This file is indexed.

/usr/include/trilinos/MueLu_CGSolver_def.hpp is in libtrilinos-muelu-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
// @HEADER
//
// ***********************************************************************
//
//        MueLu: A package for multigrid based preconditioning
//                  Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact
//                    Jonathan Hu       (jhu@sandia.gov)
//                    Andrey Prokopenko (aprokop@sandia.gov)
//                    Ray Tuminaro      (rstumin@sandia.gov)
//
// ***********************************************************************
//
// @HEADER
#ifndef MUELU_CGSOLVER_DEF_HPP
#define MUELU_CGSOLVER_DEF_HPP

#include <Xpetra_MatrixFactory.hpp>
#include <Xpetra_MatrixMatrix.hpp>

#include "MueLu_CGSolver_decl.hpp"

#include "MueLu_Constraint.hpp"
#include "MueLu_Monitor.hpp"
#include "MueLu_Utilities.hpp"

namespace MueLu {

  using Teuchos::rcp_const_cast;

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  CGSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>::CGSolver(size_t Its)
  : nIts_(Its)
  { }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  void CGSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Iterate(const Matrix& Aref, const Constraint& C, const Matrix& P0, RCP<Matrix>& finalP) const {
    PrintMonitor m(*this, "CG iterations");

    if (nIts_ == 0) {
      finalP = MatrixFactory2::BuildCopy(rcpFromRef(P0));
      return;
    }

    // Note: this function matrix notations follow Saad's "Iterative methods", ed. 2, pg. 246
    // So, X is the unknown prolongator, P's are conjugate directions, Z's are preconditioned P's
    RCP<const Matrix> A = rcpFromRef(Aref);

    RCP<Matrix> X, P, R, Z, AP;
    RCP<Matrix> newX, tmpAP;
#ifndef TWO_ARG_MATRIX_ADD
    RCP<Matrix> newR, newP;
#endif

    SC oldRZ, newRZ, alpha, beta, app;

    bool useTpetra = (A->getRowMap()->lib() == Xpetra::UseTpetra);

    Teuchos::FancyOStream& mmfancy = this->GetOStream(Statistics2);

    // T is used only for projecting onto
    RCP<CrsMatrix> T_ = CrsMatrixFactory::Build(C.GetPattern());
    T_->fillComplete(P0.getDomainMap(), P0.getRangeMap());
    RCP<Matrix>    T = rcp(new CrsMatrixWrap(T_));

    SC one = Teuchos::ScalarTraits<SC>::one();

    Teuchos::ArrayRCP<const SC> D = Utils::GetMatrixDiagonal(*A);

    // Initial P0 would only be used for multiplication
    X = rcp_const_cast<Matrix>(rcpFromRef(P0));

    bool doFillComplete  = true;
    // bool optimizeStorage = false;
    bool optimizeStorage = true;

    tmpAP = Xpetra::MatrixMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Multiply(*A, false, *X, false, mmfancy, doFillComplete, optimizeStorage);
    C.Apply(*tmpAP, *T);

    // R_0 = -A*X_0
    R = MatrixFactory2::BuildCopy(T);
#ifdef HAVE_MUELU_TPETRA
    if (useTpetra)
      Utils::Op2NonConstTpetraCrs(R)->resumeFill();
#endif
    R->scale(-one);
    if (useTpetra)
      R->fillComplete(R->getDomainMap(), R->getRangeMap());

    // Z_0 = M^{-1}R_0
    Z = MatrixFactory2::BuildCopy(R);
    Utils::MyOldScaleMatrix(*Z, D, true, true, false);

    // P_0 = Z_0
    P = MatrixFactory2::BuildCopy(Z);

    oldRZ = Frobenius(*R, *Z);

    for (size_t k = 0; k < nIts_; k++) {
      // AP = constrain(A*P)
      if (k == 0 || useTpetra) {
        // Construct the MxM pattern from scratch
        // This is done by default for Tpetra as the three argument version requires tmpAP
        // to *not* be locally indexed which defeats the purpose
        // TODO: need a three argument Tpetra version which allows reuse of already fill-completed matrix
        tmpAP = Xpetra::MatrixMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Multiply(*A, false, *P, false,        mmfancy, doFillComplete, optimizeStorage);
      } else {
        // Reuse the MxM pattern
        tmpAP = Xpetra::MatrixMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Multiply(*A, false, *P, false, tmpAP, mmfancy, doFillComplete, optimizeStorage);
      }
      C.Apply(*tmpAP, *T);
      AP = T;

      app = Frobenius(*AP, *P);
      if (Teuchos::ScalarTraits<SC>::magnitude(app) < Teuchos::ScalarTraits<SC>::sfmin()) {
        // It happens, for instance, if P = 0
        // For example, if we use TentativePFactory for both nonzero pattern and initial guess
        // I think it might also happen because of numerical breakdown, but we don't test for that yet
        if (k == 0)
          X = MatrixFactory2::BuildCopy(rcpFromRef(P0));
        break;
      }

      // alpha = (R_k, Z_k)/(A*P_k, P_k)
      alpha = oldRZ / app;
      this->GetOStream(Runtime1,1) << "alpha = " << alpha << std::endl;

      // X_{k+1} = X_k + alpha*P_k
#ifndef TWO_ARG_MATRIX_ADD
      newX = Teuchos::null;
      Xpetra::MatrixMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>::TwoMatrixAdd(*P, false, alpha, *X, false, Teuchos::ScalarTraits<Scalar>::one(), newX, mmfancy);
      newX->fillComplete(P0.getDomainMap(), P0.getRangeMap());
      X.swap(newX);
#else
      Xpetra::MatrixMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>::TwoMatrixAdd(*P, false, alpha, *X, one);
#endif

      if (k == nIts_ - 1)
        break;

      // R_{k+1} = R_k - alpha*A*P_k
#ifndef TWO_ARG_MATRIX_ADD
      newR = Teuchos::null;
      Xpetra::MatrixMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>::TwoMatrixAdd(*AP, false, -alpha, *R, false, Teuchos::ScalarTraits<Scalar>::one(), newR, mmfancy);
      newR->fillComplete(P0.getDomainMap(), P0.getRangeMap());
      R.swap(newR);
#else
      Xpetra::MatrixMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>::TwoMatrixAdd(*AP, false, -alpha, *R, one);
#endif

      // Z_{k+1} = M^{-1} R_{k+1}
      Z = MatrixFactory2::BuildCopy(R);
      Utils::MyOldScaleMatrix(*Z, D, true, true, false);

      // beta = (R_{k+1}, Z_{k+1})/(R_k, Z_k)
      newRZ = Frobenius(*R, *Z);
      beta = newRZ / oldRZ;

      // P_{k+1} = Z_{k+1} + beta*P_k
#ifndef TWO_ARG_MATRIX_ADD
      newP = Teuchos::null;
      Xpetra::MatrixMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>::TwoMatrixAdd(*P, false, beta, *Z, false, Teuchos::ScalarTraits<Scalar>::one(), newP, mmfancy);
      newP->fillComplete(P0.getDomainMap(), P0.getRangeMap());
      P.swap(newP);
#else
      Xpetra::MatrixMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>::TwoMatrixAdd(*Z, false, one, *P, beta);
#endif

      oldRZ = newRZ;
    }

    finalP = X;
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  Scalar CGSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Frobenius(const Matrix& A, const Matrix& B) const {
    // We check only row maps. Column may be different. One would hope that they are the same, as we typically
    // calculate frobenius norm of the specified sparsity pattern with an updated matrix from the previous step,
    // but matrix addition, even when one is submatrix of the other, changes column map (though change may be as
    // simple as couple of elements swapped)
    TEUCHOS_TEST_FOR_EXCEPTION(!A.getRowMap()->isSameAs(*B.getRowMap()),   Exceptions::Incompatible, "MueLu::CGSolver::Frobenius: row maps are incompatible");
    TEUCHOS_TEST_FOR_EXCEPTION(!A.isFillComplete() || !B.isFillComplete(), Exceptions::RuntimeError, "Matrices must be fill completed");

    const Map& AColMap = *A.getColMap();
    const Map& BColMap = *B.getColMap();

    Teuchos::ArrayView<const LO> indA, indB;
    Teuchos::ArrayView<const SC> valA, valB;
    size_t nnzA = 0, nnzB = 0;

    // We use a simple algorithm
    // for each row we fill valBAll array with the values in the corresponding row of B
    // as such, it serves as both sorted array and as storage, so we don't need to do a
    // tricky problem: "find a value in the row of B corresponding to the specific GID"
    // Once we do that, we translate LID of entries of row of A to LID of B, and multiply
    // corresponding entries.
    // The algorithm should be reasonably cheap, as it does not sort anything, provided
    // that getLocalElement and getGlobalElement functions are reasonably effective. It
    // *is* possible that the costs are hidden in those functions, but if maps are close
    // to linear maps, we should be fine
    Teuchos::Array<SC> valBAll(BColMap.getNodeNumElements());

    LO     invalid = Teuchos::OrdinalTraits<LO>::invalid();
    SC     zero    = Teuchos::ScalarTraits<SC> ::zero(),    f = zero, gf;
    size_t numRows = A.getNodeNumRows();
    for (size_t i = 0; i < numRows; i++) {
      A.getLocalRowView(i, indA, valA);
      B.getLocalRowView(i, indB, valB);
      nnzA = indA.size();
      nnzB = indB.size();

      // Set up array values
      for (size_t j = 0; j < nnzB; j++)
        valBAll[indB[j]] = valB[j];

      for (size_t j = 0; j < nnzA; j++) {
        // The cost of the whole Frobenius dot product function depends on the
        // cost of the getLocalElement and getGlobalElement functions here.
        LO ind = BColMap.getLocalElement(AColMap.getGlobalElement(indA[j]));
        if (ind != invalid)
          f += valBAll[ind] * valA[j];
      }

      // Clean up array values
      for (size_t j = 0; j < nnzB; j++)
        valBAll[indB[j]] = zero;
    }

    MueLu_sumAll(AColMap.getComm(), f, gf);

    return gf;
  }

} // namespace MueLu

#endif //ifndef MUELU_CGSOLVER_DECL_HPP