/usr/include/trilinos/MueLu_Hierarchy_decl.hpp is in libtrilinos-muelu-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 | // @HEADER
//
// ***********************************************************************
//
// MueLu: A package for multigrid based preconditioning
// Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact
// Jonathan Hu (jhu@sandia.gov)
// Andrey Prokopenko (aprokop@sandia.gov)
// Ray Tuminaro (rstumin@sandia.gov)
//
// ***********************************************************************
//
// @HEADER
#ifndef MUELU_HIERARCHY_DECL_HPP
#define MUELU_HIERARCHY_DECL_HPP
#include <Teuchos_ParameterList.hpp>
#include <Teuchos_Ptr.hpp>
#include <Xpetra_ConfigDefs.hpp> // global_size_t
#include <Xpetra_Matrix_fwd.hpp>
#include <Xpetra_MultiVector_fwd.hpp>
#include <Xpetra_MultiVectorFactory_fwd.hpp>
#include <Xpetra_Operator_fwd.hpp>
#include <Xpetra_Cloner.hpp>
#include <MueLu_SmootherCloner.hpp>
#include "MueLu_ConfigDefs.hpp"
#include "MueLu_BaseClass.hpp"
#include "MueLu_Hierarchy_fwd.hpp"
#include "MueLu_Types.hpp"
#include "MueLu_FactoryBase_fwd.hpp"
#include "MueLu_FactoryManager.hpp" // no fwd declaration because constructor of FactoryManager is used as a default parameter of Setup()
#include "MueLu_HierarchyHelpers_fwd.hpp"
#include "MueLu_KeepType.hpp"
#include "MueLu_Level_fwd.hpp"
#include "MueLu_MasterList.hpp"
#include "MueLu_NoFactory.hpp"
#include "MueLu_PFactory_fwd.hpp"
#include "MueLu_RFactory_fwd.hpp"
#include "MueLu_SmootherBase_fwd.hpp"
#include "MueLu_SmootherFactoryBase_fwd.hpp"
#include "MueLu_SmootherFactory_fwd.hpp"
#include "MueLu_TwoLevelFactoryBase_fwd.hpp"
#include "MueLu_Utilities_fwd.hpp"
namespace MueLu {
enum ReturnType {
Converged,
Unconverged,
Undefined
};
/*!
@class Hierarchy
@brief Provides methods to build a multigrid hierarchy and apply multigrid cycles.
Allows users to manually populate operators at different levels within
a multigrid method and push them into the hierarchy via SetLevel()
and/or to supply factories for automatically generating prolongators,
restrictors, and coarse level discretizations. Additionally, this class contains
an apply method that supports V and W cycles.
*/
template <class Scalar = Xpetra::Operator<>::scalar_type,
class LocalOrdinal = typename Xpetra::Operator<Scalar>::local_ordinal_type,
class GlobalOrdinal = typename Xpetra::Operator<Scalar, LocalOrdinal>::global_ordinal_type,
class Node = typename Xpetra::Operator<Scalar, LocalOrdinal, GlobalOrdinal>::node_type>
class Hierarchy : public BaseClass {
#undef MUELU_HIERARCHY_SHORT
#include "MueLu_UseShortNames.hpp"
typedef Teuchos::ScalarTraits<SC> STS;
typedef typename STS::magnitudeType MagnitudeType;
//! Data struct for defining stopping criteria of multigrid iteration
struct ConvData {
ConvData() : maxIts_(1), tol_(-STS::magnitude(STS::one())) { }
ConvData(LO maxIts) : maxIts_(maxIts), tol_(-STS::magnitude(STS::one())) { }
ConvData(MagnitudeType tol) : maxIts_(10000), tol_(tol) { }
ConvData(std::pair<LO,MagnitudeType> p) : maxIts_(p.first), tol_(p.second) { }
LO maxIts_;
MagnitudeType tol_;
};
public:
//! @name Constructors/Destructors
//@{
//! Default constructor.
Hierarchy();
//! Constructor
Hierarchy(const RCP<Matrix> & A);
//! Destructor.
virtual ~Hierarchy() { }
//@}
//! @name Set/Get Methods.
//@{
//!
static CycleType GetDefaultCycle() { return MasterList::getDefault<std::string>("cycle type") == "V" ? VCYCLE : WCYCLE; }
static bool GetDefaultImplicitTranspose() { return MasterList::getDefault<bool>("transpose: use implicit"); }
static Xpetra::global_size_t GetDefaultMaxCoarseSize() { return MasterList::getDefault<int>("coarse: max size"); }
static int GetDefaultMaxLevels() { return MasterList::getDefault<int>("max levels"); }
static bool GetDefaultPRrebalance() { return MasterList::getDefault<bool>("repartition: rebalance P and R"); }
Xpetra::global_size_t GetMaxCoarseSize() const { return maxCoarseSize_; }
bool GetImplicitTranspose() const { return implicitTranspose_; }
void SetMaxCoarseSize(Xpetra::global_size_t maxCoarseSize) { maxCoarseSize_ = maxCoarseSize; }
void SetPRrebalance(bool doPRrebalance) { doPRrebalance_ = doPRrebalance; }
void SetImplicitTranspose(const bool& implicit) { implicitTranspose_ = implicit; }
//@}
//!
template<class S2, class LO2, class GO2, class N2>
friend class Hierarchy;
private:
int LastLevelID() const { return Levels_.size() - 1; }
void DumpCurrentGraph() const;
public:
//! Add a level at the end of the hierarchy
void AddLevel(const RCP<Level> & level);
//! Add a new level at the end of the hierarchy
void AddNewLevel();
//! Retrieve a certain level from hierarchy.
RCP<Level> & GetLevel(const int levelID = 0);
int GetNumLevels() const;
int GetGlobalNumLevels() const;
MagnitudeType GetRate() const { return rate_; }
// This function is global
double GetOperatorComplexity() const;
//! Helper function
void CheckLevel(Level& level, int levelID);
//! Multi-level setup phase: build a new level of the hierarchy.
/*! This method is aimed to be used in a loop building the hierarchy level by level. See Hierarchy::Setup(manager, startLevel, numDesiredLevels) for an example of usage.
*
* @param coarseLevelID ID of the level to be built.
* @param fineLevelManager defines how to build missing data of the fineLevel (example: aggregates)
* @param coarseLevelManager defines how to build the level
* @param nextLevelManager defines how the next coarse level will be built. This is used to post corresponding request before building the coarse level to keep useful data.
CoarseLevel is considered to be the last level if:
- input parameter isLastLevel == true
or
- Ac->getRowMap()->getGlobalNumElements() <= maxCoarseSize_
Method return true if CoarseLevel is the last level.
Pre-condition:
* FineLevel:
- must have kept useful data (TODO: not tested yet)
- must be Teuchos::null when Setup is called for finest level (Setup then automatically calls Request for "Smoother" and "CoarseSolver")
* CoarseLevel:
- already allocated (using Hierarchy::AddLevel())
- requests already posted
(exception: for finest level (=fineLevelManager==null) requests are called within setup routine)
* NextLevel:
- do not need to be allocate but could (FIXME: will be deleted if lastlevel...).
- should be null when Setup is called for last level
Post-condition:
* FineLevel:
- temporary data have been used and released (this condition is not tested)
* CoarseLevel:
- built, requests have been used
- if it is the last level (due to input parameter isLastLevel or getGlobalNumElements() <= maxCoarseSize_),
then the coarse solver factory of the factory manager have been used instead of the smoother factory.
* NextLevel:
If input parameter isLastLevel == false:
- have been allocated
- requests already posted.
*/
bool Setup(int coarseLevelID, const RCP<const FactoryManagerBase> fineLevelManager /* = Teuchos::null */, const RCP<const FactoryManagerBase> coarseLevelManager,
const RCP<const FactoryManagerBase> nextLevelManager = Teuchos::null);
//!
void Setup(const FactoryManagerBase& manager = FactoryManager(), int startLevel = 0, int numDesiredLevels = GetDefaultMaxLevels());
void SetupRe();
//! Clear impermanent data from previous setup
void Clear(int startLevel = 0);
void ExpertClear();
//! Returns multigrid cycle type (supports VCYCLE and WCYCLE)
CycleType GetCycle() const { return Cycle_; }
//! Supports VCYCLE and WCYCLE types.
void SetCycle(CycleType Cycle) { Cycle_ = Cycle; }
/*!
@brief Apply the multigrid preconditioner.
In theory, more general cycle types than just V- and W-cycles are possible. However,
the enumerated type CycleType would have to be extended.
@param B right-hand side of linear problem
@param X initial and final (approximate) solution of linear problem
@param ConvData struct which stores convergence criteria (maximum number of multigrid iterations or stopping tolerance)
@param InitialGuessIsZero Indicates whether the initial guess is zero
@param startLevel index of starting level to build multigrid hierarchy (default = 0)
*/
ReturnType Iterate(const MultiVector& B, MultiVector& X, ConvData conv = ConvData(),
bool InitialGuessIsZero = false, LO startLevel = 0);
/*!
@brief Print matrices in the multigrid hierarchy to file.
@param[in] start start level
@param[in] end end level
Default behavior is to print system and transfer matrices from the entire hierarchy.
Files are named "A_0.m", "P_1.m", "R_1.m", etc, and are in matrix market coordinate format.
*/
void Write(const LO &start=-1, const LO &end=-1);
//@}
//! @name Permanent storage
//@{
//! Call Level::Keep(ename, factory) for each level of the Hierarchy.
void Keep(const std::string & ename, const FactoryBase* factory = NoFactory::get());
//! Call Level::Delete(ename, factory) for each level of the Hierarchy.
void Delete(const std::string& ename, const FactoryBase* factory = NoFactory::get());
//! Call Level::AddKeepFlag for each level of the Hierarchy.
void AddKeepFlag(const std::string & ename, const FactoryBase* factory = NoFactory::get(), KeepType keep = MueLu::Keep);
//! Call Level::RemoveKeepFlag for each level of the Hierarchy
void RemoveKeepFlag(const std::string & ename, const FactoryBase* factory, KeepType keep = MueLu::All);
//@}
//! @name Overridden from Teuchos::Describable
//@{
//! Return a simple one-line description of this object.
std::string description() const;
/*! @brief Print the Hierarchy with some verbosity level to a FancyOStream object.
@param[in] out The Teuchos::FancyOstream.
@param[in] verbLevel Controls amount of output.
*/
void describe(Teuchos::FancyOStream& out, const VerbLevel verbLevel = Default) const;
void describe(Teuchos::FancyOStream& out, const Teuchos::EVerbosityLevel verbLevel = Teuchos::VERB_HIGH) const;
// Hierarchy::print is local hierarchy function, thus the statistics can be different from global ones
void print(std::ostream& out = std::cout, const VerbLevel verbLevel = (MueLu::Parameters | MueLu::Statistics0)) const;
/*! Indicate whether the multigrid method is a preconditioner or a solver.
This is used in conjunction with the verbosity level to determine whether the residuals can be printed.
*/
void IsPreconditioner(const bool flag);
//@}
void EnableGraphDumping(const std::string& filename, int levelID = 1) {
isDumpingEnabled_ = true;
dumpLevel_ = levelID;
dumpFile_ = filename;
}
template<class Node2>
Teuchos::RCP< Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node2> >
clone (const RCP<Node2> &node2) const;
void setlib(Xpetra::UnderlyingLib inlib) { lib_ = inlib; }
Xpetra::UnderlyingLib lib() { return lib_; }
protected:
const RCP<const FactoryManagerBase>& GetLevelManager(const int levelID) const {
return levelManagers_[levelID];
}
private:
//! Copy constructor is not implemented.
Hierarchy(const Hierarchy &h);
//! Container for Level objects
Array<RCP<Level> > Levels_;
// We replace coordinates GIDs to make them consistent with matrix GIDs,
// even if user does not do that. Ideally, though, we should completely
// remove any notion of coordinate GIDs, and deal only with LIDs, assuming
// that they are consistent with matrix block IDs
void ReplaceCoordinateMap(Level& level);
// Minimum size of a matrix on any level. If we fall below that, we stop
// the coarsening
Xpetra::global_size_t maxCoarseSize_;
// Potential speed up of the setup by skipping R construction, and using
// transpose matrix-matrix product for RAP
bool implicitTranspose_;
// Potential speed up of the setup by skipping rebalancing of P and R, and
// doing extra import during solve
bool doPRrebalance_;
// Hierarchy may be used in a standalone mode, or as a preconditioner
bool isPreconditioner_;
// V- or W-cycle
CycleType Cycle_;
// Epetra/Tpetra mode
Xpetra::UnderlyingLib lib_;
//! Graph dumping
// If enabled, we dump the graph on a specified level into a specified file
bool isDumpingEnabled_;
int dumpLevel_;
std::string dumpFile_;
//! Convergece rate
MagnitudeType rate_;
// Level managers used during the Setup
Array<RCP<const FactoryManagerBase> > levelManagers_;
}; //class Hierarchy
template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
template<typename Node2>
Teuchos::RCP<Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node2> >
Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::
clone (const Teuchos::RCP<Node2> &node2) const {
typedef Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node2> New_H_Type;
typedef Xpetra::Matrix<Scalar, LocalOrdinal, GlobalOrdinal, Node2> CloneOperator;
typedef MueLu::SmootherBase<Scalar, LocalOrdinal, GlobalOrdinal, Node2> CloneSmoother;
Teuchos::RCP<New_H_Type> new_h = Teuchos::rcp(new New_H_Type());
new_h->Levels_.resize(this->GetNumLevels());
new_h->maxCoarseSize_ = maxCoarseSize_;
new_h->implicitTranspose_ = implicitTranspose_;
new_h->isPreconditioner_ = isPreconditioner_;
new_h->isDumpingEnabled_ = isDumpingEnabled_;
new_h->dumpLevel_ = dumpLevel_;
new_h->dumpFile_ = dumpFile_;
RCP<SmootherBase> Pre, Post;
RCP<CloneSmoother> clonePre, clonePost;
RCP<CloneOperator> cloneA, cloneR, cloneP;
RCP<Operator> A, R, P;
for (int i = 0; i < GetNumLevels(); i++) {
RCP<Level> level = this->Levels_[i];
RCP<Level> clonelevel = rcp(new Level());
if (level->IsAvailable("A")) {
A = level->template Get<RCP<Operator> >("A");
cloneA = Xpetra::clone<Scalar, LocalOrdinal, GlobalOrdinal, Node, Node2>(*A, node2);
clonelevel->template Set<RCP<CloneOperator> >("A", cloneA);
}
if (level->IsAvailable("R")){
R = level->template Get<RCP<Operator> >("R");
cloneR = Xpetra::clone<Scalar, LocalOrdinal, GlobalOrdinal, Node, Node2>(*R, node2);
clonelevel->template Set<RCP<CloneOperator> >("R", cloneR);
}
if (level->IsAvailable("P")){
P = level->template Get<RCP<Operator> >("P");
cloneP = Xpetra::clone<Scalar, LocalOrdinal, GlobalOrdinal, Node, Node2>(*P, node2);
clonelevel->template Set<RCP<CloneOperator> >("P", cloneP);
}
if (level->IsAvailable("PreSmoother")){
Pre = level->template Get<RCP<SmootherBase> >("PreSmoother");
clonePre = MueLu::clone<Scalar, LocalOrdinal, GlobalOrdinal, Node, Node2> (Pre, cloneA, node2);
clonelevel->template Set<RCP<CloneSmoother> >("PreSmoother", clonePre);
}
if (level->IsAvailable("PostSmoother")){
Post = level->template Get<RCP<SmootherBase> >("PostSmoother");
clonePost = MueLu::clone<Scalar, LocalOrdinal, GlobalOrdinal, Node, Node2> (Post, cloneA, node2);
clonelevel-> template Set<RCP<CloneSmoother> >("PostSmoother", clonePost);
}
new_h->Levels_[i] = clonelevel;
}
return new_h;
}
} //namespace MueLu
#define MUELU_HIERARCHY_SHORT
#endif // MUELU_HIERARCHY_DECL_HPP
|