/usr/include/trilinos/Stokhos_KL_OneDExponentialCovarianceFunctionImp.hpp is in libtrilinos-stokhos-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 | // @HEADER
// ***********************************************************************
//
// Stokhos Package
// Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
//
// ***********************************************************************
// @HEADER
#include "Teuchos_Assert.hpp"
template <typename value_type>
Stokhos::KL::OneDExponentialCovarianceFunction<value_type>::
OneDExponentialCovarianceFunction(int M,
const value_type& a,
const value_type& b,
const value_type& L_,
const int dim_name,
Teuchos::ParameterList& solverParams) :
L(L_),
eig_pair(M)
{
// Get parameters with default values
magnitude_type eps = solverParams.get("Bound Perturbation Size", 1e-6);
magnitude_type tol = solverParams.get("Nonlinear Solver Tolerance", 1e-10);
int max_it = solverParams.get("Maximum Nonlinear Solver Iterations", 100);
value_type aa, alpha, omega, lambda;
int i=0;
double pi = 4.0*std::atan(1.0);
int idx = 0;
aa = (b-a)/2.0;
while (i < M-1) {
alpha = aa/L;
omega = bisection(EigFuncCos(alpha), idx*pi, idx*pi+pi/2.0-eps,
tol, max_it) / aa;
lambda = 2.0*L/(L*L*omega*omega + 1.0);
eig_pair[i].eig_val = lambda;
eig_pair[i].eig_func = ExponentialOneDEigenFunction<value_type>(
ExponentialOneDEigenFunction<value_type>::COS, a, b, omega, dim_name);
i++;
omega = bisection(EigFuncSin(alpha), idx*pi+pi/2.0+eps, (idx+1)*pi,
tol, max_it) / aa;
lambda = 2.0*L/(L*L*omega*omega + 1.0);
eig_pair[i].eig_val = lambda;
eig_pair[i].eig_func = ExponentialOneDEigenFunction<value_type>(
ExponentialOneDEigenFunction<value_type>::SIN, a, b, omega, dim_name);
i++;
idx++;
}
if (i < M) {
omega = bisection(EigFuncCos(alpha), idx*pi, idx*pi+pi/2.0-eps,
tol, max_it) / aa;
lambda = 2.0*L/(L*L*omega*omega + 1.0);
eig_pair[i].eig_val = lambda;
eig_pair[i].eig_func = ExponentialOneDEigenFunction<value_type>(
ExponentialOneDEigenFunction<value_type>::COS, a, b, omega, dim_name);
}
}
template <typename value_type>
template <class Func>
value_type
Stokhos::KL::OneDExponentialCovarianceFunction<value_type>::
newton(const Func& func, const value_type& a, const value_type& b,
magnitude_type tol, int max_num_its)
{
value_type u = (a+b)/2.0;
value_type f = func.eval(u);
int nit = 0;
while (Teuchos::ScalarTraits<value_type>::magnitude(f) > tol &&
nit < max_num_its) {
std::cout << "u = " << u << " f = " << f << std::endl;
value_type dfdu = func.deriv(u);
u -= f / dfdu;
f = func.eval(u);
++nit;
}
TEUCHOS_TEST_FOR_EXCEPTION(nit >= max_num_its, std::logic_error,
"Nonlinear solver did not converge!" << std::endl);
return u;
}
template <typename value_type>
template <class Func>
value_type
Stokhos::KL::OneDExponentialCovarianceFunction<value_type>::
bisection(const Func& func, const value_type& a, const value_type& b,
magnitude_type tol, int max_num_its)
{
value_type low, hi;
value_type fa = func.eval(a);
value_type fb = func.eval(b);
TEUCHOS_TEST_FOR_EXCEPTION(fa*fb > value_type(0.0), std::logic_error,
"Bounds [" << a << "," << b << "] must bracket the root!" << std::endl <<
"f(a) = " << fa << ", f(b) = " << fb << std::endl)
if (fa <= 0.0) {
low = a;
hi = b;
}
else {
low = b;
hi = a;
}
int nit = 0;
value_type u = low + (hi - low)/2.0;
value_type f = func.eval(u);
while ((Teuchos::ScalarTraits<value_type>::magnitude(hi - low) > 2.0*tol ||
Teuchos::ScalarTraits<value_type>::magnitude(f) > tol) &&
nit < max_num_its) {
//std::cout << "u = " << u << " f = " << f << std::endl;
if (f <= 0.0)
low = u;
else
hi = u;
u = low + (hi - low)/2.0;
f = func.eval(u);
++nit;
}
TEUCHOS_TEST_FOR_EXCEPTION(nit >= max_num_its, std::logic_error,
"Nonlinear solver did not converge!" << std::endl);
return u;
}
|