This file is indexed.

/usr/include/trilinos/Teko_LU2x2InverseOp.hpp is in libtrilinos-teko-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
/*
// @HEADER
// 
// ***********************************************************************
// 
//      Teko: A package for block and physics based preconditioning
//                  Copyright 2010 Sandia Corporation 
//  
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//  
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//  
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//  
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//  
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission. 
//  
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//  
// Questions? Contact Eric C. Cyr (eccyr@sandia.gov)
// 
// ***********************************************************************
// 
// @HEADER

*/

/** \file Teko_LU2x2InverseOp.hpp
  * 
  * File that implements the inverse of a block 2x2 LU decomposition.
  */

#ifndef __Teko_LU2x2InverseOp_hpp__
#define __Teko_LU2x2InverseOp_hpp__

#include "Teko_Utilities.hpp"
#include "Teko_BlockImplicitLinearOp.hpp"

namespace Teko {

/** \brief This linear operator approximates the inverse
 *         of a block \f$ 2\times 2 \f$ operator using a
 *         block \f$ LDU \f$ decomposition.
 *
 * For a matrix that is blocked like
 * 
 * \f$ A = \left[\begin{array}{cc} 
 *           A_{00} & A_{01} \\
 *           A_{10} & A_{11}
 *           \end{array}\right] \f$
 *
 * this class evaluates the \f$A^{-1}\f$ given \f$A_{00}^{-1}\f$ and the inverse of
 * the Schur complement. The \f$ LDU \f$ factorization is defined as
 *
 * \f$
 * A = \left[ \begin{array}{cc}
 * I & 0  \\
 * A_{10} A_{00}^{-1} & I
 * \end{array} \right]
 * \left[ \begin{array}{cc}
 * A_{00} & 0  \\
 * 0 & -S
 * \end{array} \right]
 * \left[ \begin{array}{cc}
 * I &  A_{00}^{-1} A_{01} \\
 * 0 & I
 * \end{array} \right]\f$
 *
 * where the Schur complement is \f$ S=-A_{11}+A_{10} A_{00}^{-1} A_{01} \f$ .
 * In order to do this 2 evaluations of \f$ A_{00}^{-1} \f$ and a single
 * evalution of \f$ S^{-1} \f$ are needed. For increased flexibility both
 * evaluations of \f$A_{00}^{-1}\f$ can be specified independently. 
 * For righthand side vector \f$[f, g]^T\f$ and solution vector \f$[u,v]^T\f$
 * the two inverses (\f$A\f$-hat and \f$A\f$-tilde) are needed to evaluate 
 *
 * \f$\hat{A}_{00} u^* = f\f$,
 *
 * \f$\tilde{A}_{00} v = A_{01} v\f$
 *
 * where \f$u^*\f$ is an intermediate step.
 */
class LU2x2InverseOp : public BlockImplicitLinearOp {
public:
   /** \brief This constructor explicitly takes the parts of \f$ A \f$ required to
     *        build the inverse operator.
     *
     * This constructor explicitly takes the parts of \f$ A \f$ required to build
     * the inverse operator. 
     *
     * \param[in] A The block \f$ 2 \times 2 \f$ \f$A\f$ operator.
     * \param[in] invA00  An approximate inverse of \f$ A_{00} \f$, used for both \f$\hat{A}_{00}\f$ and \f$\tilde{A}_{00}\f$
     * \param[in] invS  An approximate inverse of \f$ S = -A_{11} + A_{10} A_{00}^{-1} A_{01} \f$.
     */
   LU2x2InverseOp(const BlockedLinearOp & A,
                       const LinearOp & invA00,
                       const LinearOp & invS);

   /** \brief This constructor explicitly takes the parts of \f$ A \f$ required to
     *        build the inverse operator.
     *
     * This constructor explicitly takes the parts of \f$ A \f$ required to build
     * the inverse operator. 
     *
     * \param[in] A The block \f$ 2 \times 2 \f$ \f$A\f$ operator.
     * \param[in] hatInvA00  An approximate inverse of \f$ \hat{A}_{00} \f$
     * \param[in] tildeInvA00  An approximate inverse of \f$ \tilde{A}_{00} \f$
     * \param[in] invS  An approximate inverse of \f$ S = -A_{11} + A_{10} A_{00}^{-1} A_{01} \f$.
     */
   LU2x2InverseOp(const BlockedLinearOp & A,
                       const LinearOp & hatInvA00,
                       const LinearOp & tildeInvA00,
                       const LinearOp & invS);

   //! \name Inherited methods from Thyra::LinearOpBase
   //@{

   /** @brief Range space of this operator */
   virtual VectorSpace range() const { return productRange_; }

   /** @brief Domain space of this operator */
   virtual VectorSpace domain() const { return productDomain_; }

   /** @brief Perform a matrix vector multiply with this operator. 
     *
     * The <code>apply</code> function takes one vector as input 
     * and applies the inverse \f$ LDU \f$ decomposition. The result
     * is returned in \f$y\f$. If this operator is reprsented as \f$M\f$ then
     * \f$ y = \alpha M x + \beta y \f$ (ignoring conjugation!).
     *
     * @param[in]     x 
     * @param[in,out] y 
     * @param[in]     alpha (default=1)
     * @param[in]     beta  (default=0)
     */
   virtual void implicitApply(const BlockedMultiVector & x, BlockedMultiVector & y,
              const double alpha = 1.0, const double beta = 0.0) const;
   //@}

   virtual void describe(Teuchos::FancyOStream & out_arg,
                         const Teuchos::EVerbosityLevel verbLevel) const;

protected:
   // fundamental operators to use
   const BlockedLinearOp A_;  ///< operator \f$ A \f$
   const LinearOp hatInvA00_;  ///< inverse of \f$ A_{00} \f$
   const LinearOp tildeInvA00_;  ///< inverse of \f$ A_{00} \f$
   const LinearOp invS_;      ///< inverse of \f$ S \f$

   // some blocks of A
   const LinearOp A10_;       ///< operator \f$ A_{10} \f$
   const LinearOp A01_;       ///< operator \f$ A_{01} \f$

   Teuchos::RCP<const Thyra::ProductVectorSpaceBase<double> > productRange_; ///< Range vector space.
   Teuchos::RCP<const Thyra::ProductVectorSpaceBase<double> > productDomain_; ///< Domain vector space.

private:
   // hide me!
   LU2x2InverseOp();
   LU2x2InverseOp(const LU2x2InverseOp &);
};

/** \brief Constructor method for building <code>LU2x2InverseOp</code>.
  *
  * Constructor method for building <code>LU2x2InverseOp</code>.
  *
  * \param[in] A      2x2 Operator to be decomposed
  * \param[in] invA00 Approximate inverse of the operators \f$(0,0)\f$ block.
  * \param[in] invS   Approximate inverse of the Schur complement
  *
  * \returns A linear operator that behaves like the inverse of the
  *          LU decomposition.
  * 
  * \relates LU2x2InverseOp
  */
inline LinearOp createLU2x2InverseOp(BlockedLinearOp & A,LinearOp & invA00,LinearOp & invS)
{
   return Teuchos::rcp(new LU2x2InverseOp(A,invA00,invS));
}

/** \brief Constructor method for building <code>LU2x2InverseOp</code>.
  *
  * Constructor method for building <code>LU2x2InverseOp</code>.
  *
  * \param[in] A      2x2 Operator to be decomposed
  * \param[in] invA00 Approximate inverse of the operators \f$(0,0)\f$ block.
  * \param[in] invS   Approximate inverse of the Schur complement
  * \param[in] str    String to label the operator
  *
  * \returns A linear operator that behaves like the inverse of the
  *          LU decomposition.
  * 
  * \relates LU2x2InverseOp
  */
inline LinearOp createLU2x2InverseOp(BlockedLinearOp & A,LinearOp & invA00,LinearOp & invS,const std::string & str)
{
   Teuchos::RCP<Thyra::LinearOpBase<double> > result = Teuchos::rcp(new LU2x2InverseOp(A,invA00,invS));
   result->setObjectLabel(str);

   return result;
}

/** \brief Constructor method for building <code>LU2x2InverseOp</code>.
  *
  * Constructor method for building <code>LU2x2InverseOp</code>.
  *
  * \param[in] A           2x2 Operator to be decomposed
  * \param[in] hatInvA00   First approximate inverse of the operators \f$(0,0)\f$ block.
  * \param[in] tildeInvA00 Second approximate inverse of the operators \f$(0,0)\f$ block.
  * \param[in] invS        Approximate inverse of the Schur complement
  *
  * \returns A linear operator that behaves like the inverse of the
  *          LU decomposition.
  * 
  * \relates LU2x2InverseOp
  */
inline LinearOp createLU2x2InverseOp(BlockedLinearOp & A,LinearOp & hatInvA00,LinearOp & tildeInvA00,LinearOp & invS)
{
   return Teuchos::rcp(new LU2x2InverseOp(A,hatInvA00,tildeInvA00,invS));
}

/** \brief Constructor method for building <code>LU2x2InverseOp</code>.
  *
  * Constructor method for building <code>LU2x2InverseOp</code>.
  *
  * \param[in] A           2x2 Operator to be decomposed
  * \param[in] hatInvA00   First approximate inverse of the operators \f$(0,0)\f$ block.
  * \param[in] tildeInvA00 Second approximate inverse of the operators \f$(0,0)\f$ block.
  * \param[in] invS        Approximate inverse of the Schur complement
  * \param[in] str         String to label the operator
  *
  * \returns A linear operator that behaves like the inverse of the
  *          LU decomposition.
  * 
  * \relates LU2x2InverseOp
  */
inline LinearOp createLU2x2InverseOp(BlockedLinearOp & A,LinearOp & hatInvA00,LinearOp & tildeInvA00,LinearOp & invS,const std::string & str)
{
   Teuchos::RCP<Thyra::LinearOpBase<double> > result = Teuchos::rcp(new LU2x2InverseOp(A,hatInvA00,tildeInvA00,invS));
   result->setObjectLabel(str);

   return result;
}

} // end namespace Teko

#endif