/usr/include/trilinos/Stokhos_DiscretizedStieltjesBasisImp.hpp is in libtrilinos-stokhos-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 | // @HEADER
// ***********************************************************************
//
// Stokhos Package
// Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
//
// ***********************************************************************
// @HEADER
template <typename ordinal_type, typename value_type>
Stokhos::DiscretizedStieltjesBasis<ordinal_type,value_type>::
DiscretizedStieltjesBasis(const std::string& label,
const ordinal_type& p,
value_type (*weightFn)(const value_type&),
const value_type& leftEndPt,
const value_type& rightEndPt,
bool normalize,
Stokhos::GrowthPolicy growth) :
RecurrenceBasis<ordinal_type,value_type>(std::string("DiscretizedStieltjes -- ") + label, p, normalize, growth),
scaleFactor(1),
leftEndPt_(leftEndPt),
rightEndPt_(rightEndPt),
weightFn_(weightFn)
{
// Set up quadrature points for discretized stieltjes procedure
Teuchos::RCP<const Stokhos::LegendreBasis<ordinal_type,value_type> > quadBasis =
Teuchos::rcp(new Stokhos::LegendreBasis<ordinal_type,value_type>(this->p));
quadBasis->getQuadPoints(200*this->p, quad_points, quad_weights, quad_values);
// Setup rest of recurrence basis
this->setup();
}
template <typename ordinal_type, typename value_type>
Stokhos::DiscretizedStieltjesBasis<ordinal_type,value_type>::
DiscretizedStieltjesBasis(const ordinal_type& p,
const DiscretizedStieltjesBasis& basis) :
RecurrenceBasis<ordinal_type,value_type>(p, basis),
scaleFactor(basis.scaleFactor),
leftEndPt_(basis.leftEndPt_),
rightEndPt_(basis.rightEndPt_),
weightFn_(basis.weightFn_)
{
// Set up quadrature points for discretized stieltjes procedure
Teuchos::RCP<const Stokhos::LegendreBasis<ordinal_type,value_type> > quadBasis =
Teuchos::rcp(new Stokhos::LegendreBasis<ordinal_type,value_type>(this->p));
quadBasis->getQuadPoints(200*this->p, quad_points, quad_weights, quad_values);
// Compute coefficients in 3-term recurrsion
computeRecurrenceCoefficients(p+1, this->alpha, this->beta, this->delta,
this->gamma);
// Setup rest of recurrence basis
this->setup();
}
template <typename ordinal_type, typename value_type>
Stokhos::DiscretizedStieltjesBasis<ordinal_type,value_type>::
~DiscretizedStieltjesBasis()
{
}
template <typename ordinal_type, typename value_type>
bool
Stokhos::DiscretizedStieltjesBasis<ordinal_type,value_type>::
computeRecurrenceCoefficients(ordinal_type k,
Teuchos::Array<value_type>& alpha,
Teuchos::Array<value_type>& beta,
Teuchos::Array<value_type>& delta,
Teuchos::Array<value_type>& gamma) const
{
//The Discretized Stieltjes polynomials are defined by a recurrance relation,
//P_n+1 = \gamma_n+1[(x-\alpha_n) P_n - \beta_n P_n-1].
//The alpha and beta coefficients are generated first using the
//discritized stilges procidure described in "On the Calculation of DiscretizedStieltjes Polynomials and Quadratures",
//Robin P. Sagar, Vedene H. Smith. The gamma coefficients are then optionally set so that each
//polynomial has norm 1. If normalization is not enabled then the gammas are set to 1.
scaleFactor = 1;
//First renormalize the weight function so that it has measure 1.
value_type oneNorm = expectedValue_J_nsquared(0, alpha, beta);
//future evaluations of the weight function will scale it by this factor.
scaleFactor = 1/oneNorm;
value_type integral2;
//NOTE!! This evaluation of 'expectedValue_J_nsquared(0)' is different
//from the one above since we rescaled the weight. Don't combine
//the two!!!
value_type past_integral = expectedValue_J_nsquared(0, alpha, beta);
alpha[0] = expectedValue_tJ_nsquared(0, alpha, beta)/past_integral;
//beta[0] := \int_-c^c w(x) dx.
beta[0] = 1;
delta[0] = 1;
gamma[0] = 1;
//These formulas are from the above reference.
for (ordinal_type n = 1; n<k; n++){
integral2 = expectedValue_J_nsquared(n, alpha, beta);
alpha[n] = expectedValue_tJ_nsquared(n, alpha, beta)/integral2;
beta[n] = integral2/past_integral;
past_integral = integral2;
delta[n] = 1.0;
gamma[n] = 1.0;
}
return false;
}
template <typename ordinal_type, typename value_type>
value_type
Stokhos::DiscretizedStieltjesBasis<ordinal_type,value_type>::
evaluateWeight(const value_type& x) const
{
return (x < leftEndPt_ || x > rightEndPt_) ? 0: scaleFactor*weightFn_(x);
}
template <typename ordinal_type, typename value_type>
value_type
Stokhos::DiscretizedStieltjesBasis<ordinal_type,value_type>::
expectedValue_tJ_nsquared(const ordinal_type& order,
const Teuchos::Array<value_type>& alpha,
const Teuchos::Array<value_type>& beta) const
{
//Impliments a gaussian quadrature routine to evaluate the integral,
// \int_-c^c J_n(x)^2w(x)dx. This is needed to compute the recurrance coefficients.
value_type integral = 0;
for(ordinal_type quadIdx = 0;
quadIdx < static_cast<ordinal_type>(quad_points.size()); quadIdx++) {
value_type x = (rightEndPt_ - leftEndPt_)*.5*quad_points[quadIdx] +
(rightEndPt_ + leftEndPt_)*.5;
value_type val = evaluateRecurrence(x,order,alpha,beta);
integral += x*val*val*evaluateWeight(x)*quad_weights[quadIdx];
}
return integral*(rightEndPt_ - leftEndPt_);
}
template <typename ordinal_type, typename value_type>
value_type
Stokhos::DiscretizedStieltjesBasis<ordinal_type,value_type>::
expectedValue_J_nsquared(const ordinal_type& order,
const Teuchos::Array<value_type>& alpha,
const Teuchos::Array<value_type>& beta) const
{
//Impliments a gaussian quadrature routineroutine to evaluate the integral,
// \int_-c^c J_n(x)^2w(x)dx. This is needed to compute the recurrance coefficients.
value_type integral = 0;
for(ordinal_type quadIdx = 0;
quadIdx < static_cast<ordinal_type>(quad_points.size()); quadIdx++){
value_type x = (rightEndPt_ - leftEndPt_)*.5*quad_points[quadIdx] +
(rightEndPt_ + leftEndPt_)*.5;
value_type val = evaluateRecurrence(x,order,alpha,beta);
integral += val*val*evaluateWeight(x)*quad_weights[quadIdx];
}
return integral*(rightEndPt_ - leftEndPt_);
}
template <typename ordinal_type, typename value_type>
value_type
Stokhos::DiscretizedStieltjesBasis<ordinal_type, value_type>::
eval_inner_product(const ordinal_type& order1, const ordinal_type& order2) const
{
//Impliments a gaussian quadrature routine to evaluate the integral,
// \int_-c^c J_n(x)J_m w(x)dx. This method is intended to allow the user to
// test for orthogonality and proper normalization.
value_type integral = 0;
for(ordinal_type quadIdx = 0;
quadIdx < static_cast<ordinal_type>(quad_points.size()); quadIdx++){
value_type x = (rightEndPt_ - leftEndPt_)*.5*quad_points[quadIdx] +
(rightEndPt_ + leftEndPt_)*.5;
integral += this->evaluate(x,order1)*this->evaluate(x,order2)*evaluateWeight(x)*quad_weights[quadIdx];
}
return integral*(rightEndPt_ - leftEndPt_);
}
template <typename ordinal_type, typename value_type>
value_type
Stokhos::DiscretizedStieltjesBasis<ordinal_type, value_type>::
evaluateRecurrence(const value_type& x,
ordinal_type k,
const Teuchos::Array<value_type>& alpha,
const Teuchos::Array<value_type>& beta) const
{
if (k == 0)
return value_type(1.0);
else if (k == 1)
return x-alpha[0];
value_type v0 = value_type(1.0);
value_type v1 = x-alpha[0]*v0;
value_type v2 = value_type(0.0);
for (ordinal_type i=2; i<=k; i++) {
v2 = (x-alpha[i-1])*v1 - beta[i-1]*v0;
v0 = v1;
v1 = v2;
}
return v2;
}
template <typename ordinal_type, typename value_type>
Teuchos::RCP<Stokhos::OneDOrthogPolyBasis<ordinal_type,value_type> >
Stokhos::DiscretizedStieltjesBasis<ordinal_type, value_type>::
cloneWithOrder(ordinal_type p) const
{
return Teuchos::rcp(new Stokhos::DiscretizedStieltjesBasis<ordinal_type,value_type>(p,*this));
}
|