^t T_1 D_1 u).(D_2 v).  The transposes
	   of each of these transformations are supplied in this routine.
*/
class FunctionSpaceToolsInPlace {
  public:
  /** \brief Transformation of a (scalar) value field in the H-grad space, defined at points on a
             reference cell, stored in the user-provided container <var><b>inVals</b></var>
             and indexed by (F,P), into the output container <var><b>outVals</b></var>,
             defined on cells in physical space and indexed by (C,F,P).
   
             Computes pullback of \e HGRAD functions \f$\Phi^*(\widehat{u}_f) = \widehat{u}_f\circ F^{-1}_{c} \f$ 
             for points in one or more physical cells that are images of a given set of points in the reference cell:
      \f[
             \{ x_{c,p} \}_{p=0}^P = \{ F_{c} (\widehat{x}_p) \}_{p=0}^{P}\qquad 0\le c < C \,.
      \f]     
             In this case \f$ F^{-1}_{c}(x_{c,p}) = \widehat{x}_p \f$ and the user-provided container
             should contain the values of the function set \f$\{\widehat{u}_f\}_{f=0}^{F}\f$ at the 
             reference points:
      \f[
             inVals(f,p) = \widehat{u}_f(\widehat{x}_p) \,.
      \f]
             The method returns   
      \f[
             outVals(c,f,p) 
                = \widehat{u}_f\circ F^{-1}_{c}(x_{c,p}) 
                = \widehat{u}_f(\widehat{x}_p) =  inVals(f,p) \qquad 0\le c < C \,,
      \f]
            i.e., it simply replicates the values in the user-provided container to every cell. 
            See Section \ref sec_pullbacks for more details about pullbacks. 
    
    \code
    |------|----------------------|--------------------------------------------------|
    |      |         Index        |                   Dimension                      |
    |------|----------------------|--------------------------------------------------|
    |   C  |         cell         |  0 <= C < num. integration domains               |
    |   F  |         field        |  0 <= F < number of fields per cell to transform |
    |   P  |         point        |  0 <= P < num. integration points                |
    |------|----------------------|--------------------------------------------------|
    \endcode
  */
  template<class Scalar, class ArrayType>
  static void HGRADtransformVALUE(ArrayType       & inOutVals );

  /** \brief Since there is no matrix involved, this is the same transformation 
      as HGRADtransformVALUE */
  template<class Scalar, class ArrayType>
  static void HGRADtransformVALUEDual(ArrayType       & inOutVals );

  /** \brief Transformation of a gradient field in the H-grad space, defined at points on a
             reference cell, stored in the user-provided container <var><b>inVals</b></var>
             and indexed by (F,P,D), into the output container <var><b>outVals</b></var>,
             defined on cells in physical space and indexed by (C,F,P,D).

             Computes pullback of gradients of \e HGRAD functions 
             \f$\Phi^*(\nabla\widehat{u}_f) = \left((DF_c)^{-{\sf T}}\cdot\nabla\widehat{u}_f\right)\circ F^{-1}_{c}\f$ 
             for points in one or more physical cells that are images of a given set of points in the reference cell:
      \f[
             \{ x_{c,p} \}_{p=0}^P = \{ F_{c} (\widehat{x}_p) \}_{p=0}^{P}\qquad 0\le c < C \,.
      \f]     
             In this case \f$ F^{-1}_{c}(x_{c,p}) = \widehat{x}_p \f$ and the user-provided container
             should contain the gradients of the function set \f$\{\widehat{u}_f\}_{f=0}^{F}\f$ at the 
             reference points:
      \f[
             inVals(f,p,*) = \nabla\widehat{u}_f(\widehat{x}_p) \,.
      \f]
             The method returns   
      \f[
             outVals(c,f,p,*) 
                  = \left((DF_c)^{-{\sf T}}\cdot\nabla\widehat{u}_f\right)\circ F^{-1}_{c}(x_{c,p}) 
                  = (DF_c)^{-{\sf T}}(\widehat{x}_p)\cdot\nabla\widehat{u}_f(\widehat{x}_p) \qquad 0\le c < C \,.
      \f]
             See Section \ref sec_pullbacks for more details about pullbacks.
  
    \code
    |------|----------------------|--------------------------------------------------|
    |      |         Index        |                   Dimension                      |
    |------|----------------------|--------------------------------------------------|
    |   C  |         cell         |  0 <= C < num. integration domains               |
    |   F  |         field        |  0 <= F < number of fields per cell              |
    |   P  |         point        |  0 <= P < num. integration points                |
    |   D  |         space dim    |  0 <= D < spatial dimension                      |
    |------|----------------------|--------------------------------------------------|
    \endcode
  */
  template<class Scalar, class ArrayType, class ArrayTypeJac>
  static void HGRADtransformGRAD(ArrayType          & inOutVals,
                                 const ArrayTypeJac & jacobianInverse,
                                 const char           transpose = 'T');

  /** \brief Applies the transpose of the HGRADtransformGRAD to the data */

  template<class Scalar, class ArrayType, class ArrayTypeJac>
  static void HGRADtransformGRADDual(ArrayType       & inOutVals,
				     const ArrayTypeJac & jacobianInverse,
				     const char           transpose = 'T');

  /** \brief Transformation of a (vector) value field in the H-curl space, defined at points on a
             reference cell, stored in the user-provided container <var><b>inVals</b></var>
             and indexed by (F,P,D), into the output container <var><b>outVals</b></var>,
             defined on cells in physical space and indexed by (C,F,P,D).

             Computes pullback of \e HCURL functions 
             \f$\Phi^*(\widehat{\bf u}_f) = \left((DF_c)^{-{\sf T}}\cdot\widehat{\bf u}_f\right)\circ F^{-1}_{c}\f$ 
             for points in one or more physical cells that are images of a given set of points in the reference cell:
      \f[
             \{ x_{c,p} \}_{p=0}^P = \{ F_{c} (\widehat{x}_p) \}_{p=0}^{P}\qquad 0\le c < C \,.
      \f]     
             In this case \f$ F^{-1}_{c}(x_{c,p}) = \widehat{x}_p \f$ and the user-provided container
             should contain the values of the vector function set \f$\{\widehat{\bf u}_f\}_{f=0}^{F}\f$ at the 
             reference points:
      \f[
             inVals(f,p,*) = \widehat{\bf u}_f(\widehat{x}_p) \,.
      \f]
             The method returns   
      \f[
              outVals(c,f,p,*) 
                = \left((DF_c)^{-{\sf T}}\cdot\widehat{\bf u}_f\right)\circ F^{-1}_{c}(x_{c,p}) 
                = (DF_c)^{-{\sf T}}(\widehat{x}_p)\cdot\widehat{\bf u}_f(\widehat{x}_p) \qquad 0\le c < C \,.
      \f]
            See Section \ref sec_pullbacks for more details about pullbacks.
    \code
    |------|----------------------|--------------------------------------------------|
    |      |         Index        |                   Dimension                      |
    |------|----------------------|--------------------------------------------------|
    |   C  |         cell         |  0 <= C < num. integration domains               |
    |   F  |         field        |  0 <= F < dim. of native basis                   |
    |   P  |         point        |  0 <= P < num. integration points                |
    |   D  |         space dim    |  0 <= D < spatial dimension                      |
    |------|----------------------|--------------------------------------------------|
    \endcode
  */
  template<class Scalar, class ArrayType, class ArrayTypeJac>
  static void HCURLtransformVALUE(ArrayType        & inOutVals,
                                  const ArrayTypeJac  & jacobianInverse,
                                  const char            transpose = 'T');

  /** \brief Applies the dual of the HCURLtransformVALUE  transformation */
  template<class Scalar, class ArrayType, class ArrayTypeJac>
  static void HCURLtransformVALUEDual(ArrayType           & outVals,
				      const ArrayTypeJac  & jacobianInverse,
				      const char            transpose = 'T');

  /** \brief Transformation of a curl field in the H-curl space, defined at points on a
             reference cell, stored in the user-provided container <var><b>inVals</b></var>
             and indexed by (F,P,D), into the output container <var><b>outVals</b></var>,
             defined on cells in physical space and indexed by (C,F,P,D).

             Computes pullback of curls of \e HCURL functions 
             \f$\Phi^*(\widehat{\bf u}_f) = \left(J^{-1}_{c} DF_{c}\cdot\nabla\times\widehat{\bf u}_f\right)\circ F^{-1}_{c}\f$ 
             for points in one or more physical cells that are images of a given set of points in the reference cell:
      \f[
             \{ x_{c,p} \}_{p=0}^P = \{ F_{c} (\widehat{x}_p) \}_{p=0}^{P}\qquad 0\le c < C \,.
      \f]     
             In this case \f$ F^{-1}_{c}(x_{c,p}) = \widehat{x}_p \f$ and the user-provided container
             should contain the curls of the vector function set \f$\{\widehat{\bf u}_f\}_{f=0}^{F}\f$ at the 
             reference points:
      \f[
             inVals(f,p,*) = \nabla\times\widehat{\bf u}_f(\widehat{x}_p) \,.
      \f]
             The method returns   
      \f[
             outVals(c,f,p,*) 
                = \left(J^{-1}_{c} DF_{c}\cdot\nabla\times\widehat{\bf u}_f\right)\circ F^{-1}_{c}(x_{c,p}) 
                = J^{-1}_{c}(\widehat{x}_p) DF_{c}(\widehat{x}_p)\cdot\nabla\times\widehat{\bf u}_f(\widehat{x}_p)
              \qquad 0\le c < C \,.
      \f]
             See Section \ref sec_pullbacks for more details about pullbacks.
    
    \code
    |------|----------------------|--------------------------------------------------|
    |      |         Index        |                   Dimension                      |
    |------|----------------------|--------------------------------------------------|
    |   C  |         cell         |  0 <= C < num. integration domains               |
    |   F  |         field        |  0 <= F < dim. of the basis                      |
    |   P  |         point        |  0 <= P < num. integration points                |
    |   D  |         space dim    |  0 <= D < spatial dimension                      |
    |------|----------------------|--------------------------------------------------|
    \endcode
  */
  template<class Scalar, class ArrayType, class ArrayTypeJac, class ArrayTypeDet>
  static void HCURLtransformCURL(ArrayType           & inOutVals,
                                 const ArrayTypeJac  & jacobian,
                                 const ArrayTypeDet  & jacobianDet,
                                 const char            transpose = 'N');

  /** \brief Applies the dual of the HCURLtransformCURL transformation */
  template<class Scalar, class ArrayType, class ArrayTypeJac, class ArrayTypeDet>
  static void HCURLtransformCURLDual(ArrayType           & outVals,
				     const ArrayTypeJac  & jacobian,
				     const ArrayTypeDet  & jacobianDet,
				     const char            transpose = 'N');

  /** \brief Transformation of a (vector) value field in the H-div space, defined at points on a
             reference cell, stored in the user-provided container <var><b>inVals</b></var>
             and indexed by (F,P,D), into the output container <var><b>outVals</b></var>,
             defined on cells in physical space and indexed by (C,F,P,D).

             Computes pullback of \e HDIV functions 
             \f$\Phi^*(\widehat{\bf u}_f) = \left(J^{-1}_{c} DF_{c}\cdot\widehat{\bf u}_f\right)\circ F^{-1}_{c} \f$ 
             for points in one or more physical cells that are images of a given set of points in the reference cell:
      \f[
             \{ x_{c,p} \}_{p=0}^P = \{ F_{c} (\widehat{x}_p) \}_{p=0}^{P}\qquad 0\le c < C \,.
      \f]     
             In this case \f$ F^{-1}_{c}(x_{c,p}) = \widehat{x}_p \f$ and the user-provided container
             should contain the values of the vector function set \f$\{\widehat{\bf u}_f\}_{f=0}^{F}\f$ at the 
             reference points:
      \f[
             inVals(f,p,*) = \widehat{\bf u}_f(\widehat{x}_p) \,.
      \f]
             The method returns   
      \f[
             outVals(c,f,p,*) 
              = \left(J^{-1}_{c} DF_{c}\cdot \widehat{\bf u}_f\right)\circ F^{-1}_{c}(x_{c,p}) 
              = J^{-1}_{c}(\widehat{x}_p) DF_{c}(\widehat{x}_p)\cdot\widehat{\bf u}_f(\widehat{x}_p)
              \qquad 0\le c < C \,.
      \f]
             See Section \ref sec_pullbacks for more details about pullbacks.
    
    \code
    |------|----------------------|--------------------------------------------------|
    |      |         Index        |                   Dimension                      |
    |------|----------------------|--------------------------------------------------|
    |   C  |         cell         |  0 <= C < num. integration domains               |
    |   F  |         field        |  0 <= F < dim. of the basis                      |
    |   P  |         point        |  0 <= P < num. integration points                |
    |   D  |         space dim    |  0 <= D < spatial dimension                      |
    |------|----------------------|--------------------------------------------------|
    \endcode
  */
  template<class Scalar, class ArrayType, class ArrayTypeJac, class ArrayTypeDet>
  static void HDIVtransformVALUE(ArrayType           & inOutVals,
                                 const ArrayTypeJac  & jacobian,
                                 const ArrayTypeDet  & jacobianDet,
                                 const char            transpose = 'N');

  /** \brief Applies the dual of HDIVtransformVALUE */
  template<class Scalar, class ArrayType, class ArrayTypeJac, class ArrayTypeDet>
  static void HDIVtransformVALUEDual(ArrayType           & outVals,
				     const ArrayTypeJac  & jacobian,
				     const ArrayTypeDet  & jacobianDet,
				     const char            transpose = 'N');

  /** \brief Transformation of a divergence field in the H-div space, defined at points on a
             reference cell, stored in the user-provided container <var><b>inVals</b></var>
             and indexed by (F,P), into the output container <var><b>outVals</b></var>,
             defined on cells in physical space and indexed by (C,F,P).

             Computes pullback of the divergence of \e HDIV functions 
             \f$\Phi^*(\widehat{\bf u}_f) = \left(J^{-1}_{c}\nabla\cdot\widehat{\bf u}_{f}\right) \circ F^{-1}_{c} \f$ 
             for points in one or more physical cells that are images of a given set of points in the reference cell:
      \f[
             \{ x_{c,p} \}_{p=0}^P = \{ F_{c} (\widehat{x}_p) \}_{p=0}^{P}\qquad 0\le c < C \,.
      \f]     
             In this case \f$ F^{-1}_{c}(x_{c,p}) = \widehat{x}_p \f$ and the user-provided container
             should contain the divergencies of the vector function set \f$\{\widehat{\bf u}_f\}_{f=0}^{F}\f$ at the 
             reference points:
      \f[
             inVals(f,p) = \nabla\cdot\widehat{\bf u}_f(\widehat{x}_p) \,.
      \f]
             The method returns   
      \f[
             outVals(c,f,p,*) 
                = \left(J^{-1}_{c}\nabla\cdot\widehat{\bf u}_{f}\right) \circ F^{-1}_{c} (x_{c,p}) 
                = J^{-1}_{c}(\widehat{x}_p) \nabla\cdot\widehat{\bf u}_{f} (\widehat{x}_p)
                \qquad 0\le c < C \,.
      \f]
             See Section \ref sec_pullbacks for more details about pullbacks.
    
    \code
    |------|----------------------|--------------------------------------------------|
    |      |         Index        |                   Dimension                      |
    |------|----------------------|--------------------------------------------------|
    |   C  |         cell         |  0 <= C < num. integration domains               |
    |   F  |         field        |  0 <= F < dim. of the basis                      |
    |   P  |         point        |  0 <= P < num. integration points                |
    |------|----------------------|--------------------------------------------------|
    \endcode
  */
  template<class Scalar, class ArrayType, class ArrayTypeDet>
  static void HDIVtransformDIV(ArrayType           & inOutVals,
                               const ArrayTypeDet  & jacobianDet);

  /** \brief Applies the dual of HDIVtransformDIV, which is the same */
  template<class Scalar, class ArrayType, class ArrayTypeDet>
  static void HDIVtransformDIVDual(ArrayType           & inOutVals,
				   const ArrayTypeDet  & jacobianDet);

  /** \brief Transformation of a (scalar) value field in the H-vol space, defined at points on a
             reference cell, stored in the user-provided container <var><b>inVals</b></var>
             and indexed by (F,P), into the output container <var><b>outVals</b></var>,
             defined on cells in physical space and indexed by (C,F,P).

             Computes pullback of \e HVOL functions 
             \f$\Phi^*(\widehat{u}_f) = \left(J^{-1}_{c}\widehat{u}_{f}\right) \circ F^{-1}_{c} \f$ 
             for points in one or more physical cells that are images of a given set of points in the reference cell:
      \f[
             \{ x_{c,p} \}_{p=0}^P = \{ F_{c} (\widehat{x}_p) \}_{p=0}^{P}\qquad 0\le c < C \,.
      \f]     
             In this case \f$ F^{-1}_{c}(x_{c,p}) = \widehat{x}_p \f$ and the user-provided container
             should contain the values of the functions in the set \f$\{\widehat{\bf u}_f\}_{f=0}^{F}\f$ at the 
             reference points:
      \f[
             inVals(f,p) = \widehat{u}_f(\widehat{x}_p) \,.
      \f]
             The method returns   
      \f[
             outVals(c,f,p,*) 
                = \left(J^{-1}_{c}\widehat{u}_{f}\right) \circ F^{-1}_{c} (x_{c,p}) 
                = J^{-1}_{c}(\widehat{x}_p) \widehat{u}_{f} (\widehat{x}_p)
                \qquad 0\le c < C \,.
      \f]
             See Section \ref sec_pullbacks for more details about pullbacks.
    
    \code
    |------|----------------------|--------------------------------------------------|
    |      |         Index        |                   Dimension                      |
    |------|----------------------|--------------------------------------------------|
    |   C  |         cell         |  0 <= C < num. integration domains               |
    |   F  |         field        |  0 <= F < dim. of the basis                      |
    |   P  |         point        |  0 <= P < num. integration points                |
    |------|----------------------|--------------------------------------------------|
    \endcode
  */
  template<class Scalar, class ArrayType, class ArrayTypeDet>
  static void HVOLtransformVALUE(ArrayType           & inOutVals,
                                 const ArrayTypeDet  & jacobianDet);

  /** \brief Applies the dual of HVOLtransformVALUE */
  template<class Scalar, class ArrayType, class ArrayTypeDet>
  static void HVOLtransformVALUEDual(ArrayType           & inOutVals,
				     const ArrayTypeDet  & jacobianDet);
  
  template<class Scalar, class ArrayType, class ArrayTypeMeasure>
  static void multiplyMeasure(ArrayType                & inOutVals,
                              const ArrayTypeMeasure   & inMeasure);


};  // end FunctionSpaceToolsInPlace

} // end namespace Intrepid

// include templated definitions
#include <Intrepid_FunctionSpaceToolsInPlaceDef.hpp>

#endif