This file is indexed.

/usr/include/trilinos/Intrepid_PointTools.hpp is in libtrilinos-intrepid-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
// @HEADER
// ************************************************************************
//
//                           Intrepid Package
//                 Copyright (2007) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Pavel Bochev  (pbboche@sandia.gov)
//                    Denis Ridzal  (dridzal@sandia.gov), or
//                    Kara Peterson (kjpeter@sandia.gov)
//
// ************************************************************************
// @HEADER

/** \file   Intrepid_PointTools.hpp
    \brief  Header file for utility class to provide point tools,
            such as barycentric coordinates, equispaced lattices, and
            warp-blend point distrubtions.
    \author Created by R. Kirby
*/

#ifndef INTREPID_POINTTOOLS_HPP
#define INTREPID_POINTTOOLS_HPP

#include "Shards_CellTopology.hpp"
#include "Teuchos_Assert.hpp"
#include "Intrepid_Polylib.hpp"
#include "Intrepid_FieldContainer.hpp"
#include "Intrepid_CellTools.hpp"
#include <stdexcept>

namespace Intrepid {
  
  /** \class Intrepid::PointTools
      \brief Utility class that provides methods for calculating
             distributions of points on different cells

Simplicial lattices in PointTools are sets
of points with certain ordering properties.
They are used for defining degrees of freedom
for higher order finite elements.

Each lattice has an "order".  In
general, this is the same as the cardinality
of the polynomial space of degree "order".
In terms of binomial coefficients, this is
binomial(order+d,order) for the simplex in
d dimensions.  On the line,
the size is order+1.  On the triangle
and tetrahedron, there are
(order+1)(order+2)/2 and (order+1)(order+2)(order+3)/6,
respectively.

The points are ordered lexicographically from low to
high in increasing spatial dimension.  For example,
the line lattice of order 3 looks like:

\verbatim
x--x--x--x
\endverbatim

where "x" denotes a point location.
These are ordered from left to right, so that
the points are labeled:

\verbatim
0--1--2--3
\endverbatim

The triangular lattice of order 3 is 

\verbatim
x
|\
| \
x  x
|   \
|    \
x  x  x
|      \
|       \
x--x--x--x
\endverbatim

The ordering starts in the bottom left and
increases first from left to right.  The ordering
is 

\verbatim
9
|\
| \
8  7
|   \
|    \
4  5  6
|      \
|       \
0--1--2--3
\endverbatim

Tetrahedral lattices are similar but difficult to
draw with ASCII art.

Each lattice also has an "offset", which indicates
a number of layers of points on the bounary taken away.
All of the lattices above have a 0 offest.  In Intrepid,
typically only offset = 0 or 1 will be used.  The offset=1
case is used to generate sets of points properly inside
a given simplex.  These are used, for example, to construct
points internal to an edge or face for H(curl) and H(div)
finite elements.

For example, for a line lattice with order = 3 and
offset = 1, the points will look like

\verbatim
---x--x---
\endverbatim

and a triangle with order=3 and offset=1 will 
contain a single point 

\verbatim
.
|\
| \
|  \
|   \
|    \
|  x  \
|      \
|       \
|--------\
\endverbatim

When points on lattices with nonzero offset are numbered,
the are numbered contiguously from 0, so that the line and
triangle above are respectively

\verbatim
---0--1---
\endverbatim

\verbatim
.
|\
| \
|  \
|   \
|    \
|  0  \
|      \
|       \
|--------\
\endverbatim

Additionally, two types of point distributions are currently support.
The points may be on an equispaced lattice, which is easy to compute
but can lead to numerical ill-conditioning in finite element bases
and stiffness matrices.  Alternatively, the warp-blend points of
Warburton are provided on each lattice (which are just the
Gauss-Lobatto points on the line).

  */
  class PointTools {
  public:
    /** \brief Computes the number of points in a lattice of a given order
              on a simplex (currently disabled for
              other cell types).
              If offset == 0,
              the lattice will include only include the vertex points if order == 1,
              and will include edge midpoints if order == 2, and so on.  
              In particular, this is the dimension of polynomials of degree "order"
              on the given simplex.
              The offset argument is used to indicate that the layer of points on the
              boundary is omitted (if offset == 1).  For greater offsets, more layers
              are omitteed.

        \param  cellType     [in]  - type of reference cell (currently only supports the simplex)
        \param  order        [in]  - order of the lattice
        \param  offset       [in]  - the number of boundary layers to omit

    */    
   static inline int getLatticeSize( const shards::CellTopology& cellType ,
                                     const int order ,
                                     const int offset = 0 )
    {
      switch( cellType.getKey() ) {
      case shards::Tetrahedron<4>::key:
      case shards::Tetrahedron<8>::key:
      case shards::Tetrahedron<10>::key:
        {
          const int effectiveOrder = order - 4 * offset;
          if (effectiveOrder < 0) return 0;
          else return (effectiveOrder+1)*(effectiveOrder+2)*(effectiveOrder+3)/6;
        }
        break;
      case shards::Triangle<3>::key:
      case shards::Triangle<4>::key:
      case shards::Triangle<6>::key: 
        {
          const int effectiveOrder = order - 3 * offset;
          if (effectiveOrder < 0) return 0;
          else return (effectiveOrder+1)*(effectiveOrder+2)/2;
        }
        break;
      case shards::Line<2>::key:
      case shards::Line<3>::key:
        {
          const int effectiveOrder = order - 2 * offset;
          if (effectiveOrder < 0) return 0;
          else return (effectiveOrder+1);
        }
        break;
      default:
        TEUCHOS_TEST_FOR_EXCEPTION( true , std::invalid_argument ,
                            ">>> ERROR (Intrepid::PointTools::getLatticeSize): Illegal cell type" );
      }
    }


    /** \brief Computes a lattice of points of a given
              order on a reference simplex (currently disabled for
              other cell types).  The output array is
              (P,D), where
        \code
          P - number of points per cell
          D - is the spatial dimension
        \endcode

        \param  pts         [out] - Output array of point coords
        \param  cellType    [in]  - type of reference cell (currently only supports the simplex)
        \param  order       [in]  - number of points per side, plus 1
        \param  pointType   [in]  - flag for point distribution.  Currently equispaced and
                                    warp/blend points are supported
        \param  offset      [in]  - Number of points on boundary to skip
    */
    template<class Scalar, class ArrayType>
    static void getLattice( ArrayType &pts ,
                            const shards::CellTopology& cellType ,
                            const int order ,
                            const int offset = 0 ,
                            const EPointType pointType = POINTTYPE_EQUISPACED );

    /** Retrieves the Gauss-Legendre points from PolyLib, but lets us
	do it in an arbitrary ArrayType.
	\param  pts         [out] - Output array of point coords (P,)
	\param  order       [out] - number of Gauss points - 1
    */
 
    template<class Scalar, class ArrayType>
    static void getGaussPoints( ArrayType &pts ,
				const int order );


  private:
    /** \brief Converts Cartesian coordinates to barycentric coordinates
              on a batch of triangles.  
              The input array cartValues is (C,P,2)
              The output array baryValues is (C,P,3).
              The input array vertices is (C,3,2), where
        \code
          C - num. integration domains
          P - number of points per cell
        \endcode

        \param  baryValues      [out] - Output array of barycentric coords
        \param  cartValues      [in]  - Input array of Cartesian coords
        \param  vertices        [out] - Vertices of each cell.

    */
    template<class Scalar, class ArrayTypeOut, class ArrayTypeIn1, class ArrayTypeIn2>
    static void cartToBaryTriangle( ArrayTypeOut & baryValues ,
                                    const ArrayTypeIn1 & cartValues ,
                                    const ArrayTypeIn2 & vertices );


    /** \brief Converts barycentric coordinates to Cartesian coordinates
              on a batch of triangles.  
              The input array baryValues is (C,P,3)
              The output array cartValues is (C,P,2).
              The input array vertices is (C,3,2), where
        \code
          C - num. integration domains
          P - number of points per cell
          D - is the spatial dimension
        \endcode

        \param  baryValues      [out] - Output array of barycentric coords
        \param  cartValues      [in]  - Input array of Cartesian coords
        \param  vertices        [out] - Vertices of each cell.

    */
    template<class Scalar, class ArrayTypeOut, class ArrayTypeIn1, class ArrayTypeIn2>
    static void baryToCartTriangle( ArrayTypeOut & cartValues ,
                                    const ArrayTypeIn1 & baryValues ,
                                    const ArrayTypeIn2 & vertices );


    /** \brief Converts Cartesian coordinates to barycentric coordinates
              on a batch of tetrahedra.  
              The input array cartValues is (C,P,3)
              The output array baryValues is (C,P,4).
              The input array vertices is (C,4,3), where
        \code
          C - num. integration domains
          P - number of points per cell
          D - is the spatial dimension
        \endcode

        \param  baryValues      [out] - Output array of barycentric coords
        \param  cartValues      [in]  - Input array of Cartesian coords
        \param  vertices        [out] - Vertices of each cell.

    */
    template<class Scalar, class ArrayTypeOut, class ArrayTypeIn1, class ArrayTypeIn2>
    static void cartToBaryTetrahedron( ArrayTypeOut & baryValues ,
                                      const ArrayTypeIn1 & cartValues ,
                                      const ArrayTypeIn2 & vertices );

    /** \brief Converts barycentric coordinates to Cartesian coordinates
              on a batch of tetrahedra.  
              The input array baryValues is (C,P,4)
              The output array cartValues is (C,P,3).
              The input array vertices is (C,4,3), where
        \code
          C - num. integration domains
          P - number of points per cell
          D - is the spatial dimension
        \endcode

        \param  baryValues      [out] - Output array of barycentric coords
        \param  cartValues      [in]  - Input array of Cartesian coords
        \param  vertices        [out] - Vertices of each cell.

    */
    template<class Scalar, class ArrayTypeOut, class ArrayTypeIn1, class ArrayTypeIn2>
    static void baryToCartTetrahedron( ArrayTypeOut & cartValues ,
                                      const ArrayTypeIn1 & baryValues ,
                                      const ArrayTypeIn2 & vertices );


    /** \brief Computes an equispaced lattice of a given
              order on a reference simplex (currently disabled for
              other cell types).  The output array is
              (P,D), where
        \code
          P - number of points per cell
          D - is the spatial dimension
        \endcode

        \param  points      [out] - Output array of point coords
        \param  order       [in]  - number of points per side, plus 1
        \param  offset      [in]  - Number of points on boundary to skip
        \param  cellType    [in]  - type of reference cell (currently only supports the simplex)

    */
  template<class Scalar, class ArrayType>
  static void getEquispacedLattice( const shards::CellTopology& cellType ,
                                    ArrayType &points ,
                                    const int order ,
                                    const int offset = 0 );


    /** \brief Computes a warped lattice (ala Warburton's warp-blend points of a given 
        order on a reference simplex (currently disabled for
        other cell types).  The output array is
        (P,D), where
        \code
        P - number of points per cell
        D - is the spatial dimension
        \endcode
        
        \param  points      [out] - Output array of point coords
        \param  order       [in]  - number of points per side, plus 1
        \param  offset      [in]  - Number of points on boundary to skip
        \param  cellType    [in]  - type of reference cell (currently only supports the simplex)
        
    */
    template<class Scalar, class ArrayType>
    static void getWarpBlendLattice( const shards::CellTopology& cellType ,
                                    ArrayType &points ,
                                    const int order ,
                                    const int offset = 0);
    

    /** \brief Computes an equispaced lattice of a given
              order on the reference line [-1,1].  The output array is
              (P,1), where
        \code
          P - number of points per cell
        \endcode

        \param  points      [out] - Output array of point coords
        \param  order       [in]  - The lattice has order + 1 points,
                                    minus any skipped by offset
        \param  offset      [in]  - Number of points on boundary to skip coming
                                    in per boundary

    */
    template<class Scalar, class ArrayType>
    static void getEquispacedLatticeLine( ArrayType &points ,
                                          const int order ,
                                          const int offset = 0 );

    /** \brief Computes an equispaced lattice of a given
              order on the reference triangle.  The output array is
              (P,2), where
        \code
          P - number of points, which is 
        \endcode

        \param  points      [out] - Output array of point coords
        \param  order       [in]  - The lattice has order + 1 points,
                                    minus any skipped by offset
        \param  offset      [in]  - Number of points on boundary to skip coming
                                    in from boundary

    */
    template<class Scalar, class ArrayType>
    static void getEquispacedLatticeTriangle( ArrayType &points ,
                                              const int order ,
                                              const int offset = 0 );

    /** \brief Computes an equispaced lattice of a given
              order on the reference tetrahedron.  The output array is
              (P,3), where
        \code
          P - number of points, which is 
        \endcode

        \param  points      [out] - Output array of point coords
        \param  order       [in]  - The lattice has order + 1 points,
                                    minus any skipped by offset
        \param  offset      [in]  - Number of points on boundary to skip coming
                                    in from boundary

    */
    template<class Scalar, class ArrayType>
    static void getEquispacedLatticeTetrahedron( ArrayType &points ,
                                                const int order ,
                                                const int offset = 0 );

    /** \brief Returns the Gauss-Lobatto points of a given
              order on the reference line [-1,1].  The output array is
              (P,1), where
        \code
          P - number of points
        \endcode

        \param  points      [out] - Output array of point coords
        \param  order       [in]  - The lattice has order + 1 points,
                                    minus any skipped by offset
        \param  offset      [in]  - Number of points on boundary to skip coming
                                    in per boundary

    */
    template<class Scalar, class ArrayType>
    static void getWarpBlendLatticeLine( ArrayType &points ,
                                        const int order ,
                                        const int offset = 0 );

    /** \brief interpolates Warburton's warp function on the line
        \param  order       [in]  - The polynomial order
        \param  xnodes      [in]  - vector of node locations to interpolate
        \param  xout        [in]  - warpfunction at xout, +/- 1 roots deflated
        \param  warp        [out] - the amount to warp each point
    */
    template<class Scalar, class ArrayType>
    static void warpFactor( const int order ,
                            const ArrayType &xnodes ,
                            const ArrayType &xout ,
                            ArrayType &warp );

    /** \brief Returns Warburton's warp-blend points of a given
              order on the reference triangle.  The output array is
              (P,2), where
        \code
          P - number of points
        \endcode

        \param  points      [out] - Output array of point coords
        \param  order       [in]  - The lattice has order + 1 points,
                                    minus any skipped by offset
        \param  offset      [in]  - Number of points on boundary to skip coming
                                    in per boundary

    */
    template<class Scalar, class ArrayType>
    static void getWarpBlendLatticeTriangle(ArrayType &points ,
                                            const int order ,
                                            const int offset = 0 );

    /** \brief Returns Warburton's warp-blend points of a given
              order on the reference tetrahedron.  The output array is
              (P,3), where
        \code
          P - number of points
        \endcode

        \param  points      [out] - Output array of point coords
        \param  order       [in]  - The lattice has order + 1 points,
                                    minus any skipped by offset
        \param  offset      [in]  - Number of points on boundary to skip coming
                                    in per boundary
    */
    template<class Scalar, class ArrayType>
    static void getWarpBlendLatticeTetrahedron( ArrayType &points ,
                                                const int order ,
                                                const int offset = 0 );


    /** \brief This is used internally to compute the tetrahedral warp-blend points one each face
        \param order   [in] - the order of lattice
        \param pval    [in] - the "alpha" term in the warping function
        \param L1      [in] - the first barycentric coordinate of the input points
        \param L2      [in] - the second barycentric coordinate of the input points
        \param L3      [in] - the third barycentric coordinate of the input points
        \param L4      [in] - the fourth barycentric coordinate of the input points
        \param dxy     [out] - contains the amount to shift each point in the x and y direction 
    */

  template<class Scalar, class ArrayType>
  static void warpShiftFace3D( const int order ,
                        const Scalar pval ,
                        const ArrayType &L1,
                        const ArrayType &L2,
                        const ArrayType &L3,
                        const ArrayType &L4,
                        ArrayType &dxy);

    /** \brief Used internally to evaluate the point shift for warp-blend points on faces of tets 
        \param order   [in] - the order of lattice
        \param pval    [in] - the "alpha" term in the warping function
        \param L1      [in] - the first barycentric coordinate of the input points
        \param L2      [in] - the second barycentric coordinate of the input points
        \param L3      [in] - the third barycentric coordinate of the input points
        \param dxy     [out] - contains the amount to shift each point in the x and y direction 
    */

  template<class Scalar, class ArrayType>
  static void evalshift( const int order ,
                  const Scalar pval ,
                  const ArrayType &L1 ,
                  const ArrayType &L2 ,
                  const ArrayType &L3 ,
                  ArrayType &dxy );

    /** \brief Used internally to compute the warp on edges of a triangle in warp-blend points
        \param warp      [out] - a 1d array containing the amount to move each point
        \param order     [in]  - the order of the lattice 
        \param xnodes    [in]  - the points to warp to, typically the Gauss-Lobatto points
        \param xout      [in]  - the equispaced points on the edge
    */
  template<class Scalar, class ArrayType>
  static void evalwarp( ArrayType &warp ,
                const int order ,
                const ArrayType &xnodes ,
                const ArrayType &xout );


  }; // end class PointTools

} // end namespace Intrepid

// include templated definitions
#include <Intrepid_PointToolsDef.hpp>

#endif