This file is indexed.

/usr/include/trilinos/Stokhos_KL_OneDExponentialCovarianceFunctionImp.hpp is in libtrilinos-stokhos-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
// @HEADER
// ***********************************************************************
//
//                           Stokhos Package
//                 Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
//
// ***********************************************************************
// @HEADER

#include "Teuchos_Assert.hpp"

template <typename value_type>
Stokhos::KL::OneDExponentialCovarianceFunction<value_type>::
OneDExponentialCovarianceFunction(int M,
                                  const value_type& a,
                                  const value_type& b,
                                  const value_type& L_,
                                  const int dim_name,
                                  Teuchos::ParameterList& solverParams) :
  L(L_),
  eig_pair(M)
{
  // Get parameters with default values
  magnitude_type eps = solverParams.get("Bound Perturbation Size", 1e-6);
  magnitude_type tol = solverParams.get("Nonlinear Solver Tolerance", 1e-10);
  int max_it = solverParams.get("Maximum Nonlinear Solver Iterations", 100);

  value_type aa, alpha, omega, lambda;
  int i=0;
  double pi = 4.0*std::atan(1.0);
  int idx = 0;

  aa = (b-a)/2.0;
  while (i < M-1) {
    alpha = aa/L;
    omega = bisection(EigFuncCos(alpha), idx*pi, idx*pi+pi/2.0-eps,
                      tol, max_it) / aa;
    lambda = 2.0*L/(L*L*omega*omega + 1.0);
    eig_pair[i].eig_val = lambda;
    eig_pair[i].eig_func = ExponentialOneDEigenFunction<value_type>(
      ExponentialOneDEigenFunction<value_type>::COS, a, b, omega, dim_name);
    i++;

    omega = bisection(EigFuncSin(alpha), idx*pi+pi/2.0+eps, (idx+1)*pi,
                      tol, max_it) / aa;
    lambda = 2.0*L/(L*L*omega*omega + 1.0);
    eig_pair[i].eig_val = lambda;
    eig_pair[i].eig_func = ExponentialOneDEigenFunction<value_type>(
      ExponentialOneDEigenFunction<value_type>::SIN, a, b, omega, dim_name);
    i++;

    idx++;
  }
  if (i < M) {
    omega = bisection(EigFuncCos(alpha), idx*pi, idx*pi+pi/2.0-eps,
                      tol, max_it) / aa;
    lambda = 2.0*L/(L*L*omega*omega + 1.0);
    eig_pair[i].eig_val = lambda;
    eig_pair[i].eig_func = ExponentialOneDEigenFunction<value_type>(
      ExponentialOneDEigenFunction<value_type>::COS, a, b, omega, dim_name);
  }
}

template <typename value_type>
template <class Func>
value_type
Stokhos::KL::OneDExponentialCovarianceFunction<value_type>::
newton(const Func& func, const value_type& a, const value_type& b,
       magnitude_type tol, int max_num_its)
{
  value_type u = (a+b)/2.0;
  value_type f = func.eval(u);
  int nit = 0;
  while (Teuchos::ScalarTraits<value_type>::magnitude(f) > tol &&
         nit < max_num_its) {
    std::cout << "u = " << u << " f = " << f << std::endl;
    value_type dfdu = func.deriv(u);
    u -= f / dfdu;
    f = func.eval(u);
    ++nit;
  }
  TEUCHOS_TEST_FOR_EXCEPTION(nit >= max_num_its, std::logic_error,
                     "Nonlinear solver did not converge!" << std::endl);

  return u;
}

template <typename value_type>
template <class Func>
value_type
Stokhos::KL::OneDExponentialCovarianceFunction<value_type>::
bisection(const Func& func, const value_type& a, const value_type& b,
          magnitude_type tol, int max_num_its)
{
  value_type low, hi;
  value_type fa = func.eval(a);
  value_type fb = func.eval(b);
  TEUCHOS_TEST_FOR_EXCEPTION(fa*fb > value_type(0.0), std::logic_error,
    "Bounds [" << a << "," << b << "] must bracket the root!" << std::endl <<
    "f(a) = " << fa << ", f(b) = " << fb << std::endl)

  if (fa <= 0.0) {
    low = a;
    hi = b;
  }
  else {
    low = b;
    hi = a;
  }

  int nit = 0;
  value_type u = low + (hi - low)/2.0;
  value_type f = func.eval(u);
  while ((Teuchos::ScalarTraits<value_type>::magnitude(hi - low) > 2.0*tol ||
          Teuchos::ScalarTraits<value_type>::magnitude(f) > tol) &&
          nit < max_num_its) {
    //std::cout << "u = " << u << " f = " << f << std::endl;
    if (f <= 0.0)
      low = u;
    else
      hi = u;
    u = low + (hi - low)/2.0;
    f = func.eval(u);
    ++nit;
  }
  TEUCHOS_TEST_FOR_EXCEPTION(nit >= max_num_its, std::logic_error,
                     "Nonlinear solver did not converge!" << std::endl);

  return u;
}