This file is indexed.

/usr/include/trilinos/Stokhos_KL_ExponentialRandomField.hpp is in libtrilinos-stokhos-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
// @HEADER
// ***********************************************************************
//
//                           Stokhos Package
//                 Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
//
// ***********************************************************************
// @HEADER

#ifndef STOKHOS_KL_EXPONENTIAL_RANDOM_FIELD_HPP
#define STOKHOS_KL_EXPONENTIAL_RANDOM_FIELD_HPP

#include "Teuchos_ParameterList.hpp"
#include "Teuchos_PromotionTraits.hpp"
#include "Kokkos_Core.hpp"
#include "Kokkos_View.hpp"

#include "Stokhos_KL_OneDExponentialEigenPair.hpp"
#include "Stokhos_KL_ProductEigenPair.hpp"

namespace Stokhos {

  namespace KL {

    //! Class representing a %KL expansion of an exponential random field
    /*!
     * This class provides a means for evaluating a random field
     * \f$a(x,\theta)\f$, \f$x\in D\f$, \f$\theta\in\Omega\f$ through the
     * %KL expansion
     * \f[
     *     a(x,\theta) \approx a_0 +
     *       \sigma\sum_{k=1}^M \sqrt{\lambda_k}b_k(x)\xi_k(\theta)
     * \f]
     * where \f$D\f$ is a \f$d\f$-dimensional hyper-rectangle, for the case
     * when the covariance function of \f$a\f$ is exponential:
     * \f[
     *     \mbox{cov}(x,x') = \sigma\exp(-|x_1-x_1'|/L_1-...-|x_d-x_d'|/L_d).
     * \f]
     * In this case, the covariance function and domain factor into a product
     * 1-dimensional covariance functions over 1-dimensional domains, and thus
     * the eigenfunctions \f$b_k\f$ and eigenvalues \f$\lambda_k\f$ factor into
     * a product of corresponding 1-dimensional eigenfunctions and values.
     * These are computed by the OneDExponentialCovarianceFunction class
     * For a given value of \f$M\f$, the code works by computing the \f$M\f$
     * eigenfunctions for each direction using this class.
     * Then all possible tensor products of these
     * one-dimensional eigenfunctions are formed, with corresponding
     * eigenvalue given by the product of the one-dimensional eigenvalues.
     * These eigenvalues are then sorted in increasing order, and the first
     * \f$M\f$ are chosen as the \f$M\f$ %KL eigenpairs.  Then given values
     * for the random variables \f$\xi_k\f$, the class provides a routine
     * for evaluating a realization of the random field.
     *
     * The idea for this approach was provided by Chris Miller.
     *
     * All data is passed into this class through a Teuchos::ParameterList,
     * which accepts the following parameters:
     * <ul>
     *   <li> "Number of KL Terms" -- [int] (Required)
     *        Number \f$M\f$ of %KL terms
     *   <li> "Domain Upper Bounds" -- [Teuchos::Array<value_type>] (Required)
     *        Domain upper bounds \f$b_i\f$ for each dimension \f$i\f$
     *   <li> "Domain Lower Bounds" -- [Teuchos::Array<value_type>] (Required)
     *        Domain lower bounds \f$a_i\f$ for each dimension \f$i\f$
     *   <li> "Correlation Lengths" -- [Teuchos::Array<value_type>[ (Required)
     *        Correlation length \f$L_i\f$ for each dimension \f$i\f$
     *   <li> "Mean" -- [value_type] (Required)
     *        Mean \f$a_0\f$ of the random field
     *   <li> "Standard Deviation" -- [value_type] (Required)
     *        Standard devation \f$\sigma\f$ of the random field
     * </ul>
     * Additionally parameters for the OneDExponentialCovarianceFunction are
     * also accepted.
     */
    template <typename value_type,
              typename execution_space = Kokkos::DefaultExecutionSpace>
    class ExponentialRandomField {
    public:

      typedef ExponentialOneDEigenFunction<value_type> one_d_eigen_func_type;
      typedef OneDEigenPair<one_d_eigen_func_type> one_d_eigen_pair_type;
      typedef ProductEigenPair<one_d_eigen_func_type,execution_space> product_eigen_pair_type;
      typedef Kokkos::View<one_d_eigen_func_type**,execution_space> eigen_func_array_type;
      typedef Kokkos::View<value_type*,execution_space> eigen_value_array_type;

      //! Default constructor
      ExponentialRandomField() : num_KL(0), mean(0), std_dev(0) {}

      //! Constructor
      ExponentialRandomField(Teuchos::ParameterList& solverParams);

      //! Destructor
      KOKKOS_INLINE_FUNCTION
      ~ExponentialRandomField() {}

      //! Return spatial dimension of the field
      KOKKOS_INLINE_FUNCTION
      int spatialDimension() const { return dim; }

      //! Return stochastic dimension of the field
      KOKKOS_INLINE_FUNCTION
      int stochasticDimension() const { return num_KL; }

      //! Evaluate random field at a point
      template <typename point_type, typename rv_type>
      KOKKOS_INLINE_FUNCTION
      typename Teuchos::PromotionTraits<typename rv_type::value_type,
                                        value_type>::promote
      evaluate(const point_type& point,
               const rv_type& random_variables) const;

      //! Evaluate mean of random field at a point
      template <typename point_type>
      KOKKOS_INLINE_FUNCTION
      value_type evaluate_mean(const point_type& point) const { return mean; }

      //! Evaluate standard deviation of random field at a point
      template <typename point_type>
      KOKKOS_INLINE_FUNCTION
      value_type evaluate_standard_deviation(const point_type& point) const;

      //! Evaluate given eigenfunction at a point
      template <typename point_type>
      value_type
      KOKKOS_INLINE_FUNCTION
      evaluate_eigenfunction(const point_type& point, int i) const;

      //! Return eigenvalue
      value_type
      KOKKOS_INLINE_FUNCTION
      eigenvalue(int i) const { return product_eigen_values(i); }

      //! Print %KL expansion
      void print(std::ostream& os) const;

    protected:

      //! Number of %KL terms
      int num_KL;

      //! Dimension of expansion
      int dim;

      //! Mean of random field
      value_type mean;

      //! Standard deviation of random field
      value_type std_dev;

      //! Product eigenfunctions
      eigen_func_array_type product_eigen_funcs;

      //! Product eigenvalues
      eigen_value_array_type product_eigen_values;

    }; // class ExponentialRandomField

  } // namespace KL

} // namespace Stokhos

// Include template definitions
#include "Stokhos_KL_ExponentialRandomFieldImp.hpp"

#endif // STOKHOS_KL_EXPONENTIAL_RANDOM_FIELD_HPP