/usr/include/trilinos/mrtr_manager.H is in libtrilinos-moertel-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 | /*
#@HEADER
# ************************************************************************
#
# Moertel FE Package
# Copyright (2006) Sandia Corporation
#
# Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
# license for use of this work by or on behalf of the U.S. Government.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# 3. Neither the name of the Corporation nor the names of the
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Questions? Contact Glen Hansen (gahanse@sandia.gov)
#
# ************************************************************************
#@HEADER
*/
/* ******************************************************************** */
/* See the file COPYRIGHT for a complete copyright notice, contact */
/* person and disclaimer. */
/* ******************************************************************** */
/*!
* \file mrtr_manager.H
*
* \class MOERTEL::Manager
*
* \brief Top level user interface to the mortar package 'Moertel'
*
* \date Last update do Doxygen: 09-July-2010
*
*/
#ifndef MOERTEL_MANAGER_H
#define MOERTEL_MANAGER_H
#include <ctime>
#include <iostream>
#include <vector>
// Trilinos includes
#include <Epetra_Map.h>
#include <Epetra_CrsMatrix.h>
#include <Epetra_Vector.h>
#ifdef HAVE_MPI
#include <Epetra_MpiComm.h>
#else
#include <Epetra_SerialComm.h>
#endif
#include "Teuchos_RefCountPtr.hpp"
#include "Teuchos_ParameterList.hpp"
// Moertel includes
#include "mrtr_segment.H"
#include "mrtr_node.H"
#include "mrtr_interface.H"
#include "mrtr_lm_selector.H"
#include "mrtr_solver.H"
#include "mrtr_utils.H"
/*!
\brief MOERTEL: namespace of the Moertel package
The Moertel package depends on \ref Epetra, \ref EpetraExt, \ref Teuchos,
\ref Amesos, \ref ML and \ref AztecOO:<br>
Use at least the following lines in the configure of Trilinos:<br>
\code
--enable-moertel
--enable-epetra
--enable-epetraext
--enable-teuchos
--enable-ml
--enable-aztecoo --enable-aztecoo-teuchos
--enable-amesos
\endcode
*/
namespace MOERTEL
{
// forward declarations
class Solver;
/*!
\class Manager
\brief <b> Top level user interface to mortar package 'Moertel' </b>
This class supplies capabilities for nonconforming mesh tying in 2 and 3
dimensions using Mortar methods. <br>
It also supports use of mortar methods for contact formulations and
domain decomposition as well as some limited support to solving
mortar-coupled systems of equations.
\b Proceeding:
- The user constructs an arbitrary number of conforming or non-conforming
interfaces using the \ref MOERTEL::Interface class and passes them to this
\ref MOERTEL::Manager.
- This class will then choose appropriate mortar and slave sides on all interfaces
(if not already done by the user) such that conflicts are avoided on
corner and edge nodes that are shared among interfaces.
It will detect such corner/edge nodes based on the user input and will perform
necessary modifications to the user chosen Lagrange multiplier shape functions
close to the boundary of an interface.
- It will then perform the construction of a C0-continuous field of normals on
each slave side of an interface and will use this field to construct the
Mortar projection operator that projects nodal values from the mortar to the slave side
- It will perform the integration of the Mortar integrals and assemble the
coupling matrix \b D that couples the interface degrees of freedom of
the slave side to the Lagrange multipliers (LMs) and the coupling matrix \b M that
couples the degrees of freedom of the master side to the LMs.
- A saddle point system of equations can be constructed and returned to the user
to solve if the matrix of the original (uncoupled) problem is supplied.
- Some limited support in solving the coupled system of equations using direct
and iterative, multigrid preconditioned solvers is supplied. (not yet implemented)
- The user has access to coupling matrices \b D and \b M to use in contact formulations (not yet impl.).
- It supplies a projection operator that projects arbitrary nodal field values
from the slave side to the master side and vice versa to use in domain decomposition methods.
(not yet impl.)
The \ref MOERTEL::Manager class supports the std::ostream& operator <<
The package and this class make use of the other Trilinos packages
\b Epetra , \b EpetraExt , \b Teuchos , \b Amesos , \b ML .
For more detailed information on the usage, see "The Moertel User's Guide", Sandia report XXXX
For background information on Mortar methods, we refer to <br>
Wohlmuth, B.:"Discretization Methods and Iterative Solvers Based on Domain Decomposition",
Springer, New York, 2001, ISBN 3-540-41083-X
\author Glen Hansen (gahanse@sandia.gov)
*/
class Manager
{
public:
friend class MOERTEL::Solver;
/*!
\brief Specification of the problem dimension
*/
enum DimensionType
{
manager_none,
manager_2D,
manager_3D
};
// @{ \name Constructors and destructor
/*!
\brief Creates and empty instance of this class
Constructs an empty instance of this class to be filled by the user with
information about the non-conforming interface(s). <br>
This is a collective call for all processors associated with the
Epetra_Comm
\param comm : An Epetra_Comm object
\param dimension : Dimension of the problem
\param outlevel : The level of output to stdout to be generated ( 0 - 10 )
*/
explicit Manager(Epetra_Comm& comm,
MOERTEL::Manager::DimensionType dimension,
int outlevel);
/*!
\brief Creates and empty instance of this class
Constructs an empty instance of this class that is filled in by the user with
information about the non-conforming interface(s). <br>
This is a collective call for all processors associated with the
Epetra_Comm
\param comm : An Epetra_Comm object
\param outlevel : The level of output to stdout to be generated ( 0 - 10 )
*/
explicit Manager(Epetra_Comm& comm, int outlevel);
/*!
\brief Destroys an instance of this class
Destructor
*/
virtual ~Manager();
//@}
// @{ \name Query methods
/*!
\brief Returns the Epetra_Comm object associated with this class
*/
Epetra_Comm& Comm() const {return comm_;}
/*!
\brief Returns the Level of output (0 - 10) the user specified in the constructor
*/
int OutLevel() { return outlevel_; }
/*!
\brief Query the problem dimension
Query the problem dimension
*/
MOERTEL::Manager::DimensionType Dimension() { return dimensiontype_; }
/*!
\brief Query the number of interfaces passed to this class via AddInterface
Returns the number of non-conforming interfaces passed to this class via AddInterface
*/
int Ninterfaces() { return interface_.size(); }
/*!
\brief Print all information stored in this class to stdout
*/
bool Print() const;
//@}
// @{ \name Construction methods
/*!
\brief Set problem dimension
This class can handle 2D and 3D problems but not both at the same time.
It is necessary to specify the dimension of the problem
\param type : Dimension of the problem
*/
void SetDimension(MOERTEL::Manager::DimensionType type) { dimensiontype_ = type; return; }
/*!
\brief Add an interface class to this class
Add a previously constructed interface to this class. </br>
Before adding an interface, the interface's public method
\ref MOERTEL::Interface::Complete() has to be called.</br>
This class will not accept interface that are not completed.
Any number of interfaces can be added. This class does not take ownership over the
added class. The interface added can be destroyed immediately after the call to this method
as this class stores a deep copy of it.
\param interface : A completed interface
\return true when adding the interface was successful and false otherwise
*/
bool AddInterface(MOERTEL::Interface& interface);
/*!
\brief Obtain a parameter list with default values
Obtain a parameter list containing default values for
integration of mortar interfaces.
Default values set are:
\code
// When true, values of shape functions are exact at
// every single integration point.
// When false, linear shape functions of an overlap
// discretization are used to linearly interpolate
// shape functions in the overlap region.
// The latter is significantly cheaper but only
// recommended for truly linear functions, e.g. with
// 1D interfaces discretized with linear elements
// 2D interfaces discretized with linear triangle elements
// It is NOT recommended for 2D interfaces discretized with
// bilinear quads as shape functions are not truly linear.
integrationparams_->set("exact values at gauss points",true);
// 1D interface possible values are 1,2,3,4,5,6,7,8,10
integrationparams_->set("number Gaussian points 1D",3);
// 2D interface possible values are 3,6,12,13,16,19,27
integrationparams_->set("number Gaussian points 2D",12);
\endcode
\sa SetProblemMap , AddInterface, Mortar_integrate
*/
Teuchos::ParameterList& Default_Parameters();
/*!
\brief Perform integration of the mortar integral on all interfaces
Once all interfaces and a row map of the original system are passed to
this class this method evaluates the mortar integrals on all interfaces.
Process:
- Chooses a slave and a mortar side for each interface of not already
chosen by the user in the interface class
- Build a C0-continuous field of normals on the slave side
- Makes special boundary modifications to the Lagrange multiplier shape functions
- Performs integration of the mortar integrals on individual interfaces
- Chooses degrees of freedom for the Lagrange multipliers based on
the row map of the original uncoupled problem.
- Builds a row map of the saddle point system
- Assembles interface contributions to coupling matrices D and M
\return true if successful, false otherwise
\sa SetProblemMap , AddInterface , Integrate_Interfaces
*/
bool Mortar_Integrate();
/*!
\brief Perform the integration of the mortar integral on all interfaces.
Once all interfaces and a row map of the original system are passed to
this class this method evaluates the mortar integrals on all interfaces.
Process:
- Chooses a slave and a mortar side for each interface of not already
chosen by the user in the interface class
- Build a C0-continuous field of normals on the slave side
- Makes special boundary modifications to the Lagrange multiplier shape functions
- Performs integration of the mortar integrals on individual interfaces
- Chooses degrees of freedom for the Lagrange multipliers based on
the row map of the original uncoupled problem.
- Builds a row map of the saddle point system
\return true if successful, false otherwise
\sa SetProblemMap , AddInterface , Mortar_Integrate
*/
bool Integrate_Interfaces();
/*!
\brief Assembles contributions from the D and M matrices into the JFNK residual vector.
Once all interfaces and a row map of the original system are passed to
this class this method evaluates the mortar integrals on all interfaces.
\param sel (in): A user-derived object inheriting from Lmselector.
\param rhs (out) : JFNK rhs vector containing accumulated D and M values
\param soln (in) : Current JFNK solution vector, used to matvec with D and M
\return true if successful, false otherwise
*/
bool AssembleInterfacesIntoResidual(Lmselector *sel);
//@}
// @{ \name Solution methods
/*!
\brief Set the RowMap of the original uncoupled problem
Passes in the RowMap of the original (uncoupled) problem.
In a saddle point system, this would be the row map of the (1,1) block.
This class does not take ownership of the passed in map. The map can
be destroyed immediately after the call to this method as this class
stores a deep copy of it.
A row map has to be passed to this class before a call to \ref Mortar_Integrate()
\param map : Row map of the original (uncoupled) problem
\sa Mortar_Integrate()
*/
bool SetProblemMap(const Epetra_Map* map);
/*!
\brief Return view of row map of the uncoupled problem
return a view of the row map of the uncoupled problem the user provided using
SetProblemMap. Returns NULL if no row map was previously set.
\sa SetProblemMap
*/
Epetra_Map* ProblemMap() const { return problemmap_.get(); }
/*!
\brief Set the Matrix of the original uncoupled problem
Passes in the Matrix of the original (uncoupled) problem.
In a saddle point system, this would be the (1,1) block.
This class takes ownership of the matrix if DeepCopy is set to true.
The matrix of the original, uncoupled problem is used to
construct a saddle point system via \ref MakeSaddleProblem()
or solve the coupled problem
\param map : Matrix of the original (uncoupled) problem
\sa MakeSaddleProblem()
*/
bool SetInputMatrix(Epetra_CrsMatrix* inputmatrix, bool DeepCopy = false);
/*!
\brief Construct a saddle point system of equations
After a call to \ref Mortar_Integrate() a saddle point system of equations
can be constructed and returned to the user. Prerequisite is that the user has
supplied the original uncoupled matrix via \ref SetInputMatrix and
the integration was performed with \ref Mortar_Integrate().
This class holds ownership of the saddle point system so the
user must not destroy it.
*/
Epetra_CrsMatrix* MakeSaddleProblem();
/*!
\brief Construct a spd system of equations if possible
If dual Lagrange multipliers are used, a symm. positive definite
system of equations can be constructed from the saddle point problem.
The final solution of the problem is then obtained from<br>
Atilde x = RHSMatrix * b
\sa GetSPDRHSMatrix()
*/
Epetra_CrsMatrix* MakeSPDProblem();
/*!
\brief returns the righ hand side matrix of the spd system of equations
If dual Lagrange multipliers are used, a symm. positive definite
system of equations can be constructed from the saddle point problem.
The final solution of the problem is then obtained from<br>
Atilde x = RHSMatrix * b
\sa MakeSPDProblem()
*/
Epetra_CrsMatrix* GetRHSMatrix();
/*!
\brief Set a parameter list holding solver parameters
Set a ParameterList containing solver options. This class does not take
ownership over params but instead uses a view of it.<br>
Currently Moertel has interfaces to the Amesos, the AztecOO and the ML package.<br>
All packages are controlled by this parameter list. The parameter list
Contains a general part where the package and the type of linear system
to be generated is chosen and contains one or more sub-parameter lists which
are passed on to the appropriate package. This way all parameters described
in the documentation of Amesos, ML and Aztec can be passed to the appropriate
package.<br>
Below one example how to choose the parameter list is given:<br>
\code
Teuchos::ParameterList params;
params.set("System","SaddleSystem"); // use a saddle point system of equations in solve
// or
params.set("System","SPDSystem"); // use a spd system with condensed Lagrange multipliers in solve
// choose solver package
params.set("Solver","Amesos"); // use solver package Amesos
// or
params.set("Solver","ML/Aztec"); // use solver packages ML and AztecOO
// argument sublist passed to and used for Amesos
// see Amesos documentation, all configured Amesos solvers can be used
// This is an example of possible parameters
Teuchos::ParameterList& amesosparams = params.sublist("Amesos");
amesosparams.set("Solver","Amesos_Klu"); // name of Amesos solver to use
amesosparams.set("PrintTiming",false);
amesosparams.set("PrintStatus",false);
amesosparams.set("UseTranspose",true);
// argument sublist passed to and used for ML
// see ML documentation, all configured parameters recognized by the
// ML_Epetra::ml_MultiLevelPreconditioner class can be used
// Moertel sets the ML default parameters first which are then overridden by
// this list
// This is an example configuration:
Teuchos::ParameterList& mlparams = params.sublist("ML");
ML_Epetra::SetDefaults("SA",mlparams);
mlparams.set("output",6);
mlparams.set("print unused",-2);
mlparams.set("increasing or decreasing","increasing");
mlparams.set("PDE equations",3);
mlparams.set("max levels",20);
mlparams.set("aggregation: type","Uncoupled");
mlparams.set("coarse: max size",2500);
mlparams.set("coarse: type","Amesos-KLU");
mlparams.set("smoother: type","MLS");
mlparams.set("smoother: MLS polynomial order",3);
mlparams.set("smoother: sweeps",1);
mlparams.set("smoother: pre or post","both");
mlparams.set("null space: type","pre-computed");
mlparams.set("null space: add default vectors",false);
int dimnullspace = 6;
int dimnsp = dimnullspace*nummyrows;
double* nsp = new double[dimnsp];
application_compute_nullspace(nsp,dimnsp);
mlparams.set("null space: dimension",dimnullspace);
// the user is responsible for freeing nsp after solve
mlparams.set("null space: vectors",nsp);
// argument sublist passed to and used for AztecOO
// see AztecOO documentation, all configured parameters recognized by the
// AztecOO class can be used
// Moertel sets the Aztec default parameters first which are then overridden by
// this list
// This is an example configuration:
Teuchos::ParameterList& aztecparams = params.sublist("Aztec");
aztecparams.set("AZ_solver","AZ_cg");
// if "AZ_user_precond" is specified, ML will be used as a preconditioner
// Any other aztec-buildin preconditioner can be used as well
aztecparams.set("AZ_precond","AZ_user_precond");
aztecparams.set("AZ_max_iter",500);
aztecparams.set("AZ_output",100);
aztecparams.set("AZ_tol",1.0e-08);
aztecparams.set("AZ_scaling","AZ_none");
\endcode
\param params : Parameter list containing solver options
\warning When using ML and/or Aztec, one has to use "SPDSystem" as system matrix
as the amg-preconditioned iterative method will currently fail on the
saddle point system.
*/
void SetSolverParameters(Teuchos::ParameterList& params);
/*!
\brief Solve the problem
Solve the coupled problem using the solver options supplied in params.
Succesive calls to this method will reuse the system matrix together with
the supplied solution and rhs vectors until
\ref ResetSolver() is called. Then, the linear problem is recreated from
scratch.
\param params (in) : Solution parameters
\param sol (out) : The solution
\param rhs (in) : The right hand side vector
*/
bool Solve(Teuchos::ParameterList& params, Epetra_Vector& sol, const Epetra_Vector& rhs);
/*!
\brief Solve the problem
Solve the coupled problem using the solver options previously
supplied in using \ref SetSolverParameters
Succesive calls to this method will resue the system matrix together with
the supplied solution and rhs vectors until
\ref ResetSolver() is called. Then, the linear problem is recreated from
scratch.
\param sol (out) : The solution
\param rhs (in) : The right hand side vector
*/
bool Solve(Epetra_Vector& sol, const Epetra_Vector& rhs);
/*!
\brief Reset the internal solver
The internal solver (no matter which one) will go on using the
once constructed (and maybe factored) matrix until this method is
called. After a call to this method, the linear problem as well as
the solver are build from scratch.
*/
void ResetSolver();
/*!
\brief Get pointer to constraints matrix D
*/
const Epetra_CrsMatrix* D() const { return D_.get();}
/*!
\brief Get pointer to constraints matrix M
*/
const Epetra_CrsMatrix* M() const { return M_.get();}
/*!
\brief Query a managed interface added using AddInterface
Accessor function to the interfaces stored within the manager by
previous AddInterface calls.
\param idx : index of the interface to be returned (0 up to Ninterfaces)
\return the requested interface
\sa AddInterface, Ninterfaces
*/
Teuchos::RCP<MOERTEL::Interface> GetInterface(int idx) { return interface_[idx]; }
/*!
*/
Teuchos::RCP<Epetra_Map> GetSaddleMap() { return saddlemap_; }
//@}
private:
// don't want = operator and copy-ctor
Manager operator = (const Manager& old);
Manager(MOERTEL::Manager& old);
// Build the M and D matrices 2D case
bool Build_MD_2D();
// just do integration of all interfaces 2D case
bool Integrate_Interfaces_2D();
// Build the M and D matrices 3D case
bool Build_MD_3D();
// just do integration of all interfaces 3D case
bool Integrate_Interfaces_3D();
// build the map for the saddle point problem
bool BuildSaddleMap();
// choose the dofs for Lagrange multipliers
Teuchos::RCP<Epetra_Map> LagrangeMultiplierDofs();
// automatically choose mortar side (called when mortarside==-2 on any interface)
bool ChooseMortarSide();
bool ChooseMortarSide_2D(std::vector<Teuchos::RCP<MOERTEL::Interface> >& inter);
bool ChooseMortarSide_3D(std::vector<Teuchos::RCP<MOERTEL::Interface> >& inter);
protected:
int outlevel_; // output level (0-10)
Epetra_Comm& comm_; // communicator (global, contains ALL procs)
DimensionType dimensiontype_; // problem dimension
std::map<int,Teuchos::RCP<MOERTEL::Interface> > interface_; // the interfaces
Teuchos::RCP<Epetra_Map> problemmap_; // the rowmap of the input matrix
Teuchos::RCP<Epetra_CrsMatrix> inputmatrix_; // the uncoupled matrix on input
Teuchos::RCP<Epetra_Map> constraintsmap_; // the rowmap of M and D (both of them use comm_)
Teuchos::RCP<Epetra_CrsMatrix> D_; // the coupling matrix D
Teuchos::RCP<Epetra_CrsMatrix> M_; // the coupling matrix M
Teuchos::RCP<Epetra_Map> saddlemap_; // the rowmap of the saddlepointproblem
Teuchos::RCP<Epetra_CrsMatrix> saddlematrix_; // the matrix of the saddle problem;
Teuchos::RCP<Epetra_CrsMatrix> spdmatrix_; // the spd matrix of the problem;
Teuchos::RCP<Epetra_CrsMatrix> spdrhs_; // the matrix to left-multiply the rhs vector with for the spd problem
Teuchos::RCP<std::map<int,int> > lm_to_dof_; // maps lagrange multiplier dofs to primary dofs (slave side))
Teuchos::RCP<Epetra_CrsMatrix> I_;
Teuchos::RCP<Epetra_CrsMatrix> WT_;
Teuchos::RCP<Epetra_CrsMatrix> B_;
Teuchos::RCP<Epetra_Map> annmap_;
Teuchos::RCP<Teuchos::ParameterList> integrationparams_; // parameter list with integration parameters
Teuchos::RCP<Teuchos::ParameterList> solverparams_; // solution parameters passed from the user
Teuchos::RCP<MOERTEL::Solver> solver_; // the mortar solver
};
} // namespace MOERTEL
/*!
\brief << operator
outputs all information stored in the \ref MOERTEL::Manager class to std::ostream
*/
std::ostream& operator << (std::ostream& os, const MOERTEL::Manager& node);
#endif // MOERTEL_MANAGER_H
|