/usr/include/trilinos/Stokhos_RecurrenceBasis.hpp is in libtrilinos-stokhos-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 | // @HEADER
// ***********************************************************************
//
// Stokhos Package
// Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
//
// ***********************************************************************
// @HEADER
#ifndef STOKHOS_RECURRENCEBASIS_HPP
#define STOKHOS_RECURRENCEBASIS_HPP
#include "Stokhos_OneDOrthogPolyBasis.hpp"
namespace Stokhos {
//! Enumerated type for determining Smolyak growth policies
enum GrowthPolicy {
SLOW_GROWTH,
MODERATE_GROWTH
};
/*!
* \brief Implementation of OneDOrthogPolyBasis based on the general
* three-term recurrence relationship:
* \f[
* \gamma_{k+1}\psi_{k+1}(x) =
* (\delta_k x - \alpha_k)\psi_k(x) - \beta_k\psi_{k-1}(x)
* \f]
* for \f$k=0,\dots,P\f$ where \f$\psi_{-1}(x) = 0\f$,
* \f$\psi_{0}(x) = 1/\gamma_0\f$,
* and \f$\beta_{0} = 1 = \int d\lambda\f$.
*/
/*!Derived classes implement the recurrence
* relationship by implementing computeRecurrenceCoefficients(). If
* \c normalize = \c true in the constructor, then the recurrence relationship
* becomes:
* \f[
* \sqrt{\frac{\gamma_{k+1}\beta_{k+1}}{\delta_{k+1}\delta_k}} \psi_{k+1}(x) =
* (x - \alpha_k/\delta_k)\psi_k(x) -
* \sqrt{\frac{\gamma_k\beta_k}{\delta_k\delta_{k-1}}} \psi_{k-1}(x)
* \f]
* for \f$k=0,\dots,P\f$ where \f$\psi_{-1}(x) = 0\f$,
* \f$\psi_{0}(x) = 1/\sqrt{\beta_0}\f$,
* Note that a three term recurrence can always be defined with
* \f$\gamma_k = \delta_k = 1\f$ in which case the polynomials are monic.
* However typical normalizations of some polynomial families (see
* Stokhos::LegendreBasis) require the extra terms. Also, the quadrature
* rule (points and weights) is the same regardless if the polynomials are
* normalized. However the normalization can affect other algorithms.
*/
template <typename ordinal_type, typename value_type>
class RecurrenceBasis :
public OneDOrthogPolyBasis<ordinal_type, value_type> {
public:
//! Destructor
virtual ~RecurrenceBasis();
//! \name Implementation of Stokhos::OneDOrthogPolyBasis methods
//@{
//! Return order of basis (largest monomial degree \f$P\f$).
virtual ordinal_type order() const;
//! Return total size of basis (given by order() + 1).
virtual ordinal_type size() const;
//! Return array storing norm-squared of each basis polynomial
/*!
* Entry \f$l\f$ of returned array is given by \f$\langle\psi_l^2\rangle\f$
* for \f$l=0,\dots,P\f$ where \f$P\f$ is given by order().
*/
virtual const Teuchos::Array<value_type>& norm_squared() const;
//! Return norm squared of basis polynomial \c i.
virtual const value_type& norm_squared(ordinal_type i) const;
//! Compute triple product tensor
/*!
* The \f$(i,j,k)\f$ entry of the tensor \f$C_{ijk}\f$ is given by
* \f$C_{ijk} = \langle\Psi_i\Psi_j\Psi_k\rangle\f$ where \f$\Psi_l\f$
* represents basis polynomial \f$l\f$ and \f$i,j=0,\dots,P\f$ where
* \f$P\f$ is size()-1 and \f$k=0,\dots,p\f$ where \f$p\f$
* is the supplied \c order.
*
* This method is implemented by computing \f$C_{ijk}\f$ using Gaussian
* quadrature.
*/
virtual Teuchos::RCP< Stokhos::Dense3Tensor<ordinal_type, value_type> >
computeTripleProductTensor() const;
//! Compute triple product tensor
/*!
* The \f$(i,j,k)\f$ entry of the tensor \f$C_{ijk}\f$ is given by
* \f$C_{ijk} = \langle\Psi_i\Psi_j\Psi_k\rangle\f$ where \f$\Psi_l\f$
* represents basis polynomial \f$l\f$ and \f$i,j=0,\dots,P\f$ where
* \f$P\f$ is size()-1 and \f$k=0,\dots,p\f$ where \f$p\f$
* is the supplied \c order.
*
* This method is implemented by computing \f$C_{ijk}\f$ using Gaussian
* quadrature.
*/
virtual
Teuchos::RCP< Stokhos::Sparse3Tensor<ordinal_type, value_type> >
computeSparseTripleProductTensor(ordinal_type order) const;
//! Compute derivative double product tensor
/*!
* The \f$(i,j)\f$ entry of the tensor \f$B_{ij}\f$ is given by
* \f$B_{ij} = \langle\psi_i'\psi_j\rangle\f$ where \f$\psi_l\f$
* represents basis polynomial \f$l\f$ and \f$i,j=0,\dots,P\f$ where
* \f$P\f$ is the order of the basis.
*
* This method is implemented by computing \f$B_{ij}\f$ using Gaussian
* quadrature.
*/
virtual Teuchos::RCP< Teuchos::SerialDenseMatrix<ordinal_type, value_type> > computeDerivDoubleProductTensor() const;
//! Evaluate each basis polynomial at given point \c point
/*!
* Size of returned array is given by size(), and coefficients are
* ordered from order 0 up to order order().
*/
virtual void evaluateBases(const value_type& point,
Teuchos::Array<value_type>& basis_pts) const;
/*!
* \brief Evaluate basis polynomial given by order \c order at given
* point \c point.
*/
virtual value_type evaluate(const value_type& point,
ordinal_type order) const;
//! Print basis to stream \c os
virtual void print(std::ostream& os) const;
//! Return string name of basis
virtual const std::string& getName() const;
/*!
* \brief Compute quadrature points, weights, and values of
* basis polynomials at given set of points \c points.
*/
/*!
* \c quad_order specifies the order to which the quadrature should be
* accurate, not the number of quadrature points. The number of points
* is given by (\c quad_order + 1) / 2. Note however the passed arrays
* do NOT need to be sized correctly on input as they will be resized
* appropriately.
*
* The quadrature points and weights are computed from the three-term
* recurrence by solving a tri-diagional symmetric eigenvalue problem
* (see Gene H. Golub and John H. Welsch, "Calculation of Gauss Quadrature
* Rules", Mathematics of Computation, Vol. 23, No. 106 (Apr., 1969),
* pp. 221-230).
*/
virtual void
getQuadPoints(ordinal_type quad_order,
Teuchos::Array<value_type>& points,
Teuchos::Array<value_type>& weights,
Teuchos::Array< Teuchos::Array<value_type> >& values) const;
/*!
* Return polynomial degree of exactness for a given number of quadrature
* points.
*/
virtual ordinal_type quadDegreeOfExactness(ordinal_type n) const;
//! Evaluate coefficient growth rule for Smolyak-type bases
virtual ordinal_type coefficientGrowth(ordinal_type n) const;
//! Evaluate point growth rule for Smolyak-type bases
virtual ordinal_type pointGrowth(ordinal_type n) const;
//! Function pointer needed for level_to_order mappings
typedef typename OneDOrthogPolyBasis<ordinal_type,value_type>::LevelToOrderFnPtr LevelToOrderFnPtr;
//! Get sparse grid level_to_order mapping function
/*!
* Predefined functions are:
* webbur::level_to_order_linear_wn Symmetric Gaussian linear growth
* webbur::level_to_order_linear_nn Asymmetric Gaussian linear growth
* webbur::level_to_order_exp_cc Clenshaw-Curtis exponential growth
* webbur::level_to_order_exp_gp Gauss-Patterson exponential growth
* webbur::level_to_order_exp_hgk Genz-Keister exponential growth
* webbur::level_to_order_exp_f2 Fejer-2 exponential growth
*/
virtual LevelToOrderFnPtr getSparseGridGrowthRule() const {
return sparse_grid_growth_rule; }
//! Set sparse grid rule
virtual void setSparseGridGrowthRule(LevelToOrderFnPtr ptr) {
sparse_grid_growth_rule = ptr; }
//@}
//! Return recurrence coefficients defined by above formula
virtual void getRecurrenceCoefficients(Teuchos::Array<value_type>& alpha,
Teuchos::Array<value_type>& beta,
Teuchos::Array<value_type>& delta,
Teuchos::Array<value_type>& gamma) const;
//! Evaluate basis polynomials and their derivatives at given point \c point
virtual void evaluateBasesAndDerivatives(const value_type& point,
Teuchos::Array<value_type>& vals,
Teuchos::Array<value_type>& derivs) const;
//! Set tolerance for zero in quad point generation
virtual void setQuadZeroTol(value_type tol) {
quad_zero_tol = tol; }
protected:
//! Constructor to be called by derived classes
/*!
* \c name is the name for the basis that will be displayed when
* printing the basis, \c p is the order of the basis, \c normalize
* indicates whether the basis polynomials should have unit-norm, and
* \c quad_zero_tol is used to replace any quadrature point within this
* tolerance with zero (which can help with duplicate removal in sparse
* grid calculations).
*/
RecurrenceBasis(const std::string& name, ordinal_type p, bool normalize,
GrowthPolicy growth = SLOW_GROWTH);
//! Copy constructor with specified order
RecurrenceBasis(ordinal_type p, const RecurrenceBasis& basis);
//! Compute recurrence coefficients
/*!
* Derived classes should implement this method to compute their
* recurrence coefficients. \c n is the number of coefficients to compute.
* Return value indicates whether coefficients correspond to normalized
* (i.e., orthonormal) polynomials.
*
* Note: Owing to the description above, \c gamma should be an array of
* length n+1.
*/
virtual bool
computeRecurrenceCoefficients(ordinal_type n,
Teuchos::Array<value_type>& alpha,
Teuchos::Array<value_type>& beta,
Teuchos::Array<value_type>& delta,
Teuchos::Array<value_type>& gamma) const = 0;
//! Setup basis after computing recurrence coefficients
/*!
* Derived classes should call this method after computing their recurrence
* coefficients in their constructor to finish setting up the basis.
*/
virtual void setup();
//! Normalize coefficients
void normalizeRecurrenceCoefficients(
Teuchos::Array<value_type>& alpha,
Teuchos::Array<value_type>& beta,
Teuchos::Array<value_type>& delta,
Teuchos::Array<value_type>& gamma) const;
private:
// Prohibit copying
RecurrenceBasis(const RecurrenceBasis&);
// Prohibit Assignment
RecurrenceBasis& operator=(const RecurrenceBasis& b);
protected:
//! Name of basis
std::string name;
//! Order of basis
ordinal_type p;
//! Normalize basis
bool normalize;
//! Smolyak growth policy
GrowthPolicy growth;
//! Tolerance for quadrature points near zero
value_type quad_zero_tol;
//! Sparse grid growth rule (as determined by Pecos)
LevelToOrderFnPtr sparse_grid_growth_rule;
//! Recurrence \f$\alpha\f$ coefficients
Teuchos::Array<value_type> alpha;
//! Recurrence \f$\beta\f$ coefficients
Teuchos::Array<value_type> beta;
//! Recurrence \f$\delta\f$ coefficients
Teuchos::Array<value_type> delta;
//! Recurrence \f$\gamma\f$ coefficients
Teuchos::Array<value_type> gamma;
//! Norms
Teuchos::Array<value_type> norms;
}; // class RecurrenceBasis
} // Namespace Stokhos
// Include template definitions
#include "Stokhos_RecurrenceBasisImp.hpp"
#endif
|