/usr/include/trilinos/MueLu_ShiftedLaplacian_def.hpp is in libtrilinos-muelu-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 | // @HEADER
//
// ***********************************************************************
//
// MueLu: A package for multigrid based preconditioning
// Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact
// Jeremie Gaidamour (jngaida@sandia.gov)
// Jonathan Hu (jhu@sandia.gov)
// Ray Tuminaro (rstumin@sandia.gov)
//
// ***********************************************************************
//
// @HEADER
#ifndef MUELU_SHIFTEDLAPLACIAN_DEF_HPP
#define MUELU_SHIFTEDLAPLACIAN_DEF_HPP
#include "MueLu_ShiftedLaplacian_decl.hpp"
#if defined(HAVE_MUELU_IFPACK2) and defined(HAVE_MUELU_TPETRA)
#include <MueLu_CoalesceDropFactory.hpp>
#include <MueLu_CoupledAggregationFactory.hpp>
#include <MueLu_CoupledRBMFactory.hpp>
#include <MueLu_DirectSolver.hpp>
#include <MueLu_GenericRFactory.hpp>
#include <MueLu_Hierarchy.hpp>
#include <MueLu_Ifpack2Smoother.hpp>
#include <MueLu_PFactory.hpp>
#include <MueLu_PgPFactory.hpp>
#include <MueLu_RAPFactory.hpp>
#include <MueLu_RAPShiftFactory.hpp>
#include <MueLu_SaPFactory.hpp>
#include <MueLu_ShiftedLaplacian.hpp>
#include <MueLu_ShiftedLaplacianOperator.hpp>
#include <MueLu_SmootherFactory.hpp>
#include <MueLu_SmootherPrototype.hpp>
#include <MueLu_TentativePFactory.hpp>
#include <MueLu_TransPFactory.hpp>
#include <MueLu_UncoupledAggregationFactory.hpp>
#include <MueLu_Utilities.hpp>
namespace MueLu {
// Destructor
template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
ShiftedLaplacian<Scalar,LocalOrdinal,GlobalOrdinal,Node>::~ShiftedLaplacian() {}
// Input
template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void ShiftedLaplacian<Scalar,LocalOrdinal,GlobalOrdinal,Node>::setParameters(Teuchos::RCP< Teuchos::ParameterList > paramList) {
// Parameters
coarseGridSize_ = paramList->get("MueLu: coarse size", 1000);
numLevels_ = paramList->get("MueLu: levels", 3);
int stype = paramList->get("MueLu: smoother", 8);
if(stype==1) { Smoother_="jacobi"; }
else if(stype==2) { Smoother_="gauss-seidel"; }
else if(stype==3) { Smoother_="symmetric gauss-seidel"; }
else if(stype==4) { Smoother_="chebyshev"; }
else if(stype==5) { Smoother_="krylov"; }
else if(stype==6) { Smoother_="ilut"; }
else if(stype==7) { Smoother_="riluk"; }
else if(stype==8) { Smoother_="schwarz"; }
else if(stype==9) { Smoother_="superilu"; }
else if(stype==10) { Smoother_="superlu"; }
else { Smoother_="schwarz"; }
smoother_sweeps_ = paramList->get("MueLu: sweeps", 5);
smoother_damping_ = paramList->get("MueLu: relax val", 1.0);
ncycles_ = paramList->get("MueLu: cycles", 1);
iters_ = paramList->get("MueLu: iterations", 500);
solverType_ = paramList->get("MueLu: solver type", 1);
restart_size_ = paramList->get("MueLu: restart size", 100);
recycle_size_ = paramList->get("MueLu: recycle size", 25);
isSymmetric_ = paramList->get("MueLu: symmetric", true);
ilu_leveloffill_ = paramList->get("MueLu: level-of-fill", 5);
ilu_abs_thresh_ = paramList->get("MueLu: abs thresh", 0.0);
ilu_rel_thresh_ = paramList->get("MueLu: rel thresh", 1.0);
ilu_diagpivotthresh_ = paramList->get("MueLu: piv thresh", 0.1);
ilu_drop_tol_ = paramList->get("MueLu: drop tol", 0.01);
ilu_fill_tol_ = paramList->get("MueLu: fill tol", 0.01);
schwarz_overlap_ = paramList->get("MueLu: overlap", 0);
schwarz_usereorder_ = paramList->get("MueLu: use reorder", true);
int combinemode = paramList->get("MueLu: combine mode", 1);
if(combinemode==0) { schwarz_combinemode_ = Tpetra::ZERO; }
else { schwarz_combinemode_ = Tpetra::ADD; }
tol_ = paramList->get("MueLu: tolerance", 0.001);
}
template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void ShiftedLaplacian<Scalar,LocalOrdinal,GlobalOrdinal,Node>::setProblemMatrix(RCP<Matrix>& A) {
A_=A;
if(A_!=Teuchos::null)
TpetraA_ = Utils::Op2NonConstTpetraCrs(A_);
if(LinearProblem_!=Teuchos::null)
LinearProblem_ -> setOperator ( TpetraA_ );
}
template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void ShiftedLaplacian<Scalar,LocalOrdinal,GlobalOrdinal,Node>::setProblemMatrix(RCP< Tpetra::CrsMatrix<SC,LO,GO,NO> >& TpetraA) {
TpetraA_=TpetraA;
if(LinearProblem_!=Teuchos::null)
LinearProblem_ -> setOperator ( TpetraA_ );
}
template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void ShiftedLaplacian<Scalar,LocalOrdinal,GlobalOrdinal,Node>::setPreconditioningMatrix(RCP<Matrix>& P) {
P_=P;
GridTransfersExist_=false;
}
template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void ShiftedLaplacian<Scalar,LocalOrdinal,GlobalOrdinal,Node>::setPreconditioningMatrix(RCP< Tpetra::CrsMatrix<SC,LO,GO,NO> >& TpetraP) {
RCP< Xpetra::CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node> > Atmp
= rcp( new Xpetra::TpetraCrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>(TpetraP) );
P_= rcp( new Xpetra::CrsMatrixWrap<Scalar, LocalOrdinal, GlobalOrdinal, Node>(Atmp) );
GridTransfersExist_=false;
}
template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void ShiftedLaplacian<Scalar,LocalOrdinal,GlobalOrdinal,Node>::setstiff(RCP<Matrix>& K) {
K_=K;
}
template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void ShiftedLaplacian<Scalar,LocalOrdinal,GlobalOrdinal,Node>::setstiff(RCP< Tpetra::CrsMatrix<SC,LO,GO,NO> >& TpetraK) {
RCP< Xpetra::CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node> > Atmp
= rcp( new Xpetra::TpetraCrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>(TpetraK) );
K_= rcp( new Xpetra::CrsMatrixWrap<Scalar, LocalOrdinal, GlobalOrdinal, Node>(Atmp) );
}
template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void ShiftedLaplacian<Scalar,LocalOrdinal,GlobalOrdinal,Node>::setmass(RCP<Matrix>& M) {
M_=M;
}
template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void ShiftedLaplacian<Scalar,LocalOrdinal,GlobalOrdinal,Node>::setmass(RCP< Tpetra::CrsMatrix<SC,LO,GO,NO> >& TpetraM) {
RCP< Xpetra::CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node> > Atmp
= rcp( new Xpetra::TpetraCrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>(TpetraM) );
M_= rcp( new Xpetra::CrsMatrixWrap<Scalar, LocalOrdinal, GlobalOrdinal, Node>(Atmp) );
}
template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void ShiftedLaplacian<Scalar,LocalOrdinal,GlobalOrdinal,Node>::setcoords(RCP<MultiVector>& Coords) {
Coords_=Coords;
}
template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void ShiftedLaplacian<Scalar,LocalOrdinal,GlobalOrdinal,Node>::setNullSpace(RCP<MultiVector> NullSpace) {
NullSpace_=NullSpace;
}
template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void ShiftedLaplacian<Scalar,LocalOrdinal,GlobalOrdinal,Node>::setLevelShifts(std::vector<Scalar> levelshifts) {
levelshifts_=levelshifts;
numLevels_=levelshifts_.size();
}
// initialize
template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void ShiftedLaplacian<Scalar,LocalOrdinal,GlobalOrdinal,Node>::initialize() {
TentPfact_ = rcp( new TentativePFactory );
Pfact_ = rcp( new SaPFactory );
PgPfact_ = rcp( new PgPFactory );
TransPfact_= rcp( new TransPFactory );
Rfact_ = rcp( new GenericRFactory );
Acfact_ = rcp( new RAPFactory );
Acshift_ = rcp( new RAPShiftFactory );
Dropfact_ = rcp( new CoalesceDropFactory );
Aggfact_ = rcp( new CoupledAggregationFactory );
UCaggfact_ = rcp( new UncoupledAggregationFactory );
Manager_ = rcp( new FactoryManager );
if(isSymmetric_==true) {
Manager_ -> SetFactory("P", Pfact_);
Manager_ -> SetFactory("R", TransPfact_);
}
else {
Manager_ -> SetFactory("P", PgPfact_);
Manager_ -> SetFactory("R", Rfact_);
solverType_ = 10;
}
Manager_ -> SetFactory("Ptent", TentPfact_);
Teuchos::ParameterList params;
params.set("lightweight wrap",true);
params.set("aggregation: drop scheme","classical");
Dropfact_ -> SetParameterList(params);
Manager_ -> SetFactory("Graph", Dropfact_);
if(Aggregation_=="coupled") {
Manager_ -> SetFactory("Aggregates", Aggfact_ );
}
else {
Manager_ -> SetFactory("Aggregates", UCaggfact_ );
}
// choose smoother
if(Smoother_=="jacobi") {
precType_ = "RELAXATION";
precList_.set("relaxation: type", "Jacobi");
precList_.set("relaxation: sweeps", smoother_sweeps_);
precList_.set("relaxation: damping factor", smoother_damping_);
}
else if(Smoother_=="gauss-seidel") {
precType_ = "RELAXATION";
precList_.set("relaxation: type", "Gauss-Seidel");
precList_.set("relaxation: sweeps", smoother_sweeps_);
precList_.set("relaxation: damping factor", smoother_damping_);
}
else if(Smoother_=="symmetric gauss-seidel") {
precType_ = "RELAXATION";
precList_.set("relaxation: type", "Symmetric Gauss-Seidel");
precList_.set("relaxation: sweeps", smoother_sweeps_);
precList_.set("relaxation: damping factor", smoother_damping_);
}
else if(Smoother_=="chebyshev") {
precType_ = "CHEBYSHEV";
}
else if(Smoother_=="krylov") {
precType_ = "KRYLOV";
precList_.set("krylov: iteration type", krylov_type_);
precList_.set("krylov: number of iterations", krylov_iterations_);
precList_.set("krylov: residual tolerance",1.0e-8);
precList_.set("krylov: block size",1);
precList_.set("krylov: preconditioner type", krylov_preconditioner_);
precList_.set("relaxation: sweeps",1);
solverType_=10;
}
else if(Smoother_=="ilut") {
precType_ = "ILUT";
precList_.set("fact: ilut level-of-fill", ilu_leveloffill_);
precList_.set("fact: absolute threshold", ilu_abs_thresh_);
precList_.set("fact: relative threshold", ilu_rel_thresh_);
precList_.set("fact: drop tolerance", ilu_drop_tol_);
precList_.set("fact: relax value", ilu_relax_val_);
}
else if(Smoother_=="riluk") {
precType_ = "RILUK";
precList_.set("fact: iluk level-of-fill", ilu_leveloffill_);
precList_.set("fact: absolute threshold", ilu_abs_thresh_);
precList_.set("fact: relative threshold", ilu_rel_thresh_);
precList_.set("fact: drop tolerance", ilu_drop_tol_);
precList_.set("fact: relax value", ilu_relax_val_);
}
else if(Smoother_=="schwarz") {
precType_ = "SCHWARZ";
precList_.set("schwarz: overlap level", schwarz_overlap_);
precList_.set("schwarz: combine mode", schwarz_combinemode_);
precList_.set("schwarz: use reordering", schwarz_usereorder_);
precList_.set("schwarz: filter singletons", true);
precList_.set("order_method",schwarz_ordermethod_);
precList_.sublist("schwarz: reordering list").set("order_method",schwarz_ordermethod_);
precList_.sublist("schwarz: subdomain solver parameters").set("fact: ilut level-of-fill", ilu_leveloffill_);
precList_.sublist("schwarz: subdomain solver parameters").set("fact: absolute threshold", ilu_abs_thresh_);
precList_.sublist("schwarz: subdomain solver parameters").set("fact: relative threshold", ilu_rel_thresh_);
precList_.sublist("schwarz: subdomain solver parameters").set("fact: drop tolerance", ilu_drop_tol_);
precList_.sublist("schwarz: subdomain solver parameters").set("fact: relax value", ilu_relax_val_);
}
else if(Smoother_=="superilu") {
precType_ = "superlu";
precList_.set("RowPerm", ilu_rowperm_);
precList_.set("ColPerm", ilu_colperm_);
precList_.set("DiagPivotThresh", ilu_diagpivotthresh_);
precList_.set("ILU_DropRule",ilu_drop_rule_);
precList_.set("ILU_DropTol",ilu_drop_tol_);
precList_.set("ILU_FillFactor",ilu_leveloffill_);
precList_.set("ILU_Norm",ilu_normtype_);
precList_.set("ILU_MILU",ilu_milutype_);
precList_.set("ILU_FillTol",ilu_fill_tol_);
precList_.set("ILU_Flag",true);
}
else if(Smoother_=="superlu") {
precType_ = "superlu";
precList_.set("ColPerm", ilu_colperm_);
precList_.set("DiagPivotThresh", ilu_diagpivotthresh_);
}
// construct smoother
smooProto_ = rcp( new Ifpack2Smoother(precType_,precList_) );
smooFact_ = rcp( new SmootherFactory(smooProto_) );
#if defined(HAVE_MUELU_AMESOS2) and defined(HAVE_AMESOS2_SUPERLU)
coarsestSmooProto_ = rcp( new DirectSolver("Superlu",coarsestSmooList_) );
#elif defined(HAVE_MUELU_AMESOS2) and defined(HAVE_AMESOS2_KLU2)
coarsestSmooProto_ = rcp( new DirectSolver("Klu",coarsestSmooList_) );
#elif defined(HAVE_MUELU_AMESOS2) and defined(HAVE_AMESOS2_SUPERLUDIST)
coarsestSmooProto_ = rcp( new DirectSolver("Superludist",coarsestSmooList_) );
#else
coarsestSmooProto_ = rcp( new Ifpack2Smoother(precType_,precList_) );
#endif
coarsestSmooFact_ = rcp( new SmootherFactory(coarsestSmooProto_, Teuchos::null) );
// For setupSlowRAP and setupFastRAP, the prolongation/restriction matrices
// are constructed with the stiffness matrix. These matrices are kept for future
// setup calls; this is achieved by calling Hierarchy->Keep(). It is particularly
// useful for multiple frequency problems - when the frequency/preconditioner
// changes, you only compute coarse grids (RAPs) and setup level smoothers when
// you call Hierarchy->Setup().
if(K_!=Teuchos::null) {
Manager_ -> SetFactory("Smoother", Teuchos::null);
Manager_ -> SetFactory("CoarseSolver", Teuchos::null);
Hierarchy_ = rcp( new Hierarchy(K_) );
if(NullSpace_!=Teuchos::null)
Hierarchy_ -> GetLevel(0) -> Set("Nullspace", NullSpace_);
if(isSymmetric_==true) {
Hierarchy_ -> Keep("P", Pfact_.get());
Hierarchy_ -> Keep("R", TransPfact_.get());
Hierarchy_ -> SetImplicitTranspose(true);
}
else {
Hierarchy_ -> Keep("P", PgPfact_.get());
Hierarchy_ -> Keep("R", Rfact_.get());
}
Hierarchy_ -> Keep("Ptent", TentPfact_.get());
Hierarchy_ -> SetMaxCoarseSize( coarseGridSize_ );
Hierarchy_ -> Setup(*Manager_, 0, numLevels_);
GridTransfersExist_=true;
}
// Use preconditioning matrix to setup prolongation/restriction operators
else {
Manager_ -> SetFactory("Smoother", smooFact_);
Manager_ -> SetFactory("CoarseSolver", coarsestSmooFact_);
Hierarchy_ = rcp( new Hierarchy(P_) );
if(NullSpace_!=Teuchos::null)
Hierarchy_ -> GetLevel(0) -> Set("Nullspace", NullSpace_);
if(isSymmetric_==true)
Hierarchy_ -> SetImplicitTranspose(true);
Hierarchy_ -> SetMaxCoarseSize( coarseGridSize_ );
Hierarchy_ -> Setup(*Manager_, 0, numLevels_);
GridTransfersExist_=true;
}
// Belos Linear Problem and Solver Manager
BelosList_ = rcp( new Teuchos::ParameterList("GMRES") );
BelosList_ -> set("Maximum Iterations",iters_ );
BelosList_ -> set("Convergence Tolerance",tol_ );
BelosList_ -> set("Verbosity", Belos::Errors + Belos::Warnings + Belos::StatusTestDetails);
BelosList_ -> set("Output Frequency",1);
BelosList_ -> set("Output Style",Belos::Brief);
BelosList_ -> set("Num Blocks",restart_size_);
BelosList_ -> set("Num Recycled Blocks",recycle_size_);
}
// setup coarse grids for new frequency
template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void ShiftedLaplacian<Scalar,LocalOrdinal,GlobalOrdinal,Node>::setupFastRAP() {
int numLevels = Hierarchy_ -> GetNumLevels();
Manager_ -> SetFactory("Smoother", smooFact_);
Manager_ -> SetFactory("CoarseSolver", coarsestSmooFact_);
Hierarchy_ -> GetLevel(0) -> Set("A", P_);
Hierarchy_ -> Setup(*Manager_, 0, numLevels);
setupSolver();
}
// setup coarse grids for new frequency
template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void ShiftedLaplacian<Scalar,LocalOrdinal,GlobalOrdinal,Node>::setupSlowRAP() {
int numLevels = Hierarchy_ -> GetNumLevels();
Acshift_->SetShifts(levelshifts_);
Manager_ -> SetFactory("Smoother", smooFact_);
Manager_ -> SetFactory("CoarseSolver", coarsestSmooFact_);
Manager_ -> SetFactory("A", Acshift_);
Manager_ -> SetFactory("K", Acshift_);
Manager_ -> SetFactory("M", Acshift_);
Hierarchy_ -> GetLevel(0) -> Set("A", P_);
Hierarchy_ -> GetLevel(0) -> Set("K", K_);
Hierarchy_ -> GetLevel(0) -> Set("M", M_);
Hierarchy_ -> Setup(*Manager_, 0, numLevels);
setupSolver();
}
// setup coarse grids for new frequency
template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void ShiftedLaplacian<Scalar,LocalOrdinal,GlobalOrdinal,Node>::setupNormalRAP() {
// Only setup hierarchy again if preconditioning matrix has changed
if( GridTransfersExist_ == false ) {
Hierarchy_ = rcp( new Hierarchy(P_) );
if(NullSpace_!=Teuchos::null)
Hierarchy_ -> GetLevel(0) -> Set("Nullspace", NullSpace_);
if(isSymmetric_==true)
Hierarchy_ -> SetImplicitTranspose(true);
Hierarchy_ -> SetMaxCoarseSize( coarseGridSize_ );
Hierarchy_ -> Setup(*Manager_, 0, numLevels_);
GridTransfersExist_=true;
}
setupSolver();
}
template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void ShiftedLaplacian<Scalar,LocalOrdinal,GlobalOrdinal,Node>::setupSolver() {
// Define Preconditioner and Operator
MueLuOp_ = rcp( new MueLu::ShiftedLaplacianOperator<SC,LO,GO,NO>
(Hierarchy_, A_, ncycles_, subiters_, option_, tol_) );
// Belos Linear Problem
if(LinearProblem_==Teuchos::null)
LinearProblem_ = rcp( new LinearProblem );
LinearProblem_ -> setOperator ( TpetraA_ );
LinearProblem_ -> setRightPrec( MueLuOp_ );
if(SolverManager_==Teuchos::null) {
std::string solverName;
SolverFactory_= rcp( new SolverFactory() );
if(solverType_==1) { solverName="Block GMRES"; }
else if(solverType_==2) { solverName="Recycling GMRES"; }
else { solverName="Flexible GMRES"; }
SolverManager_ = SolverFactory_->create( solverName, BelosList_ );
SolverManager_ -> setProblem( LinearProblem_ );
}
}
template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void ShiftedLaplacian<Scalar,LocalOrdinal,GlobalOrdinal,Node>::resetLinearProblem()
{
LinearProblem_ -> setOperator ( TpetraA_ );
}
// Solve phase
template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
int ShiftedLaplacian<Scalar,LocalOrdinal,GlobalOrdinal,Node>::solve(const RCP<TMV> B, RCP<TMV>& X)
{
// Set left and right hand sides for Belos
LinearProblem_ -> setProblem(X, B);
// iterative solve
SolverManager_ -> solve();
return 0;
}
// Solve phase
template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void ShiftedLaplacian<Scalar,LocalOrdinal,GlobalOrdinal,Node>::multigrid_apply(const RCP<MultiVector> B,
RCP<MultiVector>& X)
{
// Set left and right hand sides for Belos
Hierarchy_ -> Iterate(*B, *X, 1, true, 0);
}
// Solve phase
template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void ShiftedLaplacian<Scalar,LocalOrdinal,GlobalOrdinal,Node>::multigrid_apply(const RCP<Tpetra::MultiVector<SC,LO,GO,NO> > B,
RCP<Tpetra::MultiVector<SC,LO,GO,NO> >& X)
{
Teuchos::RCP< Xpetra::MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> > XpetraX
= Teuchos::rcp( new Xpetra::TpetraMultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node>(X) );
Teuchos::RCP< Xpetra::MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> > XpetraB
= Teuchos::rcp( new Xpetra::TpetraMultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node>(B) );
// Set left and right hand sides for Belos
Hierarchy_ -> Iterate(*XpetraB, *XpetraX, 1, true, 0);
}
// Get most recent iteration count
template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
int ShiftedLaplacian<Scalar,LocalOrdinal,GlobalOrdinal,Node>::GetIterations()
{
int numiters = SolverManager_ -> getNumIters();
return numiters;
}
// Get most recent solver tolerance achieved
template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
double ShiftedLaplacian<Scalar,LocalOrdinal,GlobalOrdinal,Node>::GetResidual()
{
double residual = SolverManager_ -> achievedTol();
return residual;
}
}
#define MUELU_SHIFTEDLAPLACIAN_SHORT
#endif //if defined(HAVE_MUELU_IFPACK2) and defined(HAVE_MUELU_TPETRA)
#endif // MUELU_SHIFTEDLAPLACIAN_DEF_HPP
|