This file is indexed.

/usr/include/trilinos/Stokhos_DiscretizedStieltjesBasisImp.hpp is in libtrilinos-stokhos-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
// @HEADER
// ***********************************************************************
// 
//                           Stokhos Package
//                 Copyright (2009) Sandia Corporation
// 
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// 
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
// 
// ***********************************************************************
// @HEADER

template <typename ordinal_type, typename value_type>
Stokhos::DiscretizedStieltjesBasis<ordinal_type,value_type>::
DiscretizedStieltjesBasis(const std::string& label,
			  const ordinal_type& p, 
			  value_type (*weightFn)(const value_type&),
			  const value_type& leftEndPt,
			  const value_type& rightEndPt, 
			  bool normalize, 
			  Stokhos::GrowthPolicy growth) :
  RecurrenceBasis<ordinal_type,value_type>(std::string("DiscretizedStieltjes -- ") + label, p, normalize, growth),
  scaleFactor(1),
  leftEndPt_(leftEndPt),
  rightEndPt_(rightEndPt),
  weightFn_(weightFn)
{   
  // Set up quadrature points for discretized stieltjes procedure
  Teuchos::RCP<const Stokhos::LegendreBasis<ordinal_type,value_type> > quadBasis = 
    Teuchos::rcp(new Stokhos::LegendreBasis<ordinal_type,value_type>(this->p));
  quadBasis->getQuadPoints(200*this->p, quad_points, quad_weights, quad_values);

  // Setup rest of recurrence basis
  this->setup();
}

template <typename ordinal_type, typename value_type>
Stokhos::DiscretizedStieltjesBasis<ordinal_type,value_type>::
DiscretizedStieltjesBasis(const ordinal_type& p, 
			  const DiscretizedStieltjesBasis& basis) :
  RecurrenceBasis<ordinal_type,value_type>(p, basis),
  scaleFactor(basis.scaleFactor),
  leftEndPt_(basis.leftEndPt_),
  rightEndPt_(basis.rightEndPt_),
  weightFn_(basis.weightFn_)
{   
  // Set up quadrature points for discretized stieltjes procedure
  Teuchos::RCP<const Stokhos::LegendreBasis<ordinal_type,value_type> > quadBasis = 
    Teuchos::rcp(new Stokhos::LegendreBasis<ordinal_type,value_type>(this->p));
  quadBasis->getQuadPoints(200*this->p, quad_points, quad_weights, quad_values);

  // Compute coefficients in 3-term recurrsion
  computeRecurrenceCoefficients(p+1, this->alpha, this->beta, this->delta,
				this->gamma);

  // Setup rest of recurrence basis
  this->setup();
}

template <typename ordinal_type, typename value_type>
Stokhos::DiscretizedStieltjesBasis<ordinal_type,value_type>::
~DiscretizedStieltjesBasis()
{
}

template <typename ordinal_type, typename value_type>
bool
Stokhos::DiscretizedStieltjesBasis<ordinal_type,value_type>::
computeRecurrenceCoefficients(ordinal_type k,
			      Teuchos::Array<value_type>& alpha,
			      Teuchos::Array<value_type>& beta,
			      Teuchos::Array<value_type>& delta,
			      Teuchos::Array<value_type>& gamma) const
{
  //The Discretized Stieltjes polynomials are defined by a recurrance relation,
  //P_n+1 = \gamma_n+1[(x-\alpha_n) P_n - \beta_n P_n-1].
  //The alpha and beta coefficients are generated first using the
  //discritized stilges procidure described in "On the Calculation of DiscretizedStieltjes Polynomials and Quadratures",
  //Robin P. Sagar, Vedene H. Smith.  The gamma coefficients are then optionally set so that each
  //polynomial has norm 1.  If normalization is not enabled then the gammas are set to 1.

  scaleFactor = 1;
   
  //First renormalize the weight function so that it has measure 1.
  value_type oneNorm = expectedValue_J_nsquared(0, alpha, beta);
  //future evaluations of the weight function will scale it by this factor.
  scaleFactor = 1/oneNorm;
  
  
  value_type integral2;
  //NOTE!! This evaluation of 'expectedValue_J_nsquared(0)' is different
  //from the one above since we rescaled the weight.  Don't combine
  //the two!!!

  value_type past_integral = expectedValue_J_nsquared(0, alpha, beta);
  alpha[0] = expectedValue_tJ_nsquared(0, alpha, beta)/past_integral;
  //beta[0] := \int_-c^c w(x) dx.
  beta[0] = 1;
  delta[0] = 1;
  gamma[0] = 1;
  //These formulas are from the above reference.
  for (ordinal_type n = 1; n<k; n++){
    integral2 = expectedValue_J_nsquared(n, alpha, beta);
    alpha[n] = expectedValue_tJ_nsquared(n, alpha, beta)/integral2;
    beta[n] = integral2/past_integral;
    past_integral = integral2;
    delta[n] = 1.0;
    gamma[n] = 1.0;
  }

  return false;
}

template <typename ordinal_type, typename value_type>
value_type 
Stokhos::DiscretizedStieltjesBasis<ordinal_type,value_type>::
evaluateWeight(const value_type& x) const
{
  return (x < leftEndPt_ || x > rightEndPt_) ? 0: scaleFactor*weightFn_(x);
} 

template <typename ordinal_type, typename value_type>
value_type
Stokhos::DiscretizedStieltjesBasis<ordinal_type,value_type>::
expectedValue_tJ_nsquared(const ordinal_type& order, 
			  const Teuchos::Array<value_type>& alpha,
			  const Teuchos::Array<value_type>& beta) const
{
  //Impliments a gaussian quadrature routine to evaluate the integral,
  // \int_-c^c J_n(x)^2w(x)dx.  This is needed to compute the recurrance coefficients.
  value_type integral = 0;
  for(ordinal_type quadIdx = 0; 
      quadIdx < static_cast<ordinal_type>(quad_points.size()); quadIdx++) {
    value_type x = (rightEndPt_ - leftEndPt_)*.5*quad_points[quadIdx] + 
      (rightEndPt_ + leftEndPt_)*.5;
    value_type val = evaluateRecurrence(x,order,alpha,beta);
    integral += x*val*val*evaluateWeight(x)*quad_weights[quadIdx];
  }
  
  return integral*(rightEndPt_ - leftEndPt_);
}

template <typename ordinal_type, typename value_type>
value_type
Stokhos::DiscretizedStieltjesBasis<ordinal_type,value_type>::
expectedValue_J_nsquared(const ordinal_type& order, 
			 const Teuchos::Array<value_type>& alpha,
			 const Teuchos::Array<value_type>& beta) const
{
  //Impliments a gaussian quadrature routineroutine to evaluate the integral,
  // \int_-c^c J_n(x)^2w(x)dx.  This is needed to compute the recurrance coefficients.
  value_type integral = 0;
  for(ordinal_type quadIdx = 0; 
      quadIdx < static_cast<ordinal_type>(quad_points.size()); quadIdx++){
    value_type x = (rightEndPt_ - leftEndPt_)*.5*quad_points[quadIdx] + 
      (rightEndPt_ + leftEndPt_)*.5;
    value_type val = evaluateRecurrence(x,order,alpha,beta);
    integral += val*val*evaluateWeight(x)*quad_weights[quadIdx];
  }
  
  return integral*(rightEndPt_ - leftEndPt_);
}

template <typename ordinal_type, typename value_type>
value_type 
Stokhos::DiscretizedStieltjesBasis<ordinal_type, value_type>::
eval_inner_product(const ordinal_type& order1, const ordinal_type& order2) const
{
   //Impliments a gaussian quadrature routine to evaluate the integral,
  // \int_-c^c J_n(x)J_m w(x)dx.  This method is intended to allow the user to
  // test for orthogonality and proper normalization.
  value_type integral = 0;
  for(ordinal_type quadIdx = 0; 
      quadIdx < static_cast<ordinal_type>(quad_points.size()); quadIdx++){
    value_type x = (rightEndPt_ - leftEndPt_)*.5*quad_points[quadIdx] + 
      (rightEndPt_ + leftEndPt_)*.5;
    integral += this->evaluate(x,order1)*this->evaluate(x,order2)*evaluateWeight(x)*quad_weights[quadIdx];
  }
  
  return integral*(rightEndPt_ - leftEndPt_);
}

template <typename ordinal_type, typename value_type>
value_type 
Stokhos::DiscretizedStieltjesBasis<ordinal_type, value_type>::
evaluateRecurrence(const value_type& x, 
		   ordinal_type k, 
		   const Teuchos::Array<value_type>& alpha,
		   const Teuchos::Array<value_type>& beta) const
{
  if (k == 0)
    return value_type(1.0);
  else if (k == 1)
    return x-alpha[0];

  value_type v0 = value_type(1.0);
  value_type v1 = x-alpha[0]*v0;
  value_type v2 = value_type(0.0);
  for (ordinal_type i=2; i<=k; i++) {
    v2 = (x-alpha[i-1])*v1 - beta[i-1]*v0;
    v0 = v1;
    v1 = v2;
  }

  return v2;
}

template <typename ordinal_type, typename value_type>
Teuchos::RCP<Stokhos::OneDOrthogPolyBasis<ordinal_type,value_type> > 
Stokhos::DiscretizedStieltjesBasis<ordinal_type, value_type>::
cloneWithOrder(ordinal_type p) const
{
   return Teuchos::rcp(new Stokhos::DiscretizedStieltjesBasis<ordinal_type,value_type>(p,*this));
}