This file is indexed.

/usr/include/trilinos/Stokhos_LinearSparse3Tensor.hpp is in libtrilinos-stokhos-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
// @HEADER
// ***********************************************************************
//
//                           Stokhos Package
//                 Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
//
// ***********************************************************************
// @HEADER

#ifndef STOKHOS_LINEAR_SPARSE_3_TENSOR_HPP
#define STOKHOS_LINEAR_SPARSE_3_TENSOR_HPP

#include "Kokkos_Core.hpp"

#include "Stokhos_Multiply.hpp"
#include "Stokhos_ProductBasis.hpp"
#include "Stokhos_Sparse3Tensor.hpp"
#include "Teuchos_ParameterList.hpp"
#include "Stokhos_TinyVec.hpp"

//----------------------------------------------------------------------------
//----------------------------------------------------------------------------

namespace Stokhos {

/** \brief  Sparse product tensor with replicated entries
 *          to provide subsets with a given coordinate.
 */
template< typename ValueType , class ExecutionSpace , int BlockSize >
class LinearSparse3Tensor {
public:

  typedef ExecutionSpace                       execution_space ;
  typedef typename execution_space::size_type  size_type ;
  typedef ValueType                        value_type ;

  static const int block_size = BlockSize;

private:

  typedef Kokkos::View< value_type[], execution_space > value_array_type ;

  value_array_type   m_value ;
  size_type          m_dim ;
  size_type          m_aligned_dim ;
  size_type          m_nnz ;
  size_type          m_flops ;
  bool               m_symmetric ;

public:

  inline
  ~LinearSparse3Tensor() {}

  inline
  LinearSparse3Tensor() :
    m_value() ,
    m_dim() ,
    m_aligned_dim(),
    m_nnz(0) ,
    m_flops(0) ,
    m_symmetric(false) {}

  inline
  LinearSparse3Tensor( const LinearSparse3Tensor & rhs ) :
    m_value( rhs.m_value ) ,
    m_dim( rhs.m_dim ),
    m_aligned_dim( rhs.m_aligned_dim ),
    m_nnz( rhs.m_nnz ) ,
    m_flops( rhs.m_flops ) ,
    m_symmetric( rhs.m_symmetric ) {}

  inline
  LinearSparse3Tensor & operator = ( const LinearSparse3Tensor & rhs )
  {
    m_value = rhs.m_value ;
    m_dim = rhs.m_dim ;
    m_aligned_dim = rhs.m_aligned_dim;
    m_nnz = rhs.m_nnz;
    m_flops = rhs.m_flops;
    m_symmetric = rhs.m_symmetric;
    return *this ;
  }

  /** \brief  Dimension of the tensor. */
  KOKKOS_INLINE_FUNCTION
  size_type dimension() const { return m_dim ; }

  /** \brief  Dimension of the tensor. */
  KOKKOS_INLINE_FUNCTION
  size_type aligned_dimension() const { return m_aligned_dim ; }

  /** \brief  Number of sparse entries. */
  KOKKOS_INLINE_FUNCTION
  size_type entry_count() const
  { return m_value.dimension_0(); }

  /** \brief Is tensor built from symmetric PDFs. */
   KOKKOS_INLINE_FUNCTION
   bool symmetric() const
   { return m_symmetric; }

  /** \brief  Value for entry 'entry' */
  KOKKOS_INLINE_FUNCTION
  const value_type & value( const size_type entry ) const
  { return m_value( entry ); }

  /** \brief Number of non-zero's */
  KOKKOS_INLINE_FUNCTION
  size_type num_non_zeros() const
  { return m_nnz; }

  /** \brief Number flop's per multiply-add */
  KOKKOS_INLINE_FUNCTION
  size_type num_flops() const
  { return m_flops; }

  template <typename OrdinalType>
  static LinearSparse3Tensor
  create( const Stokhos::ProductBasis<OrdinalType,ValueType>& basis,
          const Stokhos::Sparse3Tensor<OrdinalType,ValueType>& Cijk,
          const Teuchos::ParameterList& params)
  {
    const bool symmetric = params.get<bool>("Symmetric");

    // Allocate tensor data -- currently assuming isotropic
    const size_type dim = basis.size();
    LinearSparse3Tensor tensor ;
    tensor.m_dim = dim;
    tensor.m_aligned_dim = dim;
    if (tensor.m_aligned_dim % block_size)
      tensor.m_aligned_dim += block_size - tensor.m_aligned_dim % block_size;
    tensor.m_symmetric = symmetric;
    tensor.m_nnz = symmetric ? 2 : 3 ;
    tensor.m_value = value_array_type( "value" , tensor.m_nnz );

    // Create mirror, is a view if is host memory
    typename value_array_type::HostMirror
      host_value = Kokkos::create_mirror_view( tensor.m_value );

    // Get Cijk values
    Teuchos::Array< Teuchos::RCP<const Stokhos::OneDOrthogPolyBasis<OrdinalType,ValueType> > > bases = basis.getCoordinateBases();
    Teuchos::RCP< Stokhos::Dense3Tensor<OrdinalType,ValueType> > cijk =
      bases[0]->computeTripleProductTensor();
    // For non-isotropic, need to take products of these over basis components
    host_value(0) = (*cijk)(0,0,0);
    host_value(1) = (*cijk)(0,1,1);
    if (!symmetric)
      host_value(2) = (*cijk)(1,1,1);

    // Copy data to device if necessary
    Kokkos::deep_copy( tensor.m_value , host_value );

    tensor.m_flops = 8*dim;
    if (!symmetric)
      tensor.m_flops += 2*dim ;

    return tensor ;
  }
};

template< class Device , typename OrdinalType , typename ValueType , int BlockSize >
LinearSparse3Tensor<ValueType, Device,BlockSize>
create_linear_sparse_3_tensor(
  const Stokhos::ProductBasis<OrdinalType,ValueType>& basis,
  const Stokhos::Sparse3Tensor<OrdinalType,ValueType>& Cijk,
  const Teuchos::ParameterList& params)
{
  return LinearSparse3Tensor<ValueType, Device, BlockSize>::create(
    basis, Cijk, params );
}

template < typename ValueType, typename Device, int BlockSize >
class BlockMultiply< LinearSparse3Tensor< ValueType , Device , BlockSize > >
{
public:

  typedef typename Device::size_type size_type ;
  typedef LinearSparse3Tensor< ValueType , Device , BlockSize > tensor_type ;

  template< typename MatrixValue , typename VectorValue >
  KOKKOS_INLINE_FUNCTION
  static void apply( const tensor_type & tensor ,
                     const MatrixValue * const a ,
                     const VectorValue * const x ,
                           VectorValue * const y )
  {
    const size_type block_size = tensor_type::block_size;
    typedef TinyVec<ValueType,block_size,true> TV;
    const size_type dim = tensor.dimension();

    const ValueType c0 = tensor.value(0);
    const ValueType c1 = tensor.value(1);
    const ValueType a0 = a[0];
    const ValueType x0 = x[0];

    if (block_size > 1) {

      TV vc0(c0), vc1(c1), va0(a0), vx0(x0), vy0;
      TV ai, ai2, xi, yi;

      const MatrixValue *aa = a;
      const VectorValue *xx = x;
      VectorValue *yy = y;
      vy0.zero();

      const size_type nBlock = dim / block_size;
      const size_type iEnd = nBlock * block_size;

      if (tensor.symmetric()) {

        size_type i=0;
        for ( ; i < iEnd; i+=block_size,aa+=block_size,xx+=block_size,yy+=block_size) {
          ai.aligned_load(aa);
          ai2 = ai;
          xi.aligned_load(xx);
          yi.aligned_load(yy);

          // y[i] += c1*(a0*xi + ai*x0);
          ai.times_equal(vx0);
          ai2.times_equal(xi);
          xi.times_equal(va0);
          xi.plus_equal(ai);
          xi.times_equal(vc1);
          yi.plus_equal(xi);
          yi.aligned_scatter(yy);

          // y0  += c1*ai*xi;
          ai2.times_equal(vc1);
          vy0.plus_equal(ai2);
        }
        ValueType y0 = vy0.sum();

        // Do remaining entries with a scalar loop
        for ( ; i < dim; ++i) {
          const ValueType ai = *aa++;
          const ValueType xi = *xx++;
          *yy++ += c1*(a0*xi + ai*x0);
          y0  += c1*ai*xi;
        }
        y[0] += y0 + (c0-3.0*c1)*a0*x0;
      }
      else {

        const ValueType c2 = tensor.value(2);
        TV vc2(c2);
        size_type i=0;
        for ( ; i < iEnd; i+=block_size,aa+=block_size,xx+=block_size,yy+=block_size) {
          ai.aligned_load(aa);
          ai2 = ai;
          xi.aligned_load(xx);
          yi.aligned_load(yy);

          // y[i] += c1*(a0*xi + ai*x0) + c2*aixi;
          ai.times_equal(vx0);
          ai2.times_equal(xi);
          xi.times_equal(va0);
          xi.plus_equal(ai);
          xi.times_equal(vc1);
          yi.plus_equal(xi);
          ai = ai2;
          ai.times_equal(vc2);
          yi.plus_equal(ai);
          yi.aligned_scatter(yy);

          // y0  += c1*aixi;
          ai2.times_equal(vc1);
          vy0.plus_equal(ai2);
        }
        ValueType y0 = vy0.sum();

        // Do remaining entries with a scalar loop
        for ( ; i < dim; ++i) {
          const ValueType ai = *aa++;
          const ValueType xi = *xx++;
          const ValueType aixi = ai*xi;
          *yy++ += c1*(a0*xi + ai*x0) + c2*aixi;
          y0  += c1*aixi;
        }
        y[0] += y0 + (c0-3.0*c1-c2)*a0*x0;

      }

    }

    else {

      ValueType y0 = c0*a0*x0;

      if (tensor.symmetric()) {

        for ( size_type i = 1; i < dim; ++i) {
          const ValueType ai = a[i];
          const ValueType xi = x[i];
          y[i] += c1*(a0*xi + ai*x0);
          y0  += c1*ai*xi;
        }
        y[0] += y0;

      }
      else {

        const ValueType c2 = tensor.value(2);
        for ( size_type i = 1; i < dim; ++i) {
          const ValueType ai = a[i];
          const ValueType xi = x[i];
          const ValueType aixi = ai*xi;
          y[i] += c1*(a0*xi + ai*x0) + c2*aixi;
          y0  += c1*aixi;
        }
        y[0] += y0;

      }

    }

  }

  KOKKOS_INLINE_FUNCTION
  static size_type matrix_size( const tensor_type & tensor )
  { return tensor.dimension(); }

  KOKKOS_INLINE_FUNCTION
  static size_type vector_size( const tensor_type & tensor )
  { return tensor.dimension(); }
};

} /* namespace Stokhos */

//----------------------------------------------------------------------------
//----------------------------------------------------------------------------

#endif /* #ifndef STOKHOS_LINEAR_SPARSE_3_TENSOR_HPP */