This file is indexed.

/usr/include/trilinos/Stokhos_GramSchmidtBasis.hpp is in libtrilinos-stokhos-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
// $Id$ 
// $Source$ 
// @HEADER
// ***********************************************************************
// 
//                           Stokhos Package
//                 Copyright (2009) Sandia Corporation
// 
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// 
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
// 
// ***********************************************************************
// @HEADER

#ifndef STOKHOS_GRAMSCHMIDTBASIS_HPP
#define STOKHOS_GRAMSCHMIDTBASIS_HPP

#include "Teuchos_RCP.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"

#include "Stokhos_OrthogPolyBasis.hpp"

namespace Stokhos {

  /*! 
   * \brief Transforms a non-orthogonal multivariate basis to an orthogonal one 
   * using the Gram-Schmit procedure.
   */
  /*!
   * Given a basis \f$\{\Psi_i\}\f$ with an inner product defined by
   * \f[
   *     (\Psi_i,\Psi_j) = \sum_{k=0}^Q w_k\Psi_i(x_k)\Psi_j(x_k)
   * \f]
   * where \f$\{x_k\}\f$ and \f$\{w_k\}\f$ are a set of \f$Q\f$ quadrature 
   * points and weights, this class generates a new basis 
   * \f$\{\tilde{\Psi}_i\}\f$ that satisfies 
   * \f$ (\Psi_i,\Psi_j) = \delta_{ij}\f$.
   *
   * NOTE:  Currently on the classical Gram-Schmidt algorithm is
   * implemented.
   */
  template <typename ordinal_type, typename value_type>
  class GramSchmidtBasis : 
    public OrthogPolyBasis<ordinal_type,value_type> {
  public:

    //! Constructor
    /*!
     * \param basis basis defining \f$\{\Psi_i\}\f$
     * \param points quadrature points f$\{x_k\}\f$
     * \param weights quadrature weights \f$\{w_k\}\f$
     * \param sparse_tol tolerance for dropping terms in sparse tensors
     */
    GramSchmidtBasis(
     const Teuchos::RCP<const OrthogPolyBasis<ordinal_type,value_type> >& basis,
     const Teuchos::Array< Teuchos::Array<value_type> >& points,
     const Teuchos::Array<value_type>& weights,
     const value_type& sparse_tol = 1.0e-15);

    //! Destructor
    virtual ~GramSchmidtBasis();

    //! \name Implementation of Stokhos::OrthogPolyBasis methods
    //@{

    //! Return order of basis
    ordinal_type order() const;

    //! Return dimension of basis
    ordinal_type dimension() const;

    //! Return total size of basis
    virtual ordinal_type size() const;

    //! Return array storing norm-squared of each basis polynomial
    /*!
     * Entry \f$l\f$ of returned array is given by \f$\langle\Psi_l^2\rangle\f$
     * for \f$l=0,\dots,P\f$ where \f$P\f$ is size()-1.
     */
    virtual const Teuchos::Array<value_type>& norm_squared() const;

    //! Return norm squared of basis polynomial \c i.
    virtual const value_type& norm_squared(ordinal_type i) const;

    //! Compute triple product tensor
    /*!
     * The \f$(i,j,k)\f$ entry of the tensor \f$C_{ijk}\f$ is given by
     * \f$C_{ijk} = \langle\Psi_i\Psi_j\Psi_k\rangle\f$ where \f$\Psi_l\f$
     * represents basis polynomial \f$l\f$ and \f$i,j,k=0,\dots,P\f$ where
     * \f$P\f$ is size()-1.
     */
    virtual 
    Teuchos::RCP< Stokhos::Sparse3Tensor<ordinal_type, value_type> > 
    computeTripleProductTensor() const;

    //! Compute linear triple product tensor where k = 0,1,..,d
    virtual 
    Teuchos::RCP< Stokhos::Sparse3Tensor<ordinal_type, value_type> > 
    computeLinearTripleProductTensor() const;

    //! Evaluate basis polynomial \c i at zero
    virtual value_type evaluateZero(ordinal_type i) const;

    //! Evaluate basis polynomials at given point \c point
    /*!
     * Size of returned array is given by size(), and coefficients are
     * ordered from order 0 up to size size()-1.
     */
    virtual void evaluateBases(
      const Teuchos::ArrayView<const value_type>& point,
      Teuchos::Array<value_type>& basis_vals) const;

    //! Print basis to stream \c os
    virtual void print(std::ostream& os) const;

    //! Return string name of basis
    virtual const std::string& getName() const;

    //@}

    //! Transform coefficients from original basis to this basis
    void transformCoeffs(const value_type *in, value_type *out) const;

  private:

    // Prohibit copying
    GramSchmidtBasis(const GramSchmidtBasis&);

    // Prohibit Assignment
    GramSchmidtBasis& operator=(const GramSchmidtBasis& b);
    
  protected:

    //! Name of basis
    std::string name;

    //! Original basis (not orthogonal w.r.t. inner product)
    Teuchos::RCP<const OrthogPolyBasis<ordinal_type, value_type> > basis;

    //! Quadrature weights defining inner product
    Teuchos::Array<value_type> weights;

    //! Quadrature basis values defining inner product
    Teuchos::Array< Teuchos::Array<value_type> > basis_values;

    //! Tolerance for computing sparse Cijk
    value_type sparse_tol;

    //! Total order of basis
    ordinal_type p;

    //! Total dimension of basis
    ordinal_type d;

    //! Total size of basis
    ordinal_type sz;

    //! Norms
    Teuchos::Array<value_type> norms;

    //! Matrix storing gram-schmidt coefficients
    Teuchos::SerialDenseMatrix<ordinal_type, value_type> gs_mat;

    //! Temporary array for basis evaluation
    mutable Teuchos::Array<value_type> basis_vals_tmp;

  }; // class GramSchmidtBasis

} // Namespace Stokhos

// Include template definitions
#include "Stokhos_GramSchmidtBasisImp.hpp"

#endif