This file is indexed.

/usr/include/trilinos/BelosThyraAdapter.hpp is in libtrilinos-stratimikos-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
// @HEADER
// ***********************************************************************
// 
//         Stratimikos: Thyra-based strategies for linear solvers
//                Copyright (2006) Sandia Corporation
// 
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// 
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Roscoe A. Bartlett (rabartl@sandia.gov) 
// 
// ***********************************************************************
// @HEADER

/*! \file BelosThyraAdapter.hpp
  \brief Thyra specializations of MultiVecTraits and OperatorTraits.

  This file implements partial specializations of Belos' traits
  classes for Thyra's abstract linear algebra interface classes.  In
  particular, the file specializes Belos::MultiVecTraits for
  Thyra::MultiVectorBase, and Belos::OperatorTraits for
  Thyra::LinearOpBase.
*/

#ifndef BELOS_THYRA_ADAPTER_HPP
#define BELOS_THYRA_ADAPTER_HPP

#include "BelosConfigDefs.hpp"
#include "BelosMultiVecTraits.hpp"
#include "BelosOperatorTraits.hpp"

#include <Thyra_DetachedMultiVectorView.hpp>
#include <Thyra_MultiVectorBase.hpp>
#include <Thyra_MultiVectorStdOps.hpp>
#ifdef HAVE_BELOS_TSQR
#  include <Thyra_TsqrAdaptor.hpp>
#endif // HAVE_BELOS_TSQR

namespace Belos {

  ////////////////////////////////////////////////////////////////////////////
  //
  // Implementation of the Belos::MultiVecTraits for Thyra::MultiVectorBase
  //
  ////////////////////////////////////////////////////////////////////////////

  /// \brief Specialization of MultiVecTraits using Thyra::MultiVectorBase.
  ///
  /// This is a partial specialization of Belos::MultiVecTraits class
  /// using the Thyra::MultiVectorBase class.  It will ensure that any
  /// implementation of Thyra::MultiVectorBase will be accepted by the
  /// Belos templated solvers.
  template<class ScalarType>
  class MultiVecTraits< ScalarType, Thyra::MultiVectorBase<ScalarType> >
  {
  private:
    typedef Thyra::MultiVectorBase<ScalarType> TMVB;
    typedef Teuchos::ScalarTraits<ScalarType> ST;
    typedef typename ST::magnitudeType magType;

  public:

    /** \name Creation methods */
    //@{

    /*! \brief Creates a new empty MultiVectorBase containing \c numvecs columns.

    \return Reference-counted pointer to the new MultiVectorBase.
    */
    static Teuchos::RCP<TMVB> Clone( const TMVB& mv, const int numvecs )
    {
      Teuchos::RCP<TMVB> c = Thyra::createMembers( mv.range(), numvecs );
      return c;
    }

    /*! \brief Creates a new MultiVectorBase and copies contents of \c mv into the new std::vector (deep copy).

      \return Reference-counted pointer to the new MultiVectorBase.
    */
    static Teuchos::RCP<TMVB> CloneCopy( const TMVB& mv )
    {
      int numvecs = mv.domain()->dim();
      // create the new multivector
      Teuchos::RCP< TMVB > cc = Thyra::createMembers( mv.range(), numvecs );
      // copy the data from the source multivector to the new multivector
      Thyra::assign(cc.ptr(), mv);
      return cc;
    }

    /*! \brief Creates a new MultiVectorBase and copies the selected contents of \c mv into the new std::vector (deep copy).

      The copied vectors from \c mv are indicated by the \c indeX.size() indices in \c index.
      \return Reference-counted pointer to the new MultiVectorBase.
    */
    static Teuchos::RCP<TMVB> CloneCopy( const TMVB& mv, const std::vector<int>& index )
    {
      int numvecs = index.size();
      // create the new multivector
      Teuchos::RCP<TMVB> cc = Thyra::createMembers( mv.range(), numvecs );
      // create a view to the relevant part of the source multivector
      Teuchos::RCP<const TMVB> view = mv.subView(index);
      // copy the data from the relevant view to the new multivector
      Thyra::assign(cc.ptr(), *view);
      return cc;
    }

    static Teuchos::RCP<TMVB>
    CloneCopy (const TMVB& mv, const Teuchos::Range1D& index)
    {
      const int numVecs = index.size();
      // Create the new multivector
      Teuchos::RCP<TMVB> cc = Thyra::createMembers (mv.range(), numVecs);
      // Create a view to the relevant part of the source multivector
      Teuchos::RCP<const TMVB> view = mv.subView (index);
      // Copy the data from the view to the new multivector.
      Thyra::assign (cc.ptr(), *view);
      return cc;
    }

    /*! \brief Creates a new MultiVectorBase that shares the selected contents of \c mv (shallow copy).

    The index of the \c numvecs vectors shallow copied from \c mv are indicated by the indices given in \c index.
    \return Reference-counted pointer to the new MultiVectorBase.
    */
    static Teuchos::RCP<TMVB> CloneViewNonConst( TMVB& mv, const std::vector<int>& index )
    {
      int numvecs = index.size();

      // We do not assume that the indices are sorted, nor do we check that
      // index.size() > 0. This code is fail-safe, in the sense that a zero
      // length index std::vector will pass the error on the Thyra.

      // Thyra has two ways to create an indexed View:
      // * contiguous (via a range of columns)
      // * indexed (via a std::vector of column indices)
      // The former is significantly more efficient than the latter, in terms of
      // computations performed with/against the created view.
      // We will therefore check to see if the given indices are contiguous, and
      // if so, we will use the contiguous view creation method.

      int lb = index[0];
      bool contig = true;
      for (int i=0; i<numvecs; i++) {
        if (lb+i != index[i]) contig = false;
      }

      Teuchos::RCP< TMVB > cc;
      if (contig) {
        const Thyra::Range1D rng(lb,lb+numvecs-1);
        // create a contiguous view to the relevant part of the source multivector
        cc = mv.subView(rng);
      }
      else {
        // create an indexed view to the relevant part of the source multivector
        cc = mv.subView(index);
      }
      return cc;
    }

    static Teuchos::RCP<TMVB>
    CloneViewNonConst (TMVB& mv, const Teuchos::Range1D& index)
    {
      // We let Thyra be responsible for checking that the index range
      // is nonempty.
      //
      // Create and return a contiguous view to the relevant part of
      // the source multivector.
      return mv.subView (index);
    }


    /*! \brief Creates a new const MultiVectorBase that shares the selected contents of \c mv (shallow copy).

    The index of the \c numvecs vectors shallow copied from \c mv are indicated by the indices given in \c index.
    \return Reference-counted pointer to the new const MultiVectorBase.
    */
    static Teuchos::RCP<const TMVB> CloneView( const TMVB& mv, const std::vector<int>& index )
    {
      int numvecs = index.size();

      // We do not assume that the indices are sorted, nor do we check that
      // index.size() > 0. This code is fail-safe, in the sense that a zero
      // length index std::vector will pass the error on the Thyra.

      // Thyra has two ways to create an indexed View:
      // * contiguous (via a range of columns)
      // * indexed (via a std::vector of column indices)
      // The former is significantly more efficient than the latter, in terms of
      // computations performed with/against the created view.
      // We will therefore check to see if the given indices are contiguous, and
      // if so, we will use the contiguous view creation method.

      int lb = index[0];
      bool contig = true;
      for (int i=0; i<numvecs; i++) {
        if (lb+i != index[i]) contig = false;
      }

      Teuchos::RCP< const TMVB > cc;
      if (contig) {
        const Thyra::Range1D rng(lb,lb+numvecs-1);
        // create a contiguous view to the relevant part of the source multivector
        cc = mv.subView(rng);
      }
      else {
        // create an indexed view to the relevant part of the source multivector
        cc = mv.subView(index);
      }
      return cc;
    }

    static Teuchos::RCP<const TMVB>
    CloneView (const TMVB& mv, const Teuchos::Range1D& index)
    {
      // We let Thyra be responsible for checking that the index range
      // is nonempty.
      //
      // Create and return a contiguous view to the relevant part of
      // the source multivector.
      return mv.subView (index);
    }

    //@}

    /** \name Attribute methods */
    //@{

    //! Obtain the std::vector length of \c mv.
    static ptrdiff_t GetGlobalLength( const TMVB& mv ) { 
      return Teuchos::as<ptrdiff_t>(mv.range()->dim());
    } 

    //! Obtain the number of vectors in \c mv
    static int GetNumberVecs( const TMVB& mv )
    { return mv.domain()->dim(); }

    //@}

    /** \name Update methods */
    //@{

    /*! \brief Update \c mv with \f$ \alpha AB + \beta mv \f$.
     */
    static void MvTimesMatAddMv( const ScalarType alpha, const TMVB& A,
         const Teuchos::SerialDenseMatrix<int,ScalarType>& B,
         const ScalarType beta, TMVB& mv )
    {
      using Teuchos::arrayView; using Teuchos::arcpFromArrayView;
      const int m = B.numRows();
      const int n = B.numCols();
      // Create a view of the B object!
      Teuchos::RCP< const TMVB >
        B_thyra = Thyra::createMembersView(
          A.domain(),
          RTOpPack::ConstSubMultiVectorView<ScalarType>(
            0, m, 0, n,
            arcpFromArrayView(arrayView(&B(0,0), B.stride()*B.numCols())), B.stride()
            )
          );
      // perform the operation via A: mv <- alpha*A*B_thyra + beta*mv
      Thyra::apply<ScalarType>(A, Thyra::NOTRANS, *B_thyra, Teuchos::outArg(mv), alpha, beta);
    }

    /*! \brief Replace \c mv with \f$\alpha A + \beta B\f$.
     */
    static void MvAddMv( const ScalarType alpha, const TMVB& A,
                         const ScalarType beta,  const TMVB& B, TMVB& mv )
    {
      typedef Teuchos::ScalarTraits<ScalarType> ST;
      using Teuchos::tuple; using Teuchos::ptrInArg; using Teuchos::inoutArg;

      Thyra::linear_combination<ScalarType>(
        tuple(alpha, beta)(), tuple(ptrInArg(A), ptrInArg(B))(), ST::zero(), inoutArg(mv));
    }

    /*! \brief Scale each element of the vectors in \c *this with \c alpha.
     */
    static void MvScale ( TMVB& mv, const ScalarType alpha )
      { Thyra::scale(alpha, Teuchos::inoutArg(mv)); }

    /*! \brief Scale each element of the \c i-th vector in \c *this with \c alpha[i].
     */
    static void MvScale (TMVB& mv, const std::vector<ScalarType>& alpha)
    {
      for (unsigned int i=0; i<alpha.size(); i++) {
        Thyra::scale<ScalarType> (alpha[i], mv.col(i).ptr());
      }
    }

    /*! \brief Compute a dense matrix \c B through the matrix-matrix multiply \f$ \alpha A^Tmv \f$.
    */
    static void MvTransMv( const ScalarType alpha, const TMVB& A, const TMVB& mv,
      Teuchos::SerialDenseMatrix<int,ScalarType>& B )
    {
      using Teuchos::arrayView; using Teuchos::arcpFromArrayView;
      // Create a multivector to hold the result (m by n)
      int m = A.domain()->dim();
      int n = mv.domain()->dim();
      // Create a view of the B object!
      Teuchos::RCP< TMVB >
        B_thyra = Thyra::createMembersView(
          A.domain(),
          RTOpPack::SubMultiVectorView<ScalarType>(
            0, m, 0, n,
            arcpFromArrayView(arrayView(&B(0,0), B.stride()*B.numCols())), B.stride()
            )
          );
      Thyra::apply<ScalarType>(A, Thyra::CONJTRANS, mv, B_thyra.ptr(), alpha);
    }

    /*! \brief Compute a std::vector \c b where the components are the individual dot-products of the
        \c i-th columns of \c A and \c mv, i.e.\f$b[i] = A[i]^Tmv[i]\f$.
     */
    static void MvDot( const TMVB& mv, const TMVB& A, std::vector<ScalarType>& b )
      { Thyra::dots(mv, A, Teuchos::arrayViewFromVector(b)); }

    //@}

    /** \name Norm method */
    //@{

    /*! \brief Compute the 2-norm of each individual std::vector of \c mv.
      Upon return, \c normvec[i] holds the value of \f$||mv_i||_2\f$, the \c i-th column of \c mv.
    */
    static void MvNorm( const TMVB& mv, std::vector<magType>& normvec,
      NormType type = TwoNorm )
      { Thyra::norms_2(mv, Teuchos::arrayViewFromVector(normvec)); }

    //@}

    /** \name Initialization methods */
    //@{

    /*! \brief Copy the vectors in \c A to a set of vectors in \c mv indicated by the indices given in \c index.
     */
    static void SetBlock( const TMVB& A, const std::vector<int>& index, TMVB& mv )
    {
      // Extract the "numvecs" columns of mv indicated by the index std::vector.
      int numvecs = index.size();
      std::vector<int> indexA(numvecs);
      int numAcols = A.domain()->dim();
      for (int i=0; i<numvecs; i++) {
        indexA[i] = i;
      }
      // Thyra::assign requires that both arguments have the same number of
      // vectors. Enforce this, by shrinking one to match the other.
      if ( numAcols < numvecs ) {
        // A does not have enough columns to satisfy index_plus. Shrink
        // index_plus.
        numvecs = numAcols;
      }
      else if ( numAcols > numvecs ) {
        numAcols = numvecs;
        indexA.resize( numAcols );
      }
      // create a view to the relevant part of the source multivector
      Teuchos::RCP< const TMVB > relsource = A.subView(indexA);
      // create a view to the relevant part of the destination multivector
      Teuchos::RCP< TMVB > reldest = mv.subView(index);
      // copy the data to the destination multivector subview
      Thyra::assign(reldest.ptr(), *relsource);
    }

    static void
    SetBlock (const TMVB& A, const Teuchos::Range1D& index, TMVB& mv)
    {
      const int numColsA = A.domain()->dim();
      const int numColsMv = mv.domain()->dim();
      // 'index' indexes into mv; it's the index set of the target.
      const bool validIndex = index.lbound() >= 0 && index.ubound() < numColsMv;
      // We can't take more columns out of A than A has.
      const bool validSource = index.size() <= numColsA;

      if (! validIndex || ! validSource)
        {
          std::ostringstream os;
          os << "Belos::MultiVecTraits<Scalar, Thyra::MultiVectorBase<Scalar> "
            ">::SetBlock(A, [" << index.lbound() << ", " << index.ubound()
             << "], mv): ";
          TEUCHOS_TEST_FOR_EXCEPTION(index.lbound() < 0, std::invalid_argument,
                             os.str() << "Range lower bound must be nonnegative.");
          TEUCHOS_TEST_FOR_EXCEPTION(index.ubound() >= numColsMv, std::invalid_argument,
                             os.str() << "Range upper bound must be less than "
                             "the number of columns " << numColsA << " in the "
                             "'mv' output argument.");
          TEUCHOS_TEST_FOR_EXCEPTION(index.size() > numColsA, std::invalid_argument,
                             os.str() << "Range must have no more elements than"
                             " the number of columns " << numColsA << " in the "
                             "'A' input argument.");
          TEUCHOS_TEST_FOR_EXCEPTION(true, std::logic_error, "Should never get here!");
        }

      // View of the relevant column(s) of the target multivector mv.
      // We avoid view creation overhead by only creating a view if
      // the index range is different than [0, (# columns in mv) - 1].
      Teuchos::RCP<TMVB> mv_view;
      if (index.lbound() == 0 && index.ubound()+1 == numColsMv)
        mv_view = Teuchos::rcpFromRef (mv); // Non-const, non-owning RCP
      else
        mv_view = mv.subView (index);

      // View of the relevant column(s) of the source multivector A.
      // If A has fewer columns than mv_view, then create a view of
      // the first index.size() columns of A.
      Teuchos::RCP<const TMVB> A_view;
      if (index.size() == numColsA)
        A_view = Teuchos::rcpFromRef (A); // Const, non-owning RCP
      else
        A_view = A.subView (Teuchos::Range1D(0, index.size()-1));

      // Copy the data to the destination multivector.
      Thyra::assign(mv_view.ptr(), *A_view);
    }

    static void
    Assign (const TMVB& A, TMVB& mv)
    {
      const int numColsA = A.domain()->dim();
      const int numColsMv = mv.domain()->dim();
      if (numColsA > numColsMv)
        {
          std::ostringstream os;
          os << "Belos::MultiVecTraits<Scalar, Thyra::MultiVectorBase<Scalar>"
            " >::Assign(A, mv): ";
          TEUCHOS_TEST_FOR_EXCEPTION(numColsA > numColsMv, std::invalid_argument,
                             os.str() << "Input multivector 'A' has "
                             << numColsA << " columns, but output multivector "
                             "'mv' has only " << numColsMv << " columns.");
          TEUCHOS_TEST_FOR_EXCEPTION(true, std::logic_error, "Should never get here!");
        }
      // Copy the data to the destination multivector.
      if (numColsA == numColsMv) {
        Thyra::assign (Teuchos::outArg (mv), A);
      } else {
        Teuchos::RCP<TMVB> mv_view =
          CloneViewNonConst (mv, Teuchos::Range1D(0, numColsA-1));
        Thyra::assign (mv_view.ptr(), A);
      }
    }

    /*! \brief Replace the vectors in \c mv with random vectors.
     */
    static void MvRandom( TMVB& mv )
    {
      // Thyra::randomize generates via a uniform distribution on [l,u]
      // We will use this to generate on [-1,1]
      Thyra::randomize<ScalarType>(
        -Teuchos::ScalarTraits<ScalarType>::one(),
        Teuchos::ScalarTraits<ScalarType>::one(),
        Teuchos::outArg(mv));
    }

    //! Replace each element of the vectors in \c mv with \c alpha.
    static void
    MvInit (TMVB& mv, ScalarType alpha = Teuchos::ScalarTraits<ScalarType>::zero())
    {
      Thyra::assign (Teuchos::outArg (mv), alpha);
    }

    //@}

    /** \name Print method */
    //@{

    /*! \brief Print the \c mv multi-std::vector to the \c os output stream.
     */
    static void MvPrint( const TMVB& mv, std::ostream& os )
      { os << describe(mv,Teuchos::VERB_EXTREME); }

    //@}

#ifdef HAVE_BELOS_TSQR
    /// \typedef tsqr_adaptor_type
    /// \brief TsqrAdaptor specialization for Epetra_MultiVector
    ///
    /// \warning This is a STUB for now; it doesn't work.
    ///
    typedef Thyra::TsqrAdaptor< ScalarType > tsqr_adaptor_type;
#endif // HAVE_BELOS_TSQR
  };

  /////////////////////////////////////////////////////////////////////////
  //
  // Implementation of the Belos::OperatorTraits for Thyra::LinearOpBase
  //
  /////////////////////////////////////////////////////////////////////////

  /// \brief Specialization of OperatorTraits for Thyra objects.
  ///
  /// This is a partial specialization of the Belos::OperatorTraits
  /// traits class with Thyra::LinearOpBase as the operator type, and
  /// Thyra::MultiVectorBase class as the multivector type.  This
  /// interface will ensure that any LinearOpBase and MultiVectorBase
  /// implementations will be accepted by the Belos templated solvers.
  template<class ScalarType>
  class OperatorTraits <ScalarType,
                        Thyra::MultiVectorBase<ScalarType>,
                        Thyra::LinearOpBase<ScalarType> >
  {
  private:
    typedef Thyra::MultiVectorBase<ScalarType> TMVB;
    typedef Thyra::LinearOpBase<ScalarType>    TLOB;

  public:
    /// \brief Apply Op to x, storing the result in y.
    ///
    /// This method takes the MultiVectorBase \c x and applies the
    /// LinearOpBase \c Op to it, resulting in the MultiVectorBase \c
    /// y.
    ///
    /// If x is not in the domain of the operator or y is not in the
    /// range of the operator, then the operator will throw a
    /// Thyra::Exceptions::IncompatibleVectorSpaces exception.
    ///
    /// We don't check here whether the operator implements the
    /// requested \c trans operation.  Call HasApplyTranspose() to
    /// check, for the cases trans=TRANS or CONJTRANS.  If the
    /// operation is not supported, the operator will throw a
    /// Thyra::Exceptions::OpNotSupported exception.
    static void
    Apply (const TLOB& Op,
           const TMVB& x,
           TMVB& y,
           ETrans trans = NOTRANS)
    {
      Thyra::EOpTransp whichOp;

      // We don't check here whether the operator implements the
      // requested operation.  Call HasApplyTranspose() to check.
      // Thyra::LinearOpBase implementations are not required to
      // implement NOTRANS.  However, Belos needs NOTRANS
      // (obviously!), so we assume that Op implements NOTRANS.
      if (trans == NOTRANS)
        whichOp = Thyra::NOTRANS;
      else if (trans == TRANS)
        whichOp = Thyra::TRANS;
      else if (trans == CONJTRANS)
        whichOp = Thyra::CONJTRANS;
      else
        TEUCHOS_TEST_FOR_EXCEPTION(true, std::invalid_argument,
                           "Belos::OperatorTraits::Apply (Thyra specialization): "
                           "'trans' argument must be neither NOTRANS=" << NOTRANS
                           << ", TRANS=" << TRANS << ", or CONJTRANS=" << CONJTRANS
                           << ", but instead has an invalid value of " << trans << ".");
      Thyra::apply<ScalarType>(Op, whichOp, x, Teuchos::outArg(y));
    }

    //! Whether the operator implements applying the transpose.
    static bool HasApplyTranspose (const TLOB& Op)
    {
      typedef Teuchos::ScalarTraits<ScalarType> STS;

      // Thyra::LinearOpBase's interface lets you check whether the
      // operator implements any of all four possible combinations of
      // conjugation and transpose.  Belos only needs transpose
      // (TRANS) if the operator is real; in that case, Apply() does
      // the same thing with trans = CONJTRANS or TRANS.  If the
      // operator is complex, Belos needs both transpose and conjugate
      // transpose (CONJTRANS) if the operator is complex.
      return Op.opSupported (Thyra::TRANS) &&
        (! STS::isComplex || Op.opSupported (Thyra::CONJTRANS));
    }
  };

} // end of Belos namespace

#endif
// end of file BELOS_THYRA_ADAPTER_HPP