/usr/include/trilinos/Teuchos_LAPACK.hpp is in libtrilinos-teuchos-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 | // @HEADER
// ***********************************************************************
//
// Teuchos: Common Tools Package
// Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
#ifndef _TEUCHOS_LAPACK_HPP_
#define _TEUCHOS_LAPACK_HPP_
/*! \file Teuchos_LAPACK.hpp
\brief Templated interface class to LAPACK routines.
*/
/** \example LAPACK/cxx_main.cpp
This is an example of how to use the Teuchos::LAPACK class.
*/
#include "Teuchos_ConfigDefs.hpp"
#include "Teuchos_ScalarTraits.hpp"
/*! \class Teuchos::LAPACK
\brief The Templated LAPACK Wrapper Class.
The Teuchos::LAPACK class is a wrapper that encapsulates LAPACK
(Linear Algebra Package). LAPACK provides portable, high-
performance implementations of linear, eigen, SVD, etc solvers.
The standard LAPACK interface is Fortran-specific. Unfortunately, the
interface between C++ and Fortran is not standard across all computer
platforms. The Teuchos::LAPACK class provides C++ wrappers for the LAPACK
kernels in order to insulate the rest of Teuchos from the details of C++ to Fortran
translation. A Teuchos::LAPACK object is essentially nothing, but allows access to
the LAPACK wrapper functions.
Teuchos::LAPACK is a serial interface only. This is appropriate since the standard
LAPACK are only specified for serial execution (or shared memory parallel).
\note
<ol>
<li>These templates are specialized to use the Fortran LAPACK routines for
scalar types \c float and \c double.
<li>If Teuchos is configured with \c -DTeuchos_ENABLE_COMPLEX:BOOL=ON then these templates
are specialized for scalar types \c std::complex<float> and \c std::complex<double> also.
<li>A short description is given for each method. For more detailed documentation, see the
LAPACK website (\c http://www.netlib.org/lapack/ ).
</ol>
*/
namespace Teuchos
{
template<class T>
struct UndefinedLAPACKRoutine
{
// This function should not compile if there is an attempt to instantiate!
static inline T notDefined() { return T::LAPACK_routine_not_defined_for_this_type(); }
};
template<typename OrdinalType, typename ScalarType>
class LAPACK
{
public:
typedef typename Teuchos::ScalarTraits<ScalarType>::magnitudeType MagnitudeType;
//! @name Constructors/Destructors.
//@{
//! Default Constructor.
inline LAPACK(void) {}
//! Copy Constructor.
inline LAPACK(const LAPACK<OrdinalType, ScalarType>& lapack) {}
//! Destructor.
inline virtual ~LAPACK(void) {}
//@}
//! @name Symmetric Positive Definite Linear System Routines.
//@{
//! Computes the \c L*D*L' factorization of a Hermitian/symmetric positive definite tridiagonal matrix \c A.
void PTTRF(const OrdinalType n, ScalarType* d, ScalarType* e, OrdinalType* info) const;
//! Solves a tridiagonal system \c A*X=B using the \L*D*L' factorization of \c A computed by PTTRF.
void PTTRS(const OrdinalType n, const OrdinalType nrhs, const ScalarType* d, const ScalarType* e, ScalarType* B, const OrdinalType ldb, OrdinalType* info) const;
//! Computes Cholesky factorization of a real symmetric positive definite matrix \c A.
void POTRF(const char UPLO, const OrdinalType n, ScalarType* A, const OrdinalType lda, OrdinalType* info) const;
//! Solves a system of linear equations \c A*X=B, where \c A is a symmetric positive definite matrix factored by POTRF and the \c nrhs solutions are returned in \c B.
void POTRS(const char UPLO, const OrdinalType n, const OrdinalType nrhs, const ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, OrdinalType* info) const;
//! Computes the inverse of a real symmetric positive definite matrix \c A using the Cholesky factorization \c A from POTRF.
void POTRI(const char UPLO, const OrdinalType n, ScalarType* A, const OrdinalType lda, OrdinalType* info) const;
//! Estimates the reciprocal of the condition number (1-norm) of a real symmetric positive definite matrix \c A using the Cholesky factorization from POTRF.
void POCON(const char UPLO, const OrdinalType n, const ScalarType* A, const OrdinalType lda, const ScalarType anorm, ScalarType* rcond, ScalarType* WORK, OrdinalType* IWORK, OrdinalType* info) const;
//! Computes the solution to a real system of linear equations \c A*X=B, where \c A is a symmetric positive definite matrix and the \c nrhs solutions are returned in \c B.
void POSV(const char UPLO, const OrdinalType n, const OrdinalType nrhs, ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, OrdinalType* info) const;
//! Computes row and column scalings intended to equilibrate a symmetric positive definite matrix \c A and reduce its condition number (w.r.t. 2-norm).
void POEQU(const OrdinalType n, const ScalarType* A, const OrdinalType lda, MagnitudeType* S, MagnitudeType* scond, MagnitudeType* amax, OrdinalType* info) const;
//! Improves the computed solution to a system of linear equations when the coefficient matrix is symmetric positive definite, and provides error bounds and backward error estimates for the solution.
void PORFS(const char UPLO, const OrdinalType n, const OrdinalType nrhs, const ScalarType* A, const OrdinalType lda, const ScalarType* AF, const OrdinalType ldaf, const ScalarType* B, const OrdinalType ldb, ScalarType* X, const OrdinalType ldx, ScalarType* FERR, ScalarType* BERR, ScalarType* WORK, OrdinalType* IWORK, OrdinalType* info) const;
//! Uses the Cholesky factorization to compute the solution to a real system of linear equations \c A*X=B, where \c A is symmetric positive definite. System can be equilibrated by POEQU and iteratively refined by PORFS, if requested.
void POSVX(const char FACT, const char UPLO, const OrdinalType n, const OrdinalType nrhs, ScalarType* A, const OrdinalType lda, ScalarType* AF, const OrdinalType ldaf, char EQUED, ScalarType* S, ScalarType* B, const OrdinalType ldb, ScalarType* X, const OrdinalType ldx, ScalarType* rcond, ScalarType* FERR, ScalarType* BERR, ScalarType* WORK, OrdinalType* IWORK, OrdinalType* info) const;
//@}
//! @name General Linear System Routines.
//@{
//! Solves an over/underdetermined real \c m by \c n linear system \c A using QR or LQ factorization of A.
void GELS(const char TRANS, const OrdinalType m, const OrdinalType n, const OrdinalType nrhs, ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const;
/// \brief Use the SVD to solve a possibly rank-deficient linear least-squares problem.
///
/// GELSS uses the singular value decomposition (SVD) to compute
/// the minimum-norm solution to a possibly rank-deficient linear
/// least-squares problem. The problem may be under- or
/// overdetermined.
///
/// LAPACK's _GELSS routines take different arguments, depending
/// on whether they are for real or complex arithmetic. This is
/// because _GELSS imitates the interface of LAPACK's SVD routine.
/// LAPACK's SVD routine takes an additional RWORK workspace array
/// argument for COMPLEX*8 (CGELSS) and COMPLEX*16 (ZGELSS).
/// LAPACK's real SVD routines (SGELSS and DGELSS) do not take the
/// RWORK argument.
///
/// This class had already exposed GELSS for ScalarType = float
/// and double that does <i>not</i> include an RWORK argument.
/// Backwards compatibility requirements prevent us from simply
/// changing that interface. We could provide a different
/// interface for LAPACK specializations with ScalarType =
/// std::complex<T>, but that would make the GELSS interface not
/// generic at compile time. This would make using GELSS in
/// generic code harder (for example, you would need to specialize
/// code that <i>uses</i> GELSS on a Boolean, which specifies
/// whether ScalarType is complex).
///
/// We fix this problem by providing an overloaded generic GELSS
/// interface that does take an RWORK argument. This does not
/// change the existing interface, but provides the additional
/// capability to solve complex-valued least-squares problems.
/// The RWORK argument is ignored when ScalarType is real, and may
/// therefore be set to NULL in that case.
///
void GELSS(const OrdinalType m, const OrdinalType n, const OrdinalType nrhs, ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, MagnitudeType* S, const MagnitudeType rcond, OrdinalType* rank, ScalarType* WORK, const OrdinalType lwork, MagnitudeType* RWORK, OrdinalType* info) const;
//! Legacy GELSS interface for real-valued ScalarType.
void GELSS(const OrdinalType m, const OrdinalType n, const OrdinalType nrhs, ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, ScalarType* S, const ScalarType rcond, OrdinalType* rank, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const;
//! Solves the linear equality-constrained least squares (LSE) problem where \c A is an \c m by \c n matrix,\c B is a \c p by \c n matrix \c C is a given \c m-vector, and D is a given \c p-vector.
void GGLSE(const OrdinalType m, const OrdinalType n, const OrdinalType p, ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, ScalarType* C, ScalarType* D, ScalarType* X, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const;
//! Computes a QR factorization of a general \c m by \c n matrix \c A.
void GEQRF (const OrdinalType m, const OrdinalType n, ScalarType* A, const OrdinalType lda, ScalarType* TAU, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const;
//! BLAS 2 version of GEQRF, with known workspace size.
void GEQR2 (const OrdinalType m, const OrdinalType n, ScalarType A[], const OrdinalType lda, ScalarType TAU[], ScalarType WORK[], OrdinalType* const info) const;
//! Computes an LU factorization of a general \c m by \c n matrix \c A using partial pivoting with row interchanges.
void GETRF(const OrdinalType m, const OrdinalType n, ScalarType* A, const OrdinalType lda, OrdinalType* IPIV, OrdinalType* info) const;
//! Solves a system of linear equations \c A*X=B or \c A'*X=B with a general \c n by \c n matrix \c A using the LU factorization computed by GETRF.
void GETRS(const char TRANS, const OrdinalType n, const OrdinalType nrhs, const ScalarType* A, const OrdinalType lda, const OrdinalType* IPIV, ScalarType* B, const OrdinalType ldb, OrdinalType* info) const;
//! Multiplies the \c m by \c n matrix \c A by the real scalar \c cto/cfrom.
void LASCL(const char TYPE, const OrdinalType kl, const OrdinalType ku, const MagnitudeType cfrom, const MagnitudeType cto, const OrdinalType m, const OrdinalType n, ScalarType* A, const OrdinalType lda, OrdinalType* info) const;
//! Computes a QR factorization with column pivoting of a matrix \c A: A*P = Q*R using Level 3 BLAS
void
GEQP3(const OrdinalType m,
const OrdinalType n, ScalarType* A,
const OrdinalType lda,
OrdinalType *jpvt,
ScalarType* TAU,
ScalarType* WORK,
const OrdinalType lwork,
MagnitudeType* RWORK,
OrdinalType* info ) const;
//! Apply a series of row interchanges to the matrix A.
void
LASWP (const OrdinalType N,
ScalarType A[],
const OrdinalType LDA,
const OrdinalType K1,
const OrdinalType K2,
const OrdinalType IPIV[],
const OrdinalType INCX) const;
//! Computes an LU factorization of a general banded \c m by \c n matrix \c A using partial pivoting with row interchanges.
void GBTRF(const OrdinalType m, const OrdinalType n, const OrdinalType kl, const OrdinalType ku, ScalarType* A, const OrdinalType lda, OrdinalType* IPIV, OrdinalType* info) const;
//! Solves a system of linear equations \c A*X=B or \c A'*X=B with a general banded \c n by \c n matrix \c A using the LU factorization computed by GBTRF.
void GBTRS(const char TRANS, const OrdinalType n, const OrdinalType kl, const OrdinalType ku, const OrdinalType nrhs, const ScalarType* A, const OrdinalType lda, const OrdinalType* IPIV, ScalarType* B, const OrdinalType ldb, OrdinalType* info) const;
//! Computes an LU factorization of a \c n by \c n tridiagonal matrix \c A using partial pivoting with row interchanges.
void GTTRF(const OrdinalType n, ScalarType* dl, ScalarType* d, ScalarType* du, ScalarType* du2, OrdinalType* IPIV, OrdinalType* info) const;
//! Solves a system of linear equations \c A*X=B or \c A'*X=B or \c A^H*X=B with a tridiagonal matrix \c A using the LU factorization computed by GTTRF.
void GTTRS(const char TRANS, const OrdinalType n, const OrdinalType nrhs, const ScalarType* dl, const ScalarType* d, const ScalarType* du, const ScalarType* du2, const OrdinalType* IPIV, ScalarType* B, const OrdinalType ldb, OrdinalType* info) const;
//! Computes the inverse of a matrix \c A using the LU factorization computed by GETRF.
void GETRI(const OrdinalType n, ScalarType* A, const OrdinalType lda, const OrdinalType* IPIV, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const;
/// \brief Robustly solve a possibly singular triangular linear system.
///
/// \note This routine is slower than the BLAS' TRSM, but can
/// detect possible singularity of A.
void
LATRS (const char UPLO,
const char TRANS,
const char DIAG,
const char NORMIN,
const OrdinalType N,
ScalarType* A,
const OrdinalType LDA,
ScalarType* X,
MagnitudeType* SCALE,
MagnitudeType* CNORM,
OrdinalType* INFO) const;
//! Estimates the reciprocal of the condition number of a general real matrix \c A, in either the 1-norm or the infinity-norm, using the LU factorization computed by GETRF.
void GECON(const char NORM, const OrdinalType n, const ScalarType* A, const OrdinalType lda, const ScalarType anorm, ScalarType* rcond, ScalarType* WORK, OrdinalType* IWORK, OrdinalType* info) const;
//! Estimates the reciprocal of the condition number of a general banded real matrix \c A, in either the 1-norm or the infinity-norm, using the LU factorization computed by GETRF.
void GBCON(const char NORM, const OrdinalType n, const OrdinalType kl, const OrdinalType ku, const ScalarType* A, const OrdinalType lda, OrdinalType* IPIV, const ScalarType anorm, ScalarType* rcond, ScalarType* WORK, OrdinalType* IWORK, OrdinalType* info) const;
//! Returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of an \c n by \c n band matrix \c A, with \c kl sub-diagonals and \c ku super-diagonals.
typename ScalarTraits<ScalarType>::magnitudeType LANGB(const char NORM, const OrdinalType n, const OrdinalType kl, const OrdinalType ku, const ScalarType* A, const OrdinalType lda, MagnitudeType* WORK) const;
//! Computes the solution to a real system of linear equations \c A*X=B, where \c A is factored through GETRF and the \c nrhs solutions are computed through GETRS.
void GESV(const OrdinalType n, const OrdinalType nrhs, ScalarType* A, const OrdinalType lda, OrdinalType* IPIV, ScalarType* B, const OrdinalType ldb, OrdinalType* info) const;
//! Computes row and column scalings intended to equilibrate an \c m by \c n matrix \c A and reduce its condition number.
void GEEQU(const OrdinalType m, const OrdinalType n, const ScalarType* A, const OrdinalType lda, ScalarType* R, ScalarType* C, ScalarType* rowcond, ScalarType* colcond, ScalarType* amax, OrdinalType* info) const;
//! Improves the computed solution to a system of linear equations and provides error bounds and backward error estimates for the solution. Use after GETRF/GETRS.
void GERFS(const char TRANS, const OrdinalType n, const OrdinalType nrhs, const ScalarType* A, const OrdinalType lda, const ScalarType* AF, const OrdinalType ldaf, const OrdinalType* IPIV, const ScalarType* B, const OrdinalType ldb, ScalarType* X, const OrdinalType ldx, ScalarType* FERR, ScalarType* BERR, ScalarType* WORK, OrdinalType* IWORK, OrdinalType* info) const;
//! Computes row and column scalings intended to equilibrate an \c m by \c n banded matrix \c A and reduce its condition number.
void GBEQU(const OrdinalType m, const OrdinalType n, const OrdinalType kl, const OrdinalType ku, const ScalarType* A, const OrdinalType lda, MagnitudeType* R, MagnitudeType* C, MagnitudeType* rowcond, MagnitudeType* colcond, MagnitudeType* amax, OrdinalType* info) const;
//! Improves the computed solution to a banded system of linear equations and provides error bounds and backward error estimates for the solution. Use after GBTRF/GBTRS.
void GBRFS(const char TRANS, const OrdinalType n, const OrdinalType kl, const OrdinalType ku, const OrdinalType nrhs, const ScalarType* A, const OrdinalType lda, const ScalarType* AF, const OrdinalType ldaf, const OrdinalType* IPIV, const ScalarType* B, const OrdinalType ldb, ScalarType* X, const OrdinalType ldx, ScalarType* FERR, ScalarType* BERR, ScalarType* WORK, OrdinalType* IWORK, OrdinalType* info) const;
//! Uses the LU factorization to compute the solution to a real system of linear equations \c A*X=B, returning error bounds on the solution and a condition estimate.
void GESVX(const char FACT, const char TRANS, const OrdinalType n, const OrdinalType nrhs, ScalarType* A, const OrdinalType lda, ScalarType* AF, const OrdinalType ldaf, OrdinalType* IPIV, char EQUED, ScalarType* R, ScalarType* C, ScalarType* B, const OrdinalType ldb, ScalarType* X, const OrdinalType ldx, ScalarType* rcond, ScalarType* FERR, ScalarType* BERR, ScalarType* WORK, OrdinalType* IWORK, OrdinalType* info) const;
/*! \brief Reduces a real symmetric matrix \c A to tridiagonal form by orthogonal similarity transformations.
\note This method is not defined when the ScalarType is \c std::complex<float> or \c std::complex<double>.
*/
void SYTRD(const char UPLO, const OrdinalType n, ScalarType* A, const OrdinalType lda, ScalarType* D, ScalarType* E, ScalarType* TAU, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const;
//! Reduces a real general matrix \c A to upper Hessenberg form by orthogonal similarity transformations.
void GEHRD(const OrdinalType n, const OrdinalType ilo, const OrdinalType ihi, ScalarType* A, const OrdinalType lda, ScalarType* TAU, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const;
//! Solves a triangular linear system of the form \c A*X=B or \c A**T*X=B, where \c A is a triangular matrix.
void TRTRS(const char UPLO, const char TRANS, const char DIAG, const OrdinalType n, const OrdinalType nrhs, const ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, OrdinalType* info) const;
//! Computes the inverse of an upper or lower triangular matrix \c A.
void TRTRI(const char UPLO, const char DIAG, const OrdinalType n, const ScalarType* A, const OrdinalType lda, OrdinalType* info) const;
//@}
//! @name Symmetric Eigenproblem Routines
//@{
/*! \brief Computes the eigenvalues and, optionally, eigenvectors of a symmetric \c n by \c n matrix \c A in packed storage.
\note This method is not defined when the ScalarType is \c std::complex<float> or \c std::complex<double>.
*/
void SPEV(const char JOBZ, const char UPLO, const OrdinalType n, ScalarType* AP, ScalarType* W, ScalarType* Z, const OrdinalType ldz, ScalarType* WORK, OrdinalType* info) const;
/*! \brief Computes all the eigenvalues and, optionally, eigenvectors of a symmetric \c n by \c n matrix A.
\note This method is not defined when the ScalarType is \c std::complex<float> or \c std::complex<double>.
*/
void SYEV(const char JOBZ, const char UPLO, const OrdinalType n, ScalarType* A, const OrdinalType lda, ScalarType* W, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const;
/*! \brief Computes all the eigenvalues and, optionally, eigenvectors of a symmetric \c n by \c n matrix pencil \c {A,B}, where \c A is symmetric and \c B is symmetric positive-definite.
\note This method is not defined when the ScalarType is \c std::complex<float> or \c std::complex<double>.
*/
void SYGV(const OrdinalType itype, const char JOBZ, const char UPLO, const OrdinalType n, ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, ScalarType* W, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const;
/*! \brief Computes all the eigenvalues and, optionally, eigenvectors of a Hermitian \c n by \c n matrix A.
\note This method will call SYEV when ScalarType is \c float or \c double.
*/
void HEEV(const char JOBZ, const char UPLO, const OrdinalType n, ScalarType* A, const OrdinalType lda, MagnitudeType* W, ScalarType* WORK, const OrdinalType lwork, MagnitudeType* RWORK, OrdinalType* info) const;
/*! \brief Computes all the eigenvalues and, optionally, eigenvectors of a generalized Hermitian-definite \c n by \c n matrix pencil \c {A,B}, where \c A is Hermitian and \c B is Hermitian positive-definite.
\note This method will call SYGV when ScalarType is \c float or \c double.
*/
void HEGV(const OrdinalType itype, const char JOBZ, const char UPLO, const OrdinalType n, ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, MagnitudeType* W, ScalarType* WORK, const OrdinalType lwork, MagnitudeType *RWORK, OrdinalType* info) const;
//! Computes the eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal \c n by \c n matrix \c A using implicit QL/QR. The eigenvectors can only be computed if \c A was reduced to tridiagonal form by SYTRD.
void STEQR(const char COMPZ, const OrdinalType n, ScalarType* D, ScalarType* E, ScalarType* Z, const OrdinalType ldz, ScalarType* WORK, OrdinalType* info) const;
//@}
//! @name Non-Hermitian Eigenproblem Routines
//@{
//! Computes the eigenvalues of a real upper Hessenberg matrix \c H and, optionally, the matrices \c T and \c Z from the Schur decomposition, where T is an upper quasi-triangular matrix and Z contains the Schur vectors.
void HSEQR(const char JOB, const char COMPZ, const OrdinalType n, const OrdinalType ilo, const OrdinalType ihi, ScalarType* H, const OrdinalType ldh, ScalarType* WR, ScalarType* WI, ScalarType* Z, const OrdinalType ldz, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const;
/*! Computes for an \c n by \c n nonsymmetric matrix \c A, the eigenvalues, the Schur form \c T, and, optionally, the matrix of Schur vectors \c Z. When \c ScalarType is \c float or \c double, the real Schur form is computed.
\note (This is the version used for \c float and \c double, where \c select requires two arguments to represent a complex eigenvalue.)
*/
void GEES(const char JOBVS, const char SORT, OrdinalType (*ptr2func)(ScalarType*, ScalarType*), const OrdinalType n, ScalarType* A, const OrdinalType lda, OrdinalType* sdim, ScalarType* WR, ScalarType* WI, ScalarType* VS, const OrdinalType ldvs, ScalarType* WORK, const OrdinalType lwork, OrdinalType* BWORK, OrdinalType* info) const;
/*! Computes for an \c n by \c n nonsymmetric matrix \c A, the eigenvalues, the Schur form \c T, and, optionally, the matrix of Schur vectors \c Z. When \c ScalarType is \c float or \c double, the real Schur form is computed.
\note (This is the version used for \c std::complex<float> and \c std::complex<double>, where \c select requires one arguments to represent a complex eigenvalue.)
*/
void GEES(const char JOBVS, const char SORT, OrdinalType (*ptr2func)(ScalarType*), const OrdinalType n, ScalarType* A, const OrdinalType lda, OrdinalType* sdim, ScalarType* W, ScalarType* VS, const OrdinalType ldvs, ScalarType* WORK, const OrdinalType lwork, MagnitudeType* RWORK, OrdinalType* BWORK, OrdinalType* info) const;
/*! Computes for an \c n by \c n nonsymmetric matrix \c A, the eigenvalues, the Schur form \c T, and, optionally, the matrix of Schur vectors \c Z. When \c ScalarType is \c float or \c double, the real Schur form is computed.
\note (This is the version used for any \c ScalarType, when the user doesn't want to enable the sorting functionality.)
*/
void GEES(const char JOBVS, const OrdinalType n, ScalarType* A, const OrdinalType lda, OrdinalType* sdim, MagnitudeType* WR, MagnitudeType* WI, ScalarType* VS, const OrdinalType ldvs, ScalarType* WORK, const OrdinalType lwork, MagnitudeType* RWORK, OrdinalType* BWORK, OrdinalType* info) const;
/// \brief Computes for an \c n by \c n real nonsymmetric matrix \c A, the eigenvalues and, optionally, the left and/or right eigenvectors.
///
/// Real and imaginary parts of the eigenvalues are returned in
/// separate arrays, WR for real and WI for complex. The RWORK
/// array is only referenced if ScalarType is complex.
void GEEV(const char JOBVL, const char JOBVR, const OrdinalType n, ScalarType* A, const OrdinalType lda, MagnitudeType* WR, MagnitudeType* WI, ScalarType* VL, const OrdinalType ldvl, ScalarType* VR, const OrdinalType ldvr, ScalarType* WORK, const OrdinalType lwork, MagnitudeType* RWORK, OrdinalType* info) const;
/*! Computes for an \c n by \c n real nonsymmetric matrix \c A, the eigenvalues and, optionally, the left and/or right eigenvectors.
Optionally, it can compute a balancing transformation to improve the conditioning of the eigenvalues and eigenvectors.
\note (This is the function is only defined for \c ScalarType = \c float or \c double.)
*/
void GEEVX(const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const OrdinalType n, ScalarType* A, const OrdinalType lda, ScalarType* WR, ScalarType* WI, ScalarType* VL, const OrdinalType ldvl, ScalarType* VR, const OrdinalType ldvr, OrdinalType* ilo, OrdinalType* ihi, MagnitudeType* SCALE, MagnitudeType* abnrm, MagnitudeType* RCONDE, MagnitudeType* RCONDV, ScalarType* WORK, const OrdinalType lwork, OrdinalType* IWORK, OrdinalType* info) const;
/*! Computes for a pair of \c n by \c n nonsymmetric matrices (\c A,\c B) the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors.
Optionally, it can compute a balancing transformation to improve the conditioning of the eigenvalues and eigenvectors.
\note (This is the function is only defined for \c ScalarType = \c float or \c double.)
*/
void GGEVX(const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const OrdinalType n, ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, MagnitudeType* ALPHAR, MagnitudeType* ALPHAI, ScalarType* BETA, ScalarType* VL, const OrdinalType ldvl, ScalarType* VR, const OrdinalType ldvr, OrdinalType* ilo, OrdinalType* ihi, MagnitudeType* lscale, MagnitudeType* rscale, MagnitudeType* abnrm, MagnitudeType* bbnrm, MagnitudeType* RCONDE, MagnitudeType* RCONDV, ScalarType* WORK, const OrdinalType lwork, OrdinalType* IWORK, OrdinalType* BWORK, OrdinalType* info) const;
/*! Computes for a pair of \c n by \c n nonsymmetric matrices (\c A,\c B) the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors.
\note (This is the function is only defined for \c ScalarType = \c float or \c double.)
*/
void GGEV(const char JOBVL, const char JOBVR, const OrdinalType n, ScalarType *A, const OrdinalType lda, ScalarType *B, const OrdinalType ldb, MagnitudeType *ALPHAR, MagnitudeType *ALPHAI, ScalarType *BETA, ScalarType *VL, const OrdinalType ldvl, ScalarType *VR, const OrdinalType ldvr, ScalarType *WORK, const OrdinalType lwork, OrdinalType *info) const;
/*! Reorders the real Schur factorization of a real matrix so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the upper quasi-triangular matrix \c T, and the leading columns of \c Q form an orthonormal basis of the corresponding right invariant subspace.
\note (This function is only defined for \c ScalarType = \c float or \c double.)
*/
void TRSEN(const char JOB, const char COMPQ, const OrdinalType *SELECT, const OrdinalType n, ScalarType *T, const OrdinalType ldt, ScalarType *Q, const OrdinalType ldq, MagnitudeType *WR, MagnitudeType *WI, OrdinalType *M, ScalarType *S, MagnitudeType *SEP, ScalarType *WORK, const OrdinalType lwork, OrdinalType *IWORK, const OrdinalType liwork, OrdinalType *info ) const;
/*! Reorders the generalized real Schur decomposition of a real matrix pair (\c A, \c B), so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the upper quasi-triangular matrix \c A and the upper triangular \c B.
\note (This function is only defined for \c ScalarType = \c float or \c double.)
*/
void TGSEN(const OrdinalType ijob, const OrdinalType wantq, const OrdinalType wantz, const OrdinalType *SELECT, const OrdinalType n, ScalarType *A, const OrdinalType lda, ScalarType *B, const OrdinalType ldb, MagnitudeType *ALPHAR, MagnitudeType *ALPHAI, MagnitudeType *BETA, ScalarType *Q, const OrdinalType ldq, ScalarType *Z, const OrdinalType ldz, OrdinalType *M, MagnitudeType *PL, MagnitudeType *PR, MagnitudeType *DIF, ScalarType *WORK, const OrdinalType lwork, OrdinalType *IWORK, const OrdinalType liwork, OrdinalType *info ) const;
/*! Computes for a pair of \c n by \c n nonsymmetric matrices (\c A,\c B) the generalized eigenvalues, the generalized real Schur form (\c S,\c T), optionally, the left and/or right matrices of Schur vectors.
\note (This is the function is only defined for \c ScalarType = \c float or \c double.)
*/
void GGES(const char JOBVL, const char JOBVR, const char SORT, OrdinalType (*ptr2func)(ScalarType *, ScalarType *, ScalarType *), const OrdinalType n, ScalarType *A, const OrdinalType lda, ScalarType *B, const OrdinalType ldb, OrdinalType *sdim, MagnitudeType *ALPHAR, MagnitudeType *ALPHAI, MagnitudeType *BETA, ScalarType *VL, const OrdinalType ldvl, ScalarType *VR, const OrdinalType ldvr, ScalarType *WORK, const OrdinalType lwork, OrdinalType *BWORK, OrdinalType *info ) const;
//@}
//! @name Singular Value Decompositon Routines
//@{
//! Computes the singular values (and optionally, vectors) of a real matrix \c A.
void GESVD(const char JOBU, const char JOBVT, const OrdinalType m, const OrdinalType n, ScalarType* A, const OrdinalType lda, MagnitudeType* S, ScalarType* U, const OrdinalType ldu, ScalarType* V, const OrdinalType ldv, ScalarType* WORK, const OrdinalType lwork, MagnitudeType* RWORK, OrdinalType* info) const;
//@}
//! @name Orthogonal matrix routines
//@{
/// Apply Householder reflectors (real case).
///
/// Overwrite the general real \c m by \c n matrix \c C with the
/// product of \c Q and \c C, whiere Q is the product of \c k
/// elementary (Householder) reflectors as returned by GEQRF.
///
/// \note This method is not defined when ScalarType is complex.
/// Call UNMQR in that case. ("OR" stands for "orthogonal";
/// "UN" stands for "unitary.")
void ORMQR(const char SIDE, const char TRANS, const OrdinalType m, const OrdinalType n, const OrdinalType k, ScalarType* A, const OrdinalType lda, const ScalarType* TAU, ScalarType* C, const OrdinalType ldc, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const;
/// \brief BLAS 2 version of ORMQR; known workspace size.
///
/// \note This method is not defined when ScalarType is complex.
/// Call UNM2R in that case. ("OR" stands for "orthogonal"; "UN"
/// stands for "unitary.")
void ORM2R(const char SIDE, const char TRANS, const OrdinalType m, const OrdinalType n, const OrdinalType k, const ScalarType A[], const OrdinalType lda, const ScalarType TAU[], ScalarType C[], const OrdinalType ldc, ScalarType WORK[], OrdinalType* const info) const;
/// \brief Apply Householder reflectors (complex case).
///
/// Overwrite the general complex \c m by \c n matrix \c C with
/// the product of \c Q and \c C, where Q is the product of \c k
/// elementary (Householder) reflectors as returned by GEQRF.
///
/// \note This method will call ORMQR when ScalarType is real.
/// (Unitary real matrices are orthogonal.)
void UNMQR(const char SIDE, const char TRANS, const OrdinalType m, const OrdinalType n, const OrdinalType k, ScalarType* A, const OrdinalType lda, const ScalarType* TAU, ScalarType* C, const OrdinalType ldc, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const;
/// \brief BLAS 2 version of UNMQR; known workspace size.
///
/// \note This method will call ORM2R when ScalarType is real.
/// (Unitary real matrices are orthogonal.)
void UNM2R(const char SIDE, const char TRANS, const OrdinalType M, const OrdinalType N, const OrdinalType K, const ScalarType A[], const OrdinalType LDA, const ScalarType TAU[], ScalarType C[], const OrdinalType LDC, ScalarType WORK[], OrdinalType* const INFO) const;
/// \brief Compute explicit Q factor from QR factorization (GEQRF) (real case).
///
/// Generate the \c m by \c n matrix Q with orthonormal columns
/// corresponding to the first \c n columns of a product of \c k
/// elementary reflectors of order \c m, as returned by \c GEQRF.
///
/// \note This method is not defined when ScalarType is complex.
/// Call \c UNGQR in that case. ("OR" stands for "orthogonal";
/// "UN" stands for "unitary.")
void ORGQR(const OrdinalType m, const OrdinalType n, const OrdinalType k, ScalarType* A, const OrdinalType lda, const ScalarType* TAU, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const;
/// \brief Compute explicit QR factor from QR factorization (GEQRF) (complex case).
///
/// Generate the \c m by \c n matrix Q with orthonormal columns
/// corresponding tothe first \c n columns of a product of \c k
/// elementary reflectors of order \c m, as returned by \c GEQRF.
///
/// \note This method will call \c ORGQR when ScalarType is real.
/// (Unitary real matrices are orthogonal.)
void UNGQR(const OrdinalType m, const OrdinalType n, const OrdinalType k, ScalarType* A, const OrdinalType lda, const ScalarType* TAU, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const;
/*! \brief Generates a real orthogonal matrix \c Q which is the product of \c ihi-ilo elementary reflectors of order \c n, as returned by GEHRD. On return \c Q is stored in \c A.
\note This method is not defined when ScalarType is complex.
*/
void ORGHR(const OrdinalType n, const OrdinalType ilo, const OrdinalType ihi, ScalarType* A, const OrdinalType lda, const ScalarType* TAU, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const;
/*! \brief Overwrites the general real \c m by \c n matrix \c C with the product of \c C and \c Q, which is a product of \c ihi-ilo elementary reflectors, as returned by GEHRD.
\note This method is not defined when ScalarType is complex.
*/
void ORMHR(const char SIDE, const char TRANS, const OrdinalType m, const OrdinalType n, const OrdinalType ilo, const OrdinalType ihi, const ScalarType* A, const OrdinalType lda, const ScalarType* TAU, ScalarType* C, const OrdinalType ldc, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const;
//@}
//! @name Triangular Matrix Routines
//@{
/*! Computes some or all of the right and/or left eigenvectors of an upper triangular matrix \c T. If ScalarType is \c float or \c double, then the matrix is quasi-triangular and arugments \c RWORK is ignored.
*/
void TREVC(const char SIDE, const char HOWMNY, OrdinalType* select, const OrdinalType n, const ScalarType* T, const OrdinalType ldt, ScalarType* VL, const OrdinalType ldvl, ScalarType* VR, const OrdinalType ldvr, const OrdinalType mm, OrdinalType* m, ScalarType* WORK, OrdinalType* info) const;
/*! Computes some or all of the right and/or left eigenvectors of an upper triangular matrix \c T. If ScalarType is \c float or \c double, then the matrix is quasi-triangular and arugments \c RWORK is ignored.
\note (This is the version used for any \c ScalarType, when the user doesn't want to enable the selecting functionality, with HOWMNY='A'.)
*/
void TREVC(const char SIDE, const OrdinalType n, const ScalarType* T, const OrdinalType ldt, ScalarType* VL, const OrdinalType ldvl, ScalarType* VR, const OrdinalType ldvr, const OrdinalType mm, OrdinalType* m, ScalarType* WORK, MagnitudeType* RWORK, OrdinalType* info) const;
/*! Reorders the Schur factorization of a matrix \c T via unitary similarity transformations so that the diagonal element of \c T with row index \c ifst is moved to row \c ilst. If \c ScalarType is \c float or \c double, then \c T should be in real Schur form and the operation affects the diagonal block referenced by \c ifst.
\note This method will ignore the WORK vector when ScalarType is \c std::complex<float> or \c std::complex<double>.
*/
void TREXC(const char COMPQ, const OrdinalType n, ScalarType* T, const OrdinalType ldt, ScalarType* Q, const OrdinalType ldq, OrdinalType ifst, OrdinalType ilst, ScalarType* WORK, OrdinalType* info) const;
/*! Computes some or all of the right and/or left eigenvectors of a pair of real matrices ( \c S, \c P ), where \c S is a quasi-triangular matrix and \c P is upper triangular.
\note This method is only defined for \c ScalarType = \c float or \c double.
*/
void TGEVC(const char SIDE, const char HOWMNY, const OrdinalType *SELECT, const OrdinalType n, ScalarType *S, const OrdinalType lds, ScalarType *P, const OrdinalType ldp, ScalarType *VL, const OrdinalType ldvl, ScalarType *VR, const OrdinalType ldvr, const OrdinalType mm, OrdinalType *M, ScalarType *WORK, OrdinalType *info) const;
//@}
//! @name Rotation/Reflection generators
//@{
//! Gnerates a plane rotation that zeros out the second component of the input vector.
void LARTG( const ScalarType f, const ScalarType g, MagnitudeType* c, ScalarType* s, ScalarType* r ) const;
//! Generates an elementary reflector of order \c n that zeros out the last \c n-1 components of the input vector.
void LARFG( const OrdinalType n, ScalarType* alpha, ScalarType* x, const OrdinalType incx, ScalarType* tau ) const;
//@}
//! @name Matrix Balancing Routines
//@{
//! Balances a general matrix A, through similarity transformations to make the rows and columns as close in norm as possible.
void GEBAL(const char JOBZ, const OrdinalType n, ScalarType* A, const OrdinalType lda, OrdinalType ilo, OrdinalType ihi, MagnitudeType* scale, OrdinalType* info) const;
//! Forms the left or right eigenvectors of a general matrix that has been balanced by GEBAL by backward transformation of the computed eigenvectors \c V.
void GEBAK(const char JOBZ, const char SIDE, const OrdinalType n, const OrdinalType ilo, const OrdinalType ihi, const MagnitudeType* scale , const OrdinalType m, ScalarType* V, const OrdinalType ldv, OrdinalType* info) const;
//@}
//! @name Random number generators
//@{
//! Returns a random number from a uniform or normal distribution.
ScalarType LARND( const OrdinalType idist, OrdinalType* seed ) const;
//! Returns a vector of random numbers from a chosen distribution.
void LARNV( const OrdinalType idist, OrdinalType* seed, const OrdinalType n, ScalarType* v ) const;
//@}
//! @name Machine Characteristics Routines.
//@{
/*! \brief Determines machine parameters for floating point characteristics.
\note This method is not defined when the ScalarType is \c std::complex<float> or \c std::complex<double>.
*/
ScalarType LAMCH(const char CMACH) const;
/*! \brief Chooses problem-dependent parameters for the local environment.
\note This method should give parameters for good, but not optimal, performance on many currently
available computers.
*/
OrdinalType ILAENV( const OrdinalType ispec, const std::string& NAME, const std::string& OPTS, const OrdinalType N1 = -1, const OrdinalType N2 = -1, const OrdinalType N3 = -1, const OrdinalType N4 = -1 ) const;
//@}
//! @name Miscellaneous Utilities.
//@{
/*! \brief Computes x^2 + y^2 safely, to avoid overflow.
\note This method is not defined when the ScalarType is \c std::complex<float> or \c std::complex<double>.
*/
ScalarType LAPY2(const ScalarType x, const ScalarType y) const;
//@}
};
// END GENERAL TEMPLATE DECLARATION //
// BEGIN GENERAL TEMPLATE IMPLEMENTATION //
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::PTTRF(const OrdinalType n, ScalarType* d, ScalarType* e, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::PTTRS(const OrdinalType n, const OrdinalType nrhs, const ScalarType* d, const ScalarType* e, ScalarType* B, const OrdinalType ldb, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::POTRF(const char UPLO, const OrdinalType n, ScalarType* A, const OrdinalType lda, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::POTRS(const char UPLO, const OrdinalType n, const OrdinalType nrhs, const ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::POTRI(const char UPLO, const OrdinalType n, ScalarType* A, const OrdinalType lda, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::POCON(const char UPLO, const OrdinalType n, const ScalarType* A, const OrdinalType lda, const ScalarType anorm, ScalarType* rcond, ScalarType* WORK, OrdinalType* IWORK, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::POSV(const char UPLO, const OrdinalType n, const OrdinalType nrhs, ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::POEQU(const OrdinalType n, const ScalarType* A, const OrdinalType lda, MagnitudeType* S, MagnitudeType* scond, MagnitudeType* amax, OrdinalType* info) const
{
// Test the input parameters
*info = 0;
if (n < 0) {
*info = -1;
} else if (lda < TEUCHOS_MAX(1, n)) {
*info = -3;
}
if (*info != 0) {
return;
}
ScalarType sZero = ScalarTraits<ScalarType>::zero();
ScalarType sOne = ScalarTraits<ScalarType>::one();
MagnitudeType mZero = ScalarTraits<ScalarType>::magnitude(sZero);
MagnitudeType mOne = ScalarTraits<ScalarType>::magnitude(sOne);
// Quick return
if (n == 0) {
*scond = mOne;
*amax = mZero;
return;
}
// Find the minimum and maximum diagonal elements
S[0] = ScalarTraits<ScalarType>::magnitude( A[0] );
MagnitudeType smin = S[0];
*amax = S[0];
for (OrdinalType i=0; i<n; ++i) {
S[i] = ScalarTraits<ScalarType>::magnitude( A[i*lda + i] );
smin = TEUCHOS_MIN( smin, S[i] );
*amax = TEUCHOS_MAX( *amax, S[i] );
}
if (smin < mZero) {
// Find the first non-positve diagonal element and return an error code
for (OrdinalType i=0; i<n; ++i) {
if (S[i] < mZero)
*info = i;
}
} else {
// Set the scale factors to the reciprocals of the diagonal elements
for (OrdinalType i=0; i<n; ++i) {
S[i] = mOne / ScalarTraits<ScalarType>::squareroot( S[i] );
}
// Compute scond = min(S(i)) / max(S(i))
*scond = ScalarTraits<ScalarType>::squareroot( smin ) / ScalarTraits<ScalarType>::squareroot( *amax );
}
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::PORFS(const char UPLO, const OrdinalType n, const OrdinalType nrhs, const ScalarType* A, const OrdinalType lda, const ScalarType* AF, const OrdinalType ldaf, const ScalarType* B, const OrdinalType ldb, ScalarType* X, const OrdinalType ldx, ScalarType* FERR, ScalarType* BERR, ScalarType* WORK, OrdinalType* IWORK, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::POSVX(const char FACT, const char UPLO, const OrdinalType n, const OrdinalType nrhs, ScalarType* A, const OrdinalType lda, ScalarType* AF, const OrdinalType ldaf, char EQUED, ScalarType* S, ScalarType* B, const OrdinalType ldb, ScalarType* X, const OrdinalType ldx, ScalarType* rcond, ScalarType* FERR, ScalarType* BERR, ScalarType* WORK, OrdinalType* IWORK, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType,ScalarType>::GELS(const char TRANS, const OrdinalType m, const OrdinalType n, const OrdinalType nrhs, ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::GELSS(const OrdinalType m, const OrdinalType n, const OrdinalType nrhs, ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, MagnitudeType* S, const MagnitudeType rcond, OrdinalType* rank, ScalarType* WORK, const OrdinalType lwork, MagnitudeType* RWORK, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType,ScalarType>::GELSS(const OrdinalType m, const OrdinalType n, const OrdinalType nrhs, ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, ScalarType* S, const ScalarType rcond, OrdinalType* rank, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType,ScalarType>::GGLSE(const OrdinalType m, const OrdinalType n, const OrdinalType p, ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, ScalarType* C, ScalarType* D, ScalarType* X, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType,ScalarType>::GEQRF( const OrdinalType m, const OrdinalType n, ScalarType* A, const OrdinalType lda, ScalarType* TAU, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType,ScalarType>::GEQR2 (const OrdinalType m, const OrdinalType n, ScalarType A[], const OrdinalType lda, ScalarType TAU[], ScalarType WORK[], OrdinalType* const info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType,ScalarType>::GETRF(const OrdinalType m, const OrdinalType n, ScalarType* A, const OrdinalType lda, OrdinalType* IPIV, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType,ScalarType>::GETRS(const char TRANS, const OrdinalType n, const OrdinalType nrhs, const ScalarType* A, const OrdinalType lda, const OrdinalType* IPIV, ScalarType* B, const OrdinalType ldb, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType,ScalarType>::LASCL(const char TYPE, const OrdinalType kl, const OrdinalType ku, const MagnitudeType cfrom, const MagnitudeType cto, const OrdinalType m, const OrdinalType n, ScalarType* A, const OrdinalType lda, OrdinalType* info) const
{
MagnitudeType safeMin = ScalarTraits<ScalarType>::sfmin();
ScalarType sZero = ScalarTraits<ScalarType>::zero();
ScalarType sOne = ScalarTraits<ScalarType>::one();
MagnitudeType mZero = ScalarTraits<ScalarType>::magnitude(sZero);
MagnitudeType mOne = ScalarTraits<ScalarType>::magnitude(sOne);
MagnitudeType smlnum = ScalarTraits<ScalarType>::magnitude(safeMin);
MagnitudeType bignum = ScalarTraits<ScalarType>::magnitude(sOne/smlnum);
OrdinalType i, j;
ScalarType* ptr;
MagnitudeType mul;
bool done = false;
MagnitudeType cfromc = cfrom;
MagnitudeType ctoc = cto;
MagnitudeType cfrom1;
MagnitudeType cto1;
while (!done) {
cfrom1 = cfromc*smlnum;
if (cfrom1 == cfromc) {
// cfromc is an inf. Multiply by a correctly signed zero for finite ctoc, or a NaN if ctoc is infinite.
mul = ctoc / cfromc;
done = true;
cto1 = ctoc;
} else {
cto1 = ctoc / bignum;
if (cto1 == ctoc) {
// ctoc is either 0 or an inf. In both cases, ctoc itself serves as the correct multiplication factor.
mul = ctoc;
done = true;
cfromc = mOne;
} else if (ScalarTraits<ScalarType>::magnitude(cfrom1) > ScalarTraits<ScalarType>::magnitude(ctoc) && ctoc != mZero) {
mul = smlnum;
done = false;
cfromc = cfrom1;
} else if (ScalarTraits<ScalarType>::magnitude(cto1) > ScalarTraits<ScalarType>::magnitude(cfromc)) {
mul = bignum;
done = false;
ctoc = cto1;
} else {
mul = ctoc / cfromc;
done = true;
}
}
for (j=0; j<n; j++) {
ptr = A + j*lda;
for (i=0; i<m; i++) { *ptr = mul * (*ptr); ptr++; }
}
}
}
template<typename OrdinalType, typename ScalarType>
void
LAPACK<OrdinalType,ScalarType>::
GEQP3 (const OrdinalType m,
const OrdinalType n,
ScalarType* A,
const OrdinalType lda,
OrdinalType *jpvt,
ScalarType* TAU,
ScalarType* WORK,
const OrdinalType lwork,
MagnitudeType* RWORK,
OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void
LAPACK<OrdinalType, ScalarType>::
LASWP (const OrdinalType N,
ScalarType A[],
const OrdinalType LDA,
const OrdinalType K1,
const OrdinalType K2,
const OrdinalType IPIV[],
const OrdinalType INCX) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType,ScalarType>::GBTRF(const OrdinalType m, const OrdinalType n, const OrdinalType kl, const OrdinalType ku, ScalarType* A, const OrdinalType lda, OrdinalType* IPIV, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType,ScalarType>::GBTRS(const char TRANS, const OrdinalType n, const OrdinalType kl, const OrdinalType ku, const OrdinalType nrhs, const ScalarType* A, const OrdinalType lda, const OrdinalType* IPIV, ScalarType* B, const OrdinalType ldb, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType,ScalarType>::GTTRF(const OrdinalType n, ScalarType* dl, ScalarType* d, ScalarType* du, ScalarType* du2, OrdinalType* IPIV, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType,ScalarType>::GTTRS(const char TRANS, const OrdinalType n, const OrdinalType nrhs, const ScalarType* dl, const ScalarType* d, const ScalarType* du, const ScalarType* du2, const OrdinalType* IPIV, ScalarType* B, const OrdinalType ldb, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType,ScalarType>::GETRI(const OrdinalType n, ScalarType* A, const OrdinalType lda, const OrdinalType* IPIV, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void
LAPACK<OrdinalType,ScalarType>::
LATRS (const char UPLO,
const char TRANS,
const char DIAG,
const char NORMIN,
const OrdinalType N,
ScalarType* A,
const OrdinalType LDA,
ScalarType* X,
MagnitudeType* SCALE,
MagnitudeType* CNORM,
OrdinalType* INFO) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType,ScalarType>::GECON(const char NORM, const OrdinalType n, const ScalarType* A, const OrdinalType lda, const ScalarType anorm, ScalarType* rcond, ScalarType* WORK, OrdinalType* IWORK, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType,ScalarType>::GBCON(const char NORM, const OrdinalType n, const OrdinalType kl, const OrdinalType ku, const ScalarType* A, const OrdinalType lda, OrdinalType* IPIV, const ScalarType anorm, ScalarType* rcond, ScalarType* WORK, OrdinalType* IWORK, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
typename ScalarTraits<ScalarType>::magnitudeType LAPACK<OrdinalType,ScalarType>::LANGB(const char NORM, const OrdinalType n, const OrdinalType kl, const OrdinalType ku, const ScalarType* A, const OrdinalType lda, MagnitudeType* WORK) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType,ScalarType>::GESV(const OrdinalType n, const OrdinalType nrhs, ScalarType* A, const OrdinalType lda, OrdinalType* IPIV, ScalarType* B, const OrdinalType ldb, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType,ScalarType>::GEEQU(const OrdinalType m, const OrdinalType n, const ScalarType* A, const OrdinalType lda, ScalarType* R, ScalarType* C, ScalarType* rowcond, ScalarType* colcond, ScalarType* amax, OrdinalType* info) const
{
// Test the input parameters
*info = 0;
if (m < 0) {
*info = -1;
} else if (n < 0) {
*info = -2;
} else if (lda < TEUCHOS_MAX(1, m)) {
*info = -4;
}
if (*info != 0) {
return;
}
ScalarType sZero = ScalarTraits<ScalarType>::zero();
ScalarType sOne = ScalarTraits<ScalarType>::one();
MagnitudeType mZero = ScalarTraits<ScalarType>::magnitude(sZero);
MagnitudeType mOne = ScalarTraits<ScalarType>::magnitude(sOne);
// Quick return
if (m == 0 || n == 0) {
*rowcond = mOne;
*colcond = mOne;
*amax = mZero;
return;
}
MagnitudeType safeMin = ScalarTraits<ScalarType>::sfmin();
MagnitudeType smlnum = ScalarTraits<ScalarType>::magnitude(safeMin);
MagnitudeType bignum = ScalarTraits<ScalarType>::magnitude(sOne/smlnum);
// Compute the row scale factors
for (OrdinalType i=0; i<m; i++) {
R[i] = mZero;
}
// Find the maximum element in each row
for (OrdinalType j=0; j<n; j++) {
for (OrdinalType i=0; i<m; i++) {
R[i] = TEUCHOS_MAX( R[i], ScalarTraits<ScalarType>::magnitude( A[j*lda + i] ) );
}
}
// Find the maximum and minimum scale factors
MagnitudeType rcmin = bignum;
MagnitudeType rcmax = mZero;
for (OrdinalType i=0; i<m; i++) {
rcmax = TEUCHOS_MAX( rcmax, R[i] );
rcmin = TEUCHOS_MIN( rcmin, R[i] );
}
*amax = rcmax;
if (rcmin == mZero) {
// Find the first zero scale factor and return an error code
for (OrdinalType i=0; i<m; i++) {
if (R[i] == mZero)
*info = i;
}
} else {
// Invert the scale factors
for (OrdinalType i=0; i<m; i++) {
R[i] = mOne / TEUCHOS_MIN( TEUCHOS_MAX( R[i], smlnum ), bignum );
}
// Compute rowcond = min(R(i)) / max(R(i))
*rowcond = TEUCHOS_MAX( rcmin, smlnum ) / TEUCHOS_MIN( rcmax, bignum );
}
// Compute the column scale factors
for (OrdinalType j=0; j<n; j++) {
C[j] = mZero;
}
// Find the maximum element in each column, assuming the row scaling computed above
for (OrdinalType j=0; j<n; j++) {
for (OrdinalType i=0; i<m; i++) {
C[j] = TEUCHOS_MAX( C[j], R[i]*ScalarTraits<ScalarType>::magnitude( A[j*lda + i] ) );
}
}
// Find the maximum and minimum scale factors
rcmin = bignum;
rcmax = mZero;
for (OrdinalType j=0; j<n; j++) {
rcmax = TEUCHOS_MAX( rcmax, C[j] );
rcmin = TEUCHOS_MIN( rcmin, C[j] );
}
if (rcmin == mZero) {
// Find the first zero scale factor and return an error code
for (OrdinalType j=0; j<n; j++) {
if (C[j] == mZero)
*info = m+j;
}
} else {
// Invert the scale factors
for (OrdinalType j=0; j<n; j++) {
C[j] = mOne / TEUCHOS_MIN( TEUCHOS_MAX( C[j], smlnum ), bignum );
}
// Compute colcond = min(C(j)) / max(C(j))
*colcond = TEUCHOS_MAX( rcmin, smlnum ) / TEUCHOS_MIN( rcmax, bignum );
}
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType,ScalarType>::GERFS(const char TRANS, const OrdinalType n, const OrdinalType nrhs, const ScalarType* A, const OrdinalType lda, const ScalarType* AF, const OrdinalType ldaf, const OrdinalType* IPIV, const ScalarType* B, const OrdinalType ldb, ScalarType* X, const OrdinalType ldx, ScalarType* FERR, ScalarType* BERR, ScalarType* WORK, OrdinalType* IWORK, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType,ScalarType>::GBEQU(const OrdinalType m, const OrdinalType n, const OrdinalType kl, const OrdinalType ku, const ScalarType* A, const OrdinalType lda, MagnitudeType* R, MagnitudeType* C, MagnitudeType* rowcond, MagnitudeType* colcond, MagnitudeType* amax, OrdinalType* info) const
{
// Test the input parameters
* info = 0;
if (m < 0) {
*info = -1;
} else if (n < 0) {
*info = -2;
} else if (kl < 0) {
*info = -3;
} else if (ku < 0) {
*info = -4;
} else if (lda < kl+ku+1) {
*info = -6;
}
if (*info != 0) {
return;
}
ScalarType sZero = ScalarTraits<ScalarType>::zero();
ScalarType sOne = ScalarTraits<ScalarType>::one();
MagnitudeType mZero = ScalarTraits<ScalarType>::magnitude(sZero);
MagnitudeType mOne = ScalarTraits<ScalarType>::magnitude(sOne);
// Quick return
if (m == 0 || n == 0) {
*rowcond = mOne;
*colcond = mOne;
*amax = mZero;
return;
}
MagnitudeType safeMin = ScalarTraits<ScalarType>::sfmin();
MagnitudeType smlnum = ScalarTraits<ScalarType>::magnitude(safeMin);
MagnitudeType bignum = ScalarTraits<ScalarType>::magnitude(sOne/smlnum);
// Compute the row scale factors
for (OrdinalType i=0; i<m; i++) {
R[i] = mZero;
}
// Find the maximum element in each row
for (OrdinalType j=0; j<n; j++) {
for (OrdinalType i=TEUCHOS_MAX(j-ku,0); i<TEUCHOS_MIN(j+kl,m-1); i++) {
R[i] = TEUCHOS_MAX( R[i], ScalarTraits<ScalarType>::magnitude( A[j*lda + ku+i-j] ) );
}
}
// Find the maximum and minimum scale factors
MagnitudeType rcmin = bignum;
MagnitudeType rcmax = mZero;
for (OrdinalType i=0; i<m; i++) {
rcmax = TEUCHOS_MAX( rcmax, R[i] );
rcmin = TEUCHOS_MIN( rcmin, R[i] );
}
*amax = rcmax;
if (rcmin == mZero) {
// Find the first zero scale factor and return an error code
for (OrdinalType i=0; i<m; i++) {
if (R[i] == mZero)
*info = i;
}
} else {
// Invert the scale factors
for (OrdinalType i=0; i<m; i++) {
R[i] = mOne / TEUCHOS_MIN( TEUCHOS_MAX( R[i], smlnum ), bignum );
}
// Compute rowcond = min(R(i)) / max(R(i))
*rowcond = TEUCHOS_MAX( rcmin, smlnum ) / TEUCHOS_MIN( rcmax, bignum );
}
// Compute the column scale factors
for (OrdinalType j=0; j<n; j++) {
C[j] = mZero;
}
// Find the maximum element in each column, assuming the row scaling computed above
for (OrdinalType j=0; j<n; j++) {
for (OrdinalType i=TEUCHOS_MAX(j-ku,0); i<TEUCHOS_MIN(j+kl,m-1); i++) {
C[j] = TEUCHOS_MAX( C[j], R[i]*ScalarTraits<ScalarType>::magnitude( A[j*lda + ku+i-j] ) );
}
}
// Find the maximum and minimum scale factors
rcmin = bignum;
rcmax = mZero;
for (OrdinalType j=0; j<n; j++) {
rcmax = TEUCHOS_MAX( rcmax, C[j] );
rcmin = TEUCHOS_MIN( rcmin, C[j] );
}
if (rcmin == mZero) {
// Find the first zero scale factor and return an error code
for (OrdinalType j=0; j<n; j++) {
if (C[j] == mZero)
*info = m+j;
}
} else {
// Invert the scale factors
for (OrdinalType j=0; j<n; j++) {
C[j] = mOne / TEUCHOS_MIN( TEUCHOS_MAX( C[j], smlnum ), bignum );
}
// Compute colcond = min(C(j)) / max(C(j))
*colcond = TEUCHOS_MAX( rcmin, smlnum ) / TEUCHOS_MIN( rcmax, bignum );
}
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType,ScalarType>::GBRFS(const char TRANS, const OrdinalType n, const OrdinalType kl, const OrdinalType ku, const OrdinalType nrhs, const ScalarType* A, const OrdinalType lda, const ScalarType* AF, const OrdinalType ldaf, const OrdinalType* IPIV, const ScalarType* B, const OrdinalType ldb, ScalarType* X, const OrdinalType ldx, ScalarType* FERR, ScalarType* BERR, ScalarType* WORK, OrdinalType* IWORK, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType,ScalarType>::GESVX(const char FACT, const char TRANS, const OrdinalType n, const OrdinalType nrhs, ScalarType* A, const OrdinalType lda, ScalarType* AF, const OrdinalType ldaf, OrdinalType* IPIV, char EQUED, ScalarType* R, ScalarType* C, ScalarType* B, const OrdinalType ldb, ScalarType* X, const OrdinalType ldx, ScalarType* rcond, ScalarType* FERR, ScalarType* BERR, ScalarType* WORK, OrdinalType* IWORK, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType,ScalarType>::SYTRD(const char UPLO, const OrdinalType n, ScalarType* A, const OrdinalType lda, ScalarType* D, ScalarType* E, ScalarType* TAU, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType,ScalarType>::GEHRD(const OrdinalType n, const OrdinalType ilo, const OrdinalType ihi, ScalarType* A, const OrdinalType lda, ScalarType* TAU, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType,ScalarType>::TRTRS(const char UPLO, const char TRANS, const char DIAG, const OrdinalType n, const OrdinalType nrhs, const ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType,ScalarType>::TRTRI(const char UPLO, const char DIAG, const OrdinalType n, const ScalarType* A, const OrdinalType lda, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType,ScalarType>::SPEV(const char JOBZ, const char UPLO, const OrdinalType n, ScalarType* AP, ScalarType* W, ScalarType* Z, const OrdinalType ldz, ScalarType* WORK, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType,ScalarType>::SYEV(const char JOBZ, const char UPLO, const OrdinalType n, ScalarType* A, const OrdinalType lda, ScalarType* W, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType,ScalarType>::SYGV(const OrdinalType itype, const char JOBZ, const char UPLO, const OrdinalType n, ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, ScalarType* W, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType,ScalarType>::HEEV(const char JOBZ, const char UPLO, const OrdinalType n, ScalarType* A, const OrdinalType lda, MagnitudeType* W, ScalarType* WORK, const OrdinalType lwork, MagnitudeType* RWORK, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType,ScalarType>::HEGV(const OrdinalType itype, const char JOBZ, const char UPLO, const OrdinalType n, ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, MagnitudeType* W, ScalarType* WORK, const OrdinalType lwork, MagnitudeType* RWORK, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType,ScalarType>::STEQR(const char COMPZ, const OrdinalType n, ScalarType* D, ScalarType* E, ScalarType* Z, const OrdinalType ldz, ScalarType* WORK, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::HSEQR(const char JOB, const char COMPZ, const OrdinalType n, const OrdinalType ilo, const OrdinalType ihi, ScalarType* H, const OrdinalType ldh, ScalarType* WR, ScalarType* WI, ScalarType* Z, const OrdinalType ldz, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::GEES(const char JOBVS, const char SORT, OrdinalType (*ptr2func)(ScalarType*, ScalarType*), const OrdinalType n, ScalarType* A, const OrdinalType lda, OrdinalType* sdim, ScalarType* WR, ScalarType* WI, ScalarType* VS, const OrdinalType ldvs, ScalarType* WORK, const OrdinalType lwork, OrdinalType* BWORK, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::GEES(const char JOBVS, const char SORT, OrdinalType (*ptr2func)(ScalarType*), const OrdinalType n, ScalarType* A, const OrdinalType lda, OrdinalType* sdim, ScalarType* W, ScalarType* VS, const OrdinalType ldvs, ScalarType* WORK, const OrdinalType lwork, MagnitudeType *RWORK, OrdinalType* BWORK, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::GEES(const char JOBVS, const OrdinalType n, ScalarType* A, const OrdinalType lda, OrdinalType* sdim, MagnitudeType* WR, MagnitudeType* WI, ScalarType* VS, const OrdinalType ldvs, ScalarType* WORK, const OrdinalType lwork, MagnitudeType *RWORK, OrdinalType* BWORK, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::GEEV(const char JOBVL, const char JOBVR, const OrdinalType n, ScalarType* A, const OrdinalType lda, MagnitudeType* WR, MagnitudeType* WI, ScalarType* VL, const OrdinalType ldvl, ScalarType* VR, const OrdinalType ldvr, ScalarType* WORK, const OrdinalType lwork, MagnitudeType* rwork, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::GEEVX(const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const OrdinalType n, ScalarType* A, const OrdinalType lda, ScalarType* WR, ScalarType* WI, ScalarType* VL, const OrdinalType ldvl, ScalarType* VR, const OrdinalType ldvr, OrdinalType* ilo, OrdinalType* ihi, MagnitudeType* SCALE, MagnitudeType* abnrm, MagnitudeType* RCONDE, MagnitudeType* RCONDV, ScalarType* WORK, const OrdinalType lwork, OrdinalType* IWORK, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::GESVD(const char JOBU, const char JOBVT, const OrdinalType m, const OrdinalType n, ScalarType* A, const OrdinalType lda, MagnitudeType* S, ScalarType* U, const OrdinalType ldu, ScalarType* V, const OrdinalType ldv, ScalarType* WORK, const OrdinalType lwork, MagnitudeType* RWORK, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::GGEVX(const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const OrdinalType n, ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, MagnitudeType* ALPHAR, MagnitudeType* ALPHAI, ScalarType* BETA, ScalarType* VL, const OrdinalType ldvl, ScalarType* VR, const OrdinalType ldvr, OrdinalType* ilo, OrdinalType* ihi, MagnitudeType* lscale, MagnitudeType* rscale, MagnitudeType* abnrm, MagnitudeType* bbnrm, MagnitudeType* RCONDE, MagnitudeType* RCONDV, ScalarType* WORK, const OrdinalType lwork, OrdinalType* IWORK, OrdinalType* BWORK, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::GGEV(const char JOBVL, const char JOBVR, const OrdinalType n, ScalarType *A, const OrdinalType lda, ScalarType *B, const OrdinalType ldb, MagnitudeType *ALPHAR, MagnitudeType *ALPHAI, ScalarType *BETA, ScalarType *VL, const OrdinalType ldvl, ScalarType *VR, const OrdinalType ldvr, ScalarType *WORK, const OrdinalType lwork, OrdinalType *info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType,ScalarType>::TRSEN(const char JOB, const char COMPQ, const OrdinalType *SELECT, const OrdinalType n, ScalarType *T, const OrdinalType ldt, ScalarType *Q, const OrdinalType ldq, MagnitudeType *WR, MagnitudeType *WI, OrdinalType *M, ScalarType *S, MagnitudeType *SEP, ScalarType *WORK, const OrdinalType lwork, OrdinalType *IWORK, const OrdinalType liwork, OrdinalType *info ) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType,ScalarType>::TGSEN(const OrdinalType ijob, const OrdinalType wantq, const OrdinalType wantz, const OrdinalType *SELECT, const OrdinalType n, ScalarType *A, const OrdinalType lda, ScalarType *B, const OrdinalType ldb, MagnitudeType *ALPHAR, MagnitudeType *ALPHAI, MagnitudeType *BETA, ScalarType *Q, const OrdinalType ldq, ScalarType *Z, const OrdinalType ldz, OrdinalType *M, MagnitudeType *PL, MagnitudeType *PR, MagnitudeType *DIF, ScalarType *WORK, const OrdinalType lwork, OrdinalType *IWORK, const OrdinalType liwork, OrdinalType *info ) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::GGES(const char JOBVL, const char JOBVR, const char SORT, OrdinalType (*ptr2func)(ScalarType*, ScalarType*, ScalarType*), const OrdinalType n, ScalarType* A, const OrdinalType lda, ScalarType* B, const OrdinalType ldb, OrdinalType* sdim, MagnitudeType* ALPHAR, MagnitudeType* ALPHAI, MagnitudeType* BETA, ScalarType* VL, const OrdinalType ldvl, ScalarType* VR, const OrdinalType ldvr, ScalarType* WORK, const OrdinalType lwork, OrdinalType *BWORK, OrdinalType* info ) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::ORMQR(const char SIDE, const char TRANS, const OrdinalType m, const OrdinalType n, const OrdinalType k, ScalarType* A, const OrdinalType lda, const ScalarType* TAU, ScalarType* C, const OrdinalType ldc, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::ORM2R(const char SIDE, const char TRANS, const OrdinalType m, const OrdinalType n, const OrdinalType k, const ScalarType A[], const OrdinalType lda, const ScalarType TAU[], ScalarType C[], const OrdinalType ldc, ScalarType WORK[], OrdinalType* const info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::UNMQR(const char SIDE, const char TRANS, const OrdinalType m, const OrdinalType n, const OrdinalType k, ScalarType* A, const OrdinalType lda, const ScalarType* TAU, ScalarType* C, const OrdinalType ldc, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::UNM2R(const char SIDE, const char TRANS, const OrdinalType M, const OrdinalType N, const OrdinalType K, const ScalarType A[], const OrdinalType LDA, const ScalarType TAU[], ScalarType C[], const OrdinalType LDC, ScalarType WORK[], OrdinalType* const INFO) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::ORGQR(const OrdinalType m, const OrdinalType n, const OrdinalType k, ScalarType* A, const OrdinalType lda, const ScalarType* TAU, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::UNGQR(const OrdinalType m, const OrdinalType n, const OrdinalType k, ScalarType* A, const OrdinalType lda, const ScalarType* TAU, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::ORGHR(const OrdinalType n, const OrdinalType ilo, const OrdinalType ihi, ScalarType* A, const OrdinalType lda, const ScalarType* TAU, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::ORMHR(const char SIDE, const char TRANS, const OrdinalType m, const OrdinalType n, const OrdinalType ilo, const OrdinalType ihi, const ScalarType* A, const OrdinalType lda, const ScalarType* TAU, ScalarType* C, const OrdinalType ldc, ScalarType* WORK, const OrdinalType lwork, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::TREVC(const char SIDE, const char HOWMNY, OrdinalType* select, const OrdinalType n, const ScalarType* T, const OrdinalType ldt, ScalarType* VL, const OrdinalType ldvl, ScalarType* VR, const OrdinalType ldvr, const OrdinalType mm, OrdinalType* m, ScalarType* WORK, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::TREVC(const char SIDE, const OrdinalType n, const ScalarType* T, const OrdinalType ldt, ScalarType* VL, const OrdinalType ldvl, ScalarType* VR, const OrdinalType ldvr, const OrdinalType mm, OrdinalType* m, ScalarType* WORK, MagnitudeType* RWORK, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::TREXC(const char COMPQ, const OrdinalType n, ScalarType* T, const OrdinalType ldt, ScalarType* Q, const OrdinalType ldq, OrdinalType ifst, OrdinalType ilst, ScalarType* WORK, OrdinalType* info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::TGEVC(const char SIDE, const char HOWMNY, const OrdinalType *SELECT, const OrdinalType n, ScalarType *S, const OrdinalType lds, ScalarType *P, const OrdinalType ldp, ScalarType *VL, const OrdinalType ldvl, ScalarType *VR, const OrdinalType ldvr, const OrdinalType mm, OrdinalType *M, ScalarType *WORK, OrdinalType *info) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
ScalarType LAPACK<OrdinalType, ScalarType>::LAMCH(const char CMACH) const
{
return UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
OrdinalType LAPACK<OrdinalType, ScalarType>::ILAENV( const OrdinalType ispec, const std::string& NAME, const std::string& OPTS, const OrdinalType N1, const OrdinalType N2, const OrdinalType N3, const OrdinalType N4 ) const
{
return UndefinedLAPACKRoutine<OrdinalType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
ScalarType LAPACK<OrdinalType, ScalarType>::LAPY2(const ScalarType x, const ScalarType y) const
{
return UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::LARTG( const ScalarType f, const ScalarType g, MagnitudeType* c, ScalarType* s, ScalarType* r ) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::LARFG( const OrdinalType n, ScalarType* alpha, ScalarType* x, const OrdinalType incx, ScalarType* tau ) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::GEBAL( const char JOBZ, const OrdinalType n, ScalarType* A, const OrdinalType lda, OrdinalType ilo, OrdinalType ihi, MagnitudeType* scale, OrdinalType* info ) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::GEBAK( const char JOBZ, const char SIDE, const OrdinalType n, const OrdinalType ilo, const OrdinalType ihi, const MagnitudeType* scale, const OrdinalType m, ScalarType* V, const OrdinalType ldv, OrdinalType* info ) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
ScalarType LAPACK<OrdinalType, ScalarType>::LARND( const OrdinalType idist, OrdinalType* seed ) const
{
return UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
template<typename OrdinalType, typename ScalarType>
void LAPACK<OrdinalType, ScalarType>::LARNV( const OrdinalType idist, OrdinalType* seed, const OrdinalType n, ScalarType* v ) const
{
UndefinedLAPACKRoutine<ScalarType>::notDefined();
}
// END GENERAL TEMPLATE IMPLEMENTATION //
#ifndef DOXYGEN_SHOULD_SKIP_THIS
// BEGIN INT, FLOAT SPECIALIZATION DECLARATION //
template<>
class TEUCHOSNUMERICS_LIB_DLL_EXPORT LAPACK<int, float>
{
public:
inline LAPACK(void) {}
inline LAPACK(const LAPACK<int, float>& lapack) {}
inline virtual ~LAPACK(void) {}
// Symmetric positive definite linear system routines
void POTRF(const char UPLO, const int n, float* A, const int lda, int * info) const;
void POTRS(const char UPLO, const int n, const int nrhs, const float* A, const int lda, float* B, const int ldb, int* info) const;
void PTTRF(const int n, float* d, float* e, int* info) const;
void PTTRS(const int n, const int nrhs, const float* d, const float* e, float* B, const int ldb, int* info) const;
void POTRI(const char UPLO, const int n, float* A, const int lda, int* info) const;
void POCON(const char UPLO, const int n, const float* A, const int lda, const float anorm, float* rcond, float* WORK, int* IWORK, int* info) const;
void POSV(const char UPLO, const int n, const int nrhs, float* A, const int lda, float* B, const int ldb, int* info) const;
void POEQU(const int n, const float* A, const int lda, float* S, float* scond, float* amax, int* info) const;
void PORFS(const char UPLO, const int n, const int nrhs, float* A, const int lda, const float* AF, const int ldaf, const float* B, const int ldb, float* X, const int ldx, float* FERR, float* BERR, float* WORK, int* IWORK, int* info) const;
void POSVX(const char FACT, const char UPLO, const int n, const int nrhs, float* A, const int lda, float* AF, const int ldaf, char EQUED, float* S, float* B, const int ldb, float* X, const int ldx, float* rcond, float* FERR, float* BERR, float* WORK, int* IWORK, int* info) const;
// General Linear System Routines
void GELS(const char TRANS, const int m, const int n, const int nrhs, float* A, const int lda, float* B, const int ldb, float* WORK, const int lwork, int* info) const;
void GELSS(const int m, const int n, const int nrhs, float* A, const int lda, float* B, const int ldb, float* S, const float rcond, int* rank, float* WORK, const int lwork, float* RWORK, int* info) const;
void GELSS(const int m, const int n, const int nrhs, float* A, const int lda, float* B, const int ldb, float* S, const float rcond, int* rank, float* WORK, const int lwork, int* info) const;
void GGLSE(const int m, const int n, const int p, float* A, const int lda, float* B, const int ldb, float* C, float* D, float* X, float* WORK, const int lwork, int* info) const;
void GEQRF(const int m, const int n, float* A, const int lda, float* TAU, float* WORK, const int lwork, int* info) const;
void GEQR2(const int m, const int n, float A[], const int lda, float TAU[], float WORK[], int* const info) const;
void GETRF(const int m, const int n, float* A, const int lda, int* IPIV, int* info) const;
void GETRS(const char TRANS, const int n, const int nrhs, const float* A, const int lda, const int* IPIV, float* B, const int ldb, int* info) const;
void LASCL(const char TYPE, const int kl, const int ku, const float cfrom, const float cto, const int m, const int n, float* A, const int lda, int* info) const;
void
GEQP3 (const int m,
const int n,
float* A,
const int lda,
int *jpvt,
float* TAU,
float* WORK,
const int lwork,
float* RWORK,
int* info) const;
void LASWP (const int N,
float A[],
const int LDA,
const int K1,
const int K2,
const int IPIV[],
const int INCX) const;
void GBTRF(const int m, const int n, const int kl, const int ku, float* A, const int lda, int* IPIV, int* info) const;
void GBTRS(const char TRANS, const int n, const int kl, const int ku, const int nrhs, const float* A, const int lda, const int* IPIV, float* B, const int ldb, int* info) const;
void GTTRF(const int n, float* dl, float* d, float* du, float* du2, int* IPIV, int* info) const;
void GTTRS(const char TRANS, const int n, const int nrhs, const float* dl, const float* d, const float* du, const float* du2, const int* IPIV, float* B, const int ldb, int* info) const;
void GETRI(const int n, float* A, const int lda, const int* IPIV, float* WORK, const int lwork, int* info) const;
void LATRS (const char UPLO, const char TRANS, const char DIAG, const char NORMIN, const int N, float* A, const int LDA, float* X, float* SCALE, float* CNORM, int* INFO) const;
void GECON(const char NORM, const int n, const float* A, const int lda, const float anorm, float* rcond, float* WORK, int* IWORK, int* info) const;
void GBCON(const char NORM, const int n, const int kl, const int ku, const float* A, const int lda, int* IPIV, const float anorm, float* rcond, float* WORK, int* IWORK, int* info) const;
float LANGB(const char NORM, const int n, const int kl, const int ku, const float* A, const int lda, float* WORK) const;
void GESV(const int n, const int nrhs, float* A, const int lda, int* IPIV, float* B, const int ldb, int* info) const;
void GEEQU(const int m, const int n, const float* A, const int lda, float* R, float* C, float* rowcond, float* colcond, float* amax, int* info) const;
void GERFS(const char TRANS, const int n, const int nrhs, const float* A, const int lda, const float* AF, const int ldaf, const int* IPIV, const float* B, const int ldb, float* X, const int ldx, float* FERR, float* BERR, float* WORK, int* IWORK, int* info) const;
void GBEQU(const int m, const int n, const int kl, const int ku, const float* A, const int lda, float* R, float* C, float* rowcond, float* colcond, float* amax, int* info) const;
void GBRFS(const char TRANS, const int n, const int kl, const int ku, const int nrhs, const float* A, const int lda, const float* AF, const int ldaf, const int* IPIV, const float* B, const int ldb, float* X, const int ldx, float* FERR, float* BERR, float* WORK, int* IWORK, int* info) const;
void GESVX(const char FACT, const char TRANS, const int n, const int nrhs, float* A, const int lda, float* AF, const int ldaf, int* IPIV, char EQUED, float* R, float* C, float* B, const int ldb, float* X, const int ldx, float* rcond, float* FERR, float* BERR, float* WORK, int* IWORK, int* info) const;
void SYTRD(const char UPLO, const int n, float* A, const int lda, float* D, float* E, float* TAU, float* WORK, const int lwork, int* info) const;
void GEHRD(const int n, const int ilo, const int ihi, float* A, const int lda, float* TAU, float* WORK, const int lwork, int* info) const;
void TRTRS(const char UPLO, const char TRANS, const char DIAG, const int n, const int nrhs, const float* A, const int lda, float* B, const int ldb, int* info) const;
void TRTRI(const char UPLO, const char DIAG, const int n, const float* A, const int lda, int* info) const;
// Symmetric eigenvalue routines.
void SPEV(const char JOBZ, const char UPLO, const int n, float* AP, float* W, float* Z, const int ldz, float* WORK, int* info) const;
void SYEV(const char JOBZ, const char UPLO, const int n, float* A, const int lda, float* W, float* WORK, const int lwork, int* info) const;
void SYGV(const int itype, const char JOBZ, const char UPLO, const int n, float* A, const int lda, float* B, const int ldb, float* W, float* WORK, const int lwork, int* info) const;
void HEEV(const char JOBZ, const char UPLO, const int n, float* A, const int lda, float* W, float* WORK, const int lwork, float* RWORK, int* info) const;
void HEGV(const int itype, const char JOBZ, const char UPLO, const int n, float* A, const int lda, float* B, const int ldb, float* W, float* WORK, const int lwork, float *RWORK, int* info) const;
void STEQR(const char COMPZ, const int n, float* D, float* E, float* Z, const int ldz, float* WORK, int* info) const;
// Non-Hermitian eigenvalue routines.
void HSEQR(const char JOB, const char COMPZ, const int n, const int ilo, const int ihi, float* H, const int ldh, float* WR, float* WI, float* Z, const int ldz, float* WORK, const int lwork, int* info) const;
void GEES(const char JOBVS, const char SORT, int (*ptr2func)(float*, float*), const int n, float* A, const int lda, int* sdim, float* WR, float* WI, float* VS, const int ldvs, float* WORK, const int lwork, int* BWORK, int* info) const;
void GEES(const char JOBVS, const int n, float* A, const int lda, int* sdim, float* WR, float* WI, float* VS, const int ldvs, float* WORK, const int lwork, float* RWORK, int* BWORK, int* info) const;
void GEEV(const char JOBVL, const char JOBVR, const int n, float* A, const int lda, float* WR, float* WI, float* VL, const int ldvl, float* VR, const int ldvr, float* WORK, const int lwork, int* info) const;
void GEEV(const char JOBVL, const char JOBVR, const int n, float* A, const int lda, float* WR, float* WI, float* VL, const int ldvl, float* VR, const int ldvr, float* WORK, const int lwork, float* rwork, int* info) const;
void GEEVX(const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const int n, float* A, const int lda, float* WR, float* WI, float* VL, const int ldvl, float* VR, const int ldvr, int* ilo, int* ihi, float* SCALE, float* abnrm, float* RCONDE, float* RCONDV, float* WORK, const int lwork, int* IWORK, int* info) const;
void GGEVX(const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const int n, float* A, const int lda, float* B, const int ldb, float* ALPHAR, float* ALPHAI, float* BETA, float* VL, const int ldvl, float* VR, const int ldvr, int* ilo, int* ihi, float* lscale, float* rscale, float* abnrm, float* bbnrm, float* RCONDE, float* RCONDV, float* WORK, const int lwork, int* IWORK, int* BWORK, int* info) const;
void GGEVX(const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const int n, float* A, const int lda, float* B, const int ldb, float* ALPHAR, float* ALPHAI, float* BETA, float* VL, const int ldvl, float* VR, const int ldvr, int* ilo, int* ihi, float* lscale, float* rscale, float* abnrm, float* bbnrm, float* RCONDE, float* RCONDV, float* WORK, const int lwork, float* rwork, int* IWORK, int* BWORK, int* info) const;
void GGEV(const char JOBVL, const char JOBVR, const int n, float *A, const int lda, float *B, const int ldb, float *ALPHAR, float *ALPHAI, float *BETA, float *VL, const int ldvl, float *VR, const int ldvr, float *WORK, const int lwork, int *info) const;
void TRSEN(const char JOB, const char COMPQ, const int *SELECT, const int n, float *T, const int ldt, float *Q, const int ldq, float *WR, float *WI, int *M, float *S, float *SEP, float *WORK, const int lwork, int *IWORK, const int liwork, int *info ) const;
void TGSEN(const int ijob, const int wantq, const int wantz, const int *SELECT, const int n, float *A, const int lda, float *B, const int ldb, float *ALPHAR, float *ALPHAI, float *BETA, float *Q, const int ldq, float *Z, const int ldz, int *M, float *PL, float *PR, float *DIF, float *WORK, const int lwork, int *IWORK, const int liwork, int *info ) const;
void GGES(const char JOBVL, const char JOBVR, const char SORT, int (*ptr2func)(float*, float*, float*), const int n, float* A, const int lda, float* B, const int ldb, int* sdim, float* ALPHAR, float* ALPHAI, float* BETA, float* VL, const int ldvl, float* VR, const int ldvr, float* WORK, const int lwork, int *bwork, int* info ) const;
// SVD routine
void GESVD(const char JOBU, const char JOBVT, const int m, const int n, float* A, const int lda, float* S, float* U, const int ldu, float* V, const int ldv, float* WORK, const int lwork, float* RWORK, int* info) const;
// Orthogonal matrix routines.
void ORMQR(const char SIDE, const char TRANS, const int m, const int n, const int k, float* A, const int lda, const float* TAU, float* C, const int ldc, float* WORK, const int lwork, int* info) const;
void ORM2R(const char SIDE, const char TRANS, const int m, const int n, const int k, const float A[], const int lda, const float TAU[], float C[], const int ldc, float WORK[], int* const info) const;
void UNMQR(const char SIDE, const char TRANS, const int m, const int n, const int k, float* A, const int lda, const float* TAU, float* C, const int ldc, float* WORK, const int lwork, int* info) const;
void UNM2R(const char SIDE, const char TRANS, const int M, const int N, const int K, const float A[], const int LDA, const float TAU[], float C[], const int LDC, float WORK[], int* const INFO) const;
void ORGQR(const int m, const int n, const int k, float* A, const int lda, const float* TAU, float* WORK, const int lwork, int* info) const;
void UNGQR(const int m, const int n, const int k, float* A, const int lda, const float* TAU, float* WORK, const int lwork, int* info) const;
void ORGHR(const int n, const int ilo, const int ihi, float* A, const int lda, const float* TAU, float* WORK, const int lwork, int* info) const;
void ORMHR(const char SIDE, const char TRANS, const int m, const int n, const int ilo, const int ihi, const float* A, const int lda, const float* TAU, float* C, const int ldc, float* WORK, const int lwork, int* info) const;
// Triangular matrix routines.
void TREVC(const char SIDE, const char HOWMNY, int* select, const int n, const float* T, const int ldt, float* VL, const int ldvl, float* VR, const int ldvr, const int mm, int* m, float* WORK, int* info) const;
void TREVC(const char SIDE, const int n, const float* T, const int ldt, float* VL, const int ldvl, float* VR, const int ldvr, const int mm, int* m, float* WORK, float *RWORK, int* info) const;
void TREXC(const char COMPQ, const int n, float* T, const int ldt, float* Q, const int ldq, int ifst, int ilst, float* WORK, int* info) const;
void TGEVC(const char SIDE, const char HOWMNY, const int *SELECT, const int n, float *S, const int lds, float *P, const int ldp, float *VL, const int ldvl, float *VR, const int ldvr, const int mm, int *M, float *WORK, int *info) const;
// Rotation/reflection generators
void LARTG( const float f, const float g, float* c, float* s, float* r ) const;
void LARFG( const int n, float* alpha, float* x, const int incx, float* tau ) const;
// Matrix balancing routines.
void GEBAL(const char JOBZ, const int n, float* A, const int lda, int ilo, int ihi, float* scale, int* info) const;
void GEBAK(const char JOBZ, const char SIDE, const int n, const int ilo, const int ihi, const float* scale, const int m, float* V, const int ldv, int* info) const;
// Random number generators
float LARND( const int idist, int* seed ) const;
void LARNV( const int idist, int* seed, const int n, float* v ) const;
// Machine characteristics.
float LAMCH(const char CMACH) const;
int ILAENV( const int ispec, const std::string& NAME, const std::string& OPTS, const int N1 = -1, const int N2 = -1, const int N3 = -1, const int N4 = -1 ) const;
// Miscellaneous routines.
float LAPY2(const float x, const float y) const;
};
// END INT, FLOAT SPECIALIZATION DECLARATION //
// BEGIN INT, DOUBLE SPECIALIZATION DECLARATION //
template<>
class TEUCHOSNUMERICS_LIB_DLL_EXPORT LAPACK<int, double>
{
public:
inline LAPACK(void) {}
inline LAPACK(const LAPACK<int, double>& lapack) {}
inline virtual ~LAPACK(void) {}
// Symmetric positive definite linear system routines
void PTTRF(const int n, double* d, double* e, int* info) const;
void PTTRS(const int n, const int nrhs, const double* d, const double* e, double* B, const int ldb, int* info) const;
void POTRF(const char UPLO, const int n, double* A, const int lda, int* info) const;
void POTRS(const char UPLO, const int n, const int nrhs, const double* A, const int lda, double* B, const int ldb, int* info) const;
void POTRI(const char UPLO, const int n, double* A, const int lda, int* info) const;
void POCON(const char UPLO, const int n, const double* A, const int lda, const double anorm, double* rcond, double* WORK, int* IWORK, int* info) const;
void POSV(const char UPLO, const int n, const int nrhs, double* A, const int lda, double* B, const int ldb, int* info) const;
void POEQU(const int n, const double* A, const int lda, double* S, double* scond, double* amax, int* info) const;
void PORFS(const char UPLO, const int n, const int nrhs, double* A, const int lda, const double* AF, const int ldaf, const double* B, const int ldb, double* X, const int ldx, double* FERR, double* BERR, double* WORK, int* IWORK, int* info) const;
void POSVX(const char FACT, const char UPLO, const int n, const int nrhs, double* A, const int lda, double* AF, const int ldaf, char EQUED, double* S, double* B, const int ldb, double* X, const int ldx, double* rcond, double* FERR, double* BERR, double* WORK, int* IWORK, int* info) const;
// General linear system routines
void GELS(const char TRANS, const int m, const int n, const int nrhs, double* A, const int lda, double* B, const int ldb, double* WORK, const int lwork, int* info) const;
void GELSS(const int m, const int n, const int nrhs, double* A, const int lda, double* B, const int ldb, double* S, const double rcond, int* rank, double* WORK, const int lwork, double* RWORK, int* info) const;
void GELSS(const int m, const int n, const int nrhs, double* A, const int lda, double* B, const int ldb, double* S, const double rcond, int* rank, double* WORK, const int lwork, int* info) const;
void GGLSE(const int m, const int n, const int p, double* A, const int lda, double* B, const int ldb, double* C, double* D, double* X, double* WORK, const int lwork, int* info) const;
void GEQRF(const int m, const int n, double* A, const int lda, double* TAU, double* WORK, const int lwork, int* info) const;
void GEQR2(const int m, const int n, double A[], const int lda, double TAU[], double WORK[], int* const info) const;
void GETRF(const int m, const int n, double* A, const int lda, int* IPIV, int* info) const;
void GETRS(const char TRANS, const int n, const int nrhs, const double* A, const int lda, const int* IPIV, double* B, const int ldb, int* info) const;
void LASCL(const char TYPE, const int kl, const int ku, const double cfrom, const double cto, const int m, const int n, double* A, const int lda, int* info) const;
void
GEQP3 (const int m,
const int n,
double* A,
const int lda,
int *jpvt,
double* TAU,
double* WORK,
const int lwork,
double* RWORK,
int* info) const;
void LASWP (const int N,
double A[],
const int LDA,
const int K1,
const int K2,
const int IPIV[],
const int INCX) const;
void GBTRF(const int m, const int n, const int kl, const int ku, double* A, const int lda, int* IPIV, int* info) const;
void GBTRS(const char TRANS, const int n, const int kl, const int ku, const int nrhs, const double* A, const int lda, const int* IPIV, double* B, const int ldb, int* info) const;
void GTTRF(const int n, double* dl, double* d, double* du, double* du2, int* IPIV, int* info) const;
void GTTRS(const char TRANS, const int n, const int nrhs, const double* dl, const double* d, const double* du, const double* du2, const int* IPIV, double* B, const int ldb, int* info) const;
void GETRI(const int n, double* A, const int lda, const int* IPIV, double* WORK, const int lwork, int* info) const;
void LATRS (const char UPLO, const char TRANS, const char DIAG, const char NORMIN, const int N, double* A, const int LDA, double* X, double* SCALE, double* CNORM, int* INFO) const;
void GECON(const char NORM, const int n, const double* A, const int lda, const double anorm, double* rcond, double* WORK, int* IWORK, int* info) const;
void GBCON(const char NORM, const int n, const int kl, const int ku, const double* A, const int lda, int* IPIV, const double anorm, double* rcond, double* WORK, int* IWORK, int* info) const;
double LANGB(const char NORM, const int n, const int kl, const int ku, const double* A, const int lda, double* WORK) const;
void GESV(const int n, const int nrhs, double* A, const int lda, int* IPIV, double* B, const int ldb, int* info) const;
void GEEQU(const int m, const int n, const double* A, const int lda, double* R, double* C, double* rowcond, double* colcond, double* amax, int* info) const;
void GERFS(const char TRANS, const int n, const int nrhs, const double* A, const int lda, const double* AF, const int ldaf, const int* IPIV, const double* B, const int ldb, double* X, const int ldx, double* FERR, double* BERR, double* WORK, int* IWORK, int* info) const;
void GBEQU(const int m, const int n, const int kl, const int ku, const double* A, const int lda, double* R, double* C, double* rowcond, double* colcond, double* amax, int* info) const;
void GBRFS(const char TRANS, const int n, const int kl, const int ku, const int nrhs, const double* A, const int lda, const double* AF, const int ldaf, const int* IPIV, const double* B, const int ldb, double* X, const int ldx, double* FERR, double* BERR, double* WORK, int* IWORK, int* info) const;
void GESVX(const char FACT, const char TRANS, const int n, const int nrhs, double* A, const int lda, double* AF, const int ldaf, int* IPIV, char EQUED, double* R, double* C, double* B, const int ldb, double* X, const int ldx, double* rcond, double* FERR, double* BERR, double* WORK, int* IWORK, int* info) const;
void SYTRD(const char UPLO, const int n, double* A, const int lda, double* D, double* E, double* TAU, double* WORK, const int lwork, int* info) const;
void GEHRD(const int n, const int ilo, const int ihi, double* A, const int lda, double* TAU, double* WORK, const int lwork, int* info) const;
void TRTRS(const char UPLO, const char TRANS, const char DIAG, const int n, const int nrhs, const double* A, const int lda, double* B, const int ldb, int* info) const;
void TRTRI(const char UPLO, const char DIAG, const int n, const double* A, const int lda, int* info) const;
// Symmetric eigenproblem routines.
void SPEV(const char JOBZ, const char UPLO, const int n, double* AP, double* W, double* Z, const int ldz, double* WORK, int* info) const;
void SYEV(const char JOBZ, const char UPLO, const int n, double* A, const int lda, double* W, double* WORK, const int lwork, int* info) const;
void SYGV(const int itype, const char JOBZ, const char UPLO, const int n, double* A, const int lda, double* B, const int ldb, double* W, double* WORK, const int lwork, int* info) const;
void HEEV(const char JOBZ, const char UPLO, const int n, double* A, const int lda, double* W, double* WORK, const int lwork, double* RWORK, int* info) const;
void HEGV(const int itype, const char JOBZ, const char UPLO, const int n, double* A, const int lda, double* B, const int ldb, double* W, double* WORK, const int lwork, double *RWORK, int* info) const;
void STEQR(const char COMPZ, const int n, double* D, double* E, double* Z, const int ldz, double* WORK, int* info) const;
// Non-Hermitian eigenproblem routines.
void HSEQR(const char JOB, const char COMPZ, const int n, const int ilo, const int ihi, double* H, const int ldh, double* WR, double* WI, double* Z, const int ldz, double* WORK, const int lwork, int* info) const;
void GEES(const char JOBVS, const char SORT, int (*ptr2func)(double*, double*), const int n, double* A, const int lda, int* sdim, double* WR, double* WI, double* VS, const int ldvs, double* WORK, const int lwork, int* BWORK, int* info) const;
void GEES(const char JOBVS, const int n, double* A, const int lda, int* sdim, double* WR, double* WI, double* VS, const int ldvs, double* WORK, const int lwork, double* RWORK, int* BWORK, int* info) const;
void GEEV(const char JOBVL, const char JOBVR, const int n, double* A, const int lda, double* WR, double* WI, double* VL, const int ldvl, double* VR, const int ldvr, double* WORK, const int lwork, int* info) const;
void GEEV(const char JOBVL, const char JOBVR, const int n, double* A, const int lda, double* WR, double* WI, double* VL, const int ldvl, double* VR, const int ldvr, double* WORK, const int lwork, double* RWORK, int* info) const;
void GEEVX(const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const int n, double* A, const int lda, double* WR, double* WI, double* VL, const int ldvl, double* VR, const int ldvr, int* ilo, int* ihi, double* SCALE, double* abnrm, double* RCONDE, double* RCONDV, double* WORK, const int lwork, int* IWORK, int* info) const;
void GGEVX(const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const int n, double* A, const int lda, double* B, const int ldb, double* ALPHAR, double* ALPHAI, double* BETA, double* VL, const int ldvl, double* VR, const int ldvr, int* ilo, int* ihi, double* lscale, double* rscale, double* abnrm, double* bbnrm, double* RCONDE, double* RCONDV, double* WORK, const int lwork, int* IWORK, int* BWORK, int* info) const;
void GGEVX(const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const int n, double* A, const int lda, double* B, const int ldb, double* ALPHAR, double* ALPHAI, double* BETA, double* VL, const int ldvl, double* VR, const int ldvr, int* ilo, int* ihi, double* lscale, double* rscale, double* abnrm, double* bbnrm, double* RCONDE, double* RCONDV, double* WORK, const int lwork, double* rwork, int* IWORK, int* BWORK, int* info) const;
void GGEV(const char JOBVL, const char JOBVR, const int n, double *A, const int lda, double *B, const int ldb, double *ALPHAR, double *ALPHAI, double *BETA, double *VL, const int ldvl, double *VR, const int ldvr, double *WORK, const int lwork, int *info) const;
void TRSEN(const char JOB, const char COMPQ, const int *SELECT, const int n, double *T, const int ldt, double *Q, const int ldq, double *WR, double *WI, int *M, double *S, double *SEP, double *WORK, const int lwork, int *IWORK, const int liwork, int *info ) const;
void TGSEN(const int ijob, const int wantq, const int wantz, const int *SELECT, const int n, double *A, const int lda, double *B, const int ldb, double *ALPHAR, double *ALPHAI, double *BETA, double *Q, const int ldq, double *Z, const int ldz, int *M, double *PL, double *PR, double *DIF, double *WORK, const int lwork, int *IWORK, const int liwork, int *info ) const;
void GGES(const char JOBVL, const char JOBVR, const char SORT, int (*ptr2func)(double*, double*, double*), const int n, double* A, const int lda, double* B, const int ldb, int* sdim, double* ALPHAR, double* ALPHAI, double* BETA, double* VL, const int ldvl, double* VR, const int ldvr, double* WORK, const int lwork, int *bwork, int* info ) const;
// SVD routine
void GESVD(const char JOBU, const char JOBVT, const int m, const int n, double* A, const int lda, double* S, double* U, const int ldu, double* V, const int ldv, double* WORK, const int lwork, double* RWORK, int* info) const;
// Orthogonal matrix routines.
void ORMQR(const char SIDE, const char TRANS, const int m, const int n, const int k, double* A, const int lda, const double* TAU, double* C, const int ldc, double* WORK, const int lwork, int* info) const;
void ORM2R(const char SIDE, const char TRANS, const int m, const int n, const int k, const double A[], const int lda, const double TAU[], double C[], const int ldc, double WORK[], int* const info) const;
void UNMQR(const char SIDE, const char TRANS, const int m, const int n, const int k, double* A, const int lda, const double* TAU, double* C, const int ldc, double* WORK, const int lwork, int* info) const;
void UNM2R(const char SIDE, const char TRANS, const int M, const int N, const int K, const double A[], const int LDA, const double TAU[], double C[], const int LDC, double WORK[], int* const INFO) const;
void ORGQR(const int m, const int n, const int k, double* A, const int lda, const double* TAU, double* WORK, const int lwork, int* info) const;
void UNGQR(const int m, const int n, const int k, double* A, const int lda, const double* TAU, double* WORK, const int lwork, int* info) const;
void ORGHR(const int n, const int ilo, const int ihi, double* A, const int lda, const double* TAU, double* WORK, const int lwork, int* info) const;
void ORMHR(const char SIDE, const char TRANS, const int m, const int n, const int ilo, const int ihi, const double* A, const int lda, const double* TAU, double* C, const int ldc, double* WORK, const int lwork, int* info) const;
// Triangular matrix routines.
void TREVC(const char SIDE, const char HOWMNY, int* select, const int n, const double* T, const int ldt, double* VL, const int ldvl, double* VR, const int ldvr, const int mm, int* m, double* WORK, int* info) const;
void TREVC(const char SIDE, const int n, const double* T, const int ldt, double* VL, const int ldvl, double* VR, const int ldvr, const int mm, int* m, double* WORK, double* RWORK, int* info) const;
void TREXC(const char COMPQ, const int n, double* T, const int ldt, double* Q, const int ldq, int ifst, int ilst, double* WORK, int* info) const;
void TGEVC(const char SIDE, const char HOWMNY, const int *SELECT, const int n, double *S, const int lds, double *P, const int ldp, double *VL, const int ldvl, double *VR, const int ldvr, const int mm, int *M, double *WORK, int *info) const;
// Rotation/reflection generators
void LARTG( const double f, const double g, double* c, double* s, double* r ) const;
void LARFG( const int n, double* alpha, double* x, const int incx, double* tau ) const;
// Matrix balancing routines.
void GEBAL(const char JOBZ, const int n, double* A, const int lda, int ilo, int ihi, double* scale, int* info) const;
void GEBAK(const char JOBZ, const char SIDE, const int n, const int ilo, const int ihi, const double* scale, const int m, double* V, const int ldv, int* info) const;
// Random number generators
double LARND( const int idist, int* seed ) const;
void LARNV( const int idist, int* seed, const int n, double* v ) const;
// Machine characteristic routines.
double LAMCH(const char CMACH) const;
int ILAENV( const int ispec, const std::string& NAME, const std::string& OPTS, const int N1 = -1, const int N2 = -1, const int N3 = -1, const int N4 = -1 ) const;
// Miscellaneous routines.
double LAPY2(const double x, const double y) const;
};
// END INT, DOUBLE SPECIALIZATION DECLARATION //
#ifdef HAVE_TEUCHOS_COMPLEX
// BEGIN INT, COMPLEX<FLOAT> SPECIALIZATION DECLARATION //
template<>
class TEUCHOSNUMERICS_LIB_DLL_EXPORT LAPACK<int, std::complex<float> >
{
public:
inline LAPACK(void) {}
inline LAPACK(const LAPACK<int, std::complex<float> >& lapack) {}
inline virtual ~LAPACK(void) {}
// Symmetric positive definite linear system routines
void PTTRF(const int n, std::complex<float>* d, std::complex<float>* e, int* info) const;
void PTTRS(const int n, const int nrhs, const std::complex<float>* d, const std::complex<float>* e, std::complex<float>* B, const int ldb, int* info) const;
void POTRF(const char UPLO, const int n, std::complex<float>* A, const int lda, int* info) const;
void POTRS(const char UPLO, const int n, const int nrhs, const std::complex<float>* A, const int lda, std::complex<float>* B, const int ldb, int* info) const;
void POTRI(const char UPLO, const int n, std::complex<float>* A, const int lda, int* info) const;
void POCON(const char UPLO, const int n, const std::complex<float>* A, const int lda, const float anorm, float* rcond, std::complex<float>* WORK, float* rwork, int* info) const;
void POSV(const char UPLO, const int n, const int nrhs, std::complex<float>* A, const int lda, std::complex<float>* B, const int ldb, int* info) const;
void POEQU(const int n, const std::complex<float>* A, const int lda, float* S, float* scond, float* amax, int* info) const;
void PORFS(const char UPLO, const int n, const int nrhs, std::complex<float>* A, const int lda, const std::complex<float>* AF, const int ldaf, const std::complex<float>* B, const int ldb, std::complex<float>* X, const int ldx, float* FERR, float* BERR, std::complex<float>* WORK, float* RWORK, int* info) const;
void POSVX(const char FACT, const char UPLO, const int n, const int nrhs, std::complex<float>* A, const int lda, std::complex<float>* AF, const int ldaf, char EQUED, float* S, std::complex<float>* B, const int ldb, std::complex<float>* X, const int ldx, float* rcond, float* FERR, float* BERR, std::complex<float>* WORK, float* RWORK, int* info) const;
// General Linear System Routines
void GELS(const char TRANS, const int m, const int n, const int nrhs, std::complex<float>* A, const int lda, std::complex<float>* B, const int ldb, std::complex<float>* WORK, const int lwork, int* info) const;
void GELSS(const int m, const int n, const int nrhs, std::complex<float>* A, const int lda, std::complex<float>* B, const int ldb, float* S, const float rcond, int* rank, std::complex<float>* WORK, const int lwork, float* RWORK, int* info) const;
void GEQRF(const int m, const int n, std::complex<float>* A, const int lda, std::complex<float>* TAU, std::complex<float>* WORK, const int lwork, int* info) const;
void GEQR2(const int m, const int n, std::complex<float> A[], const int lda, std::complex<float> TAU[], std::complex<float> WORK[], int* const info) const;
void UNGQR(const int m, const int n, const int k, std::complex<float>* A, const int lda, const std::complex<float>* TAU, std::complex<float>* WORK, const int lwork, int* info) const;
void UNMQR(const char SIDE, const char TRANS, const int m, const int n, const int k, std::complex<float>* A, const int lda, const std::complex<float>* TAU, std::complex<float>* C, const int ldc, std::complex<float>* WORK, const int lwork, int* info) const;
void UNM2R(const char SIDE, const char TRANS, const int M, const int N, const int K, const std::complex<float> A[], const int LDA, const std::complex<float> TAU[], std::complex<float> C[], const int LDC, std::complex<float> WORK[], int* const INFO) const;
void GETRF(const int m, const int n, std::complex<float>* A, const int lda, int* IPIV, int* info) const;
void GETRS(const char TRANS, const int n, const int nrhs, const std::complex<float>* A, const int lda, const int* IPIV, std::complex<float>* B, const int ldb, int* info) const;
void LASCL(const char TYPE, const int kl, const int ku, const float cfrom, const float cto, const int m, const int n, std::complex<float>* A, const int lda, int* info) const;
void
GEQP3 (const int m,
const int n,
std::complex<float>* A,
const int lda,
int *jpvt,
std::complex<float>* TAU,
std::complex<float>* WORK,
const int lwork,
float* RWORK,
int* info) const;
void LASWP (const int N,
std::complex<float> A[],
const int LDA,
const int K1,
const int K2,
const int IPIV[],
const int INCX) const;
void GBTRF(const int m, const int n, const int kl, const int ku, std::complex<float>* A, const int lda, int* IPIV, int* info) const;
void GBTRS(const char TRANS, const int n, const int kl, const int ku, const int nrhs, const std::complex<float>* A, const int lda, const int* IPIV, std::complex<float>* B, const int ldb, int* info) const;
void GTTRF(const int n, std::complex<float>* dl, std::complex<float>* d, std::complex<float>* du, std::complex<float>* du2, int* IPIV, int* info) const;
void GTTRS(const char TRANS, const int n, const int nrhs, const std::complex<float>* dl, const std::complex<float>* d, const std::complex<float>* du, const std::complex<float>* du2, const int* IPIV, std::complex<float>* B, const int ldb, int* info) const;
void GETRI(const int n, std::complex<float>* A, const int lda, const int* IPIV, std::complex<float>* WORK, const int lwork, int* info) const;
void LATRS (const char UPLO, const char TRANS, const char DIAG, const char NORMIN, const int N, std::complex<float>* A, const int LDA, std::complex<float>* X, float* SCALE, float* CNORM, int* INFO) const;
void GECON(const char NORM, const int n, const std::complex<float>* A, const int lda, const float anorm, float* rcond, std::complex<float>* WORK, float* RWORK, int* info) const;
void GBCON(const char NORM, const int n, const int kl, const int ku, const std::complex<float>* A, const int lda, int* IPIV, const float anorm, float* rcond, std::complex<float>* WORK, float* RWORK, int* info) const;
float LANGB(const char NORM, const int n, const int kl, const int ku, const std::complex<float>* A, const int lda, float* WORK) const;
void GESV(const int n, const int nrhs, std::complex<float>* A, const int lda, int* IPIV, std::complex<float>* B, const int ldb, int* info) const;
void GEEQU(const int m, const int n, const std::complex<float>* A, const int lda, float* R, float* C, float* rowcond, float* colcond, float* amax, int* info) const;
void GERFS(const char TRANS, const int n, const int nrhs, const std::complex<float>* A, const int lda, const std::complex<float>* AF, const int ldaf, const int* IPIV, const std::complex<float>* B, const int ldb, std::complex<float>* X, const int ldx, float* FERR, float* BERR, std::complex<float>* WORK, float* RWORK, int* info) const;
void GBEQU(const int m, const int n, const int kl, const int ku, const std::complex<float>* A, const int lda, float* R, float* C, float* rowcond, float* colcond, float* amax, int* info) const;
void GBRFS(const char TRANS, const int n, const int kl, const int ku, const int nrhs, const std::complex<float>* A, const int lda, const std::complex<float>* AF, const int ldaf, const int* IPIV, const std::complex<float>* B, const int ldb, std::complex<float>* X, const int ldx, float* FERR, float* BERR, std::complex<float>* WORK, float* RWORK, int* info) const;
void GESVX(const char FACT, const char TRANS, const int n, const int nrhs, std::complex<float>* A, const int lda, std::complex<float>* AF, const int ldaf, int* IPIV, char EQUED, float* R, float* C, std::complex<float>* B, const int ldb, std::complex<float>* X, const int ldx, float* rcond, float* FERR, float* BERR, std::complex<float>* WORK, float* RWORK, int* info) const;
void GEHRD(const int n, const int ilo, const int ihi, std::complex<float>* A, const int lda, std::complex<float>* TAU, std::complex<float>* WORK, const int lwork, int* info) const;
void TRTRS(const char UPLO, const char TRANS, const char DIAG, const int n, const int nrhs, const std::complex<float>* A, const int lda, std::complex<float>* B, const int ldb, int* info) const;
void TRTRI(const char UPLO, const char DIAG, const int n, const std::complex<float>* A, const int lda, int* info) const;
// Symmetric eigenvalue routines.
void STEQR(const char COMPZ, const int n, float* D, float* E, std::complex<float>* Z, const int ldz, float* WORK, int* info) const;
void HEEV(const char JOBZ, const char UPLO, const int n, std::complex<float>* A, const int lda, float* W, std::complex<float>* WORK, const int lwork, float* RWORK, int* info) const;
void HEGV(const int itype, const char JOBZ, const char UPLO, const int n, std::complex<float>* A, const int lda, std::complex<float>* B, const int ldb, float* W, std::complex<float>* WORK, const int lwork, float *RWORK, int* info) const;
// Non-Hermitian eigenvalue routines.
void HSEQR(const char JOB, const char COMPZ, const int n, const int ilo, const int ihi, std::complex<float>* H, const int ldh, std::complex<float>* W, std::complex<float>* Z, const int ldz, std::complex<float>* WORK, const int lwork, int* info) const;
void GEES(const char JOBVS, const char SORT, int (*ptr2func)(std::complex<float>*), const int n, std::complex<float>* A, const int lda, int* sdim, std::complex<float>* W, std::complex<float>* VS, const int ldvs, std::complex<float>* WORK, const int lwork, float* RWORK, int* BWORK, int* info) const;
void GEES(const char JOBVS, const int n, std::complex<float>* A, const int lda, int* sdim, float* WR, float* WI, std::complex<float>* VS, const int ldvs, std::complex<float>* WORK, const int lwork, float* RWORK, int* BWORK, int* info) const;
void GEEV(const char JOBVL, const char JOBVR, const int n, std::complex<float>* A, const int lda, std::complex<float>* W, std::complex<float>* VL, const int ldvl, std::complex<float>* VR, const int ldvr, std::complex<float>* WORK, const int lwork, float* RWORK, int* info) const;
void GEEV(const char JOBVL, const char JOBVR, const int n, std::complex<float>* A, const int lda, float* WR, float* WI, std::complex<float>* VL, const int ldvl, std::complex<float>* VR, const int ldvr, std::complex<float>* WORK, const int lwork, float* RWORK, int* info) const;
void GEEVX(const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const int n, std::complex<float>* A, const int lda, std::complex<float>* W, std::complex<float>* VL, const int ldvl, std::complex<float>* VR, const int ldvr, int* ilo, int* ihi, float* SCALE, float* abnrm, float* RCONDE, float* RCONDV, std::complex<float>* WORK, const int lwork, float* RWORK, int* info) const;
void GGEVX(const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const int n, std::complex<float>* A, const int lda, std::complex<float>* B, const int ldb, std::complex<float>* ALPHA, std::complex<float>* BETA, std::complex<float>* VL, const int ldvl, std::complex<float>* VR, const int ldvr, int* ilo, int* ihi, float* lscale, float* rscale, float* abnrm, float* bbnrm, float* RCONDE, float* RCONDV, std::complex<float>* WORK, const int lwork, float * RWORK, int* IWORK, int* BWORK, int* info) const;
void GGEVX(const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const int n, std::complex<float>* A, const int lda, std::complex<float>* B, const int ldb, float* ALPHAR, float* ALPHAI, std::complex<float>* BETA, std::complex<float>* VL, const int ldvl, std::complex<float>* VR, const int ldvr, int* ilo, int* ihi, float* lscale, float* rscale, float* abnrm, float* bbnrm, float* RCONDE, float* RCONDV, std::complex<float>* WORK, const int lwork, float * RWORK, int* IWORK, int* BWORK, int* info) const;
void GGEV(const char JOBVL, const char JOBVR, const int n, std::complex<float> *A, const int lda, std::complex<float> *B, const int ldb, std::complex<float>* ALPHA, std::complex<float>* BETA, std::complex<float>* VL, const int ldvl, std::complex<float>* VR, const int ldvr, std::complex<float> *WORK, const int lwork, float* RWORK, int* info) const;
// SVD routine
void GESVD(const char JOBU, const char JOBVT, const int m, const int n, std::complex<float>* A, const int lda, float* S, std::complex<float>* U, const int ldu, std::complex<float>* V, const int ldv, std::complex<float>* WORK, const int lwork, float* RWORK, int* info) const;
// Triangular matrix routines.
void TREVC(const char SIDE, const char HOWMNY, int* select, const int n, const std::complex<float>* T, const int ldt, std::complex<float>* VL, const int ldvl, std::complex<float>* VR, const int ldvr, const int mm, int* m, std::complex<float>* WORK, float* RWORK, int* info) const;
void TREVC(const char SIDE, const int n, const std::complex<float>* T, const int ldt, std::complex<float>* VL, const int ldvl, std::complex<float>* VR, const int ldvr, const int mm, int* m, std::complex<float>* WORK, float* RWORK, int* info) const;
void TREXC(const char COMPQ, const int n, std::complex<float>* T, const int ldt, std::complex<float>* Q, const int ldq, int ifst, int ilst, std::complex<float>* WORK, int* info) const;
// Rotation/reflection generators
void LARTG( const std::complex<float> f, const std::complex<float> g, float* c, std::complex<float>* s, std::complex<float>* r ) const;
void LARFG( const int n, std::complex<float>* alpha, std::complex<float>* x, const int incx, std::complex<float>* tau ) const;
// Matrix balancing routines.
void GEBAL(const char JOBZ, const int n, std::complex<float>* A, const int lda, int ilo, int ihi, float* scale, int* info) const;
void GEBAK(const char JOBZ, const char SIDE, const int n, const int ilo, const int ihi, const float* scale, const int m, std::complex<float>* V, const int ldv, int* info) const;
// Random number generators
std::complex<float> LARND( const int idist, int* seed ) const;
void LARNV( const int idist, int* seed, const int n, std::complex<float>* v ) const;
// Machine characteristics
int ILAENV( const int ispec, const std::string& NAME, const std::string& OPTS, const int N1 = -1, const int N2 = -1, const int N3 = -1, const int N4 = -1 ) const;
};
// END INT, COMPLEX<FLOAT> SPECIALIZATION DECLARATION //
// BEGIN INT, COMPLEX<DOUBLE> SPECIALIZATION DECLARATION //
template<>
class TEUCHOSNUMERICS_LIB_DLL_EXPORT LAPACK<int, std::complex<double> >
{
public:
inline LAPACK(void) {}
inline LAPACK(const LAPACK<int, std::complex<double> >& lapack) {}
inline virtual ~LAPACK(void) {}
// Symmetric positive definite linear system routines
void PTTRF(const int n, std::complex<double>* d, std::complex<double>* e, int* info) const;
void PTTRS(const int n, const int nrhs, const std::complex<double>* d, const std::complex<double>* e, std::complex<double>* B, const int ldb, int* info) const;
void POTRF(const char UPLO, const int n, std::complex<double>* A, const int lda, int* info) const;
void POTRS(const char UPLO, const int n, const int nrhs, const std::complex<double>* A, const int lda, std::complex<double>* B, const int ldb, int* info) const;
void POTRI(const char UPLO, const int n, std::complex<double>* A, const int lda, int* info) const;
void POCON(const char UPLO, const int n, const std::complex<double>* A, const int lda, const double anorm, double* rcond, std::complex<double>* WORK, double* RWORK, int* info) const;
void POSV(const char UPLO, const int n, const int nrhs, std::complex<double>* A, const int lda, std::complex<double>* B, const int ldb, int* info) const;
void POEQU(const int n, const std::complex<double>* A, const int lda, double* S, double* scond, double* amax, int* info) const;
void PORFS(const char UPLO, const int n, const int nrhs, std::complex<double>* A, const int lda, const std::complex<double>* AF, const int ldaf, const std::complex<double>* B, const int ldb, std::complex<double>* X, const int ldx, double* FERR, double* BERR, std::complex<double>* WORK, double* RWORK, int* info) const;
void POSVX(const char FACT, const char UPLO, const int n, const int nrhs, std::complex<double>* A, const int lda, std::complex<double>* AF, const int ldaf, char EQUED, double* S, std::complex<double>* B, const int ldb, std::complex<double>* X, const int ldx, double* rcond, double* FERR, double* BERR, std::complex<double>* WORK, double* RWORK, int* info) const;
// General Linear System Routines
void GELS(const char TRANS, const int m, const int n, const int nrhs, std::complex<double>* A, const int lda, std::complex<double>* B, const int ldb, std::complex<double>* WORK, const int lwork, int* info) const;
void GELSS(const int m, const int n, const int nrhs, std::complex<double>* A, const int lda, std::complex<double>* B, const int ldb, double* S, const double rcond, int* rank, std::complex<double>* WORK, const int lwork, double* RWORK, int* info) const;
void GEQRF(const int m, const int n, std::complex<double>* A, const int lda, std::complex<double>* TAU, std::complex<double>* WORK, const int lwork, int* info) const;
void GEQR2(const int m, const int n, std::complex<double> A[], const int lda, std::complex<double> TAU[], std::complex<double> WORK[], int* const info) const;
void UNGQR(const int m, const int n, const int k, std::complex<double>* A, const int lda, const std::complex<double>* TAU, std::complex<double>* WORK, const int lwork, int* info) const;
void UNMQR(const char SIDE, const char TRANS, const int m, const int n, const int k, std::complex<double>* A, const int lda, const std::complex<double>* TAU, std::complex<double>* C, const int ldc, std::complex<double>* WORK, const int lwork, int* info) const;
void UNM2R(const char SIDE, const char TRANS, const int M, const int N, const int K, const std::complex<double> A[], const int LDA, const std::complex<double> TAU[], std::complex<double> C[], const int LDC, std::complex<double> WORK[], int* const INFO) const;
void GETRF(const int m, const int n, std::complex<double>* A, const int lda, int* IPIV, int* info) const;
void GETRS(const char TRANS, const int n, const int nrhs, const std::complex<double>* A, const int lda, const int* IPIV, std::complex<double>* B, const int ldb, int* info) const;
void LASCL(const char TYPE, const int kl, const int ku, const double cfrom, const double cto, const int m, const int n, std::complex<double>* A, const int lda, int* info) const;
void
GEQP3 (const int m,
const int n,
std::complex<double>* A,
const int lda,
int *jpvt,
std::complex<double>* TAU,
std::complex<double>* WORK,
const int lwork,
double* RWORK,
int* info) const;
void LASWP (const int N,
std::complex<double> A[],
const int LDA,
const int K1,
const int K2,
const int IPIV[],
const int INCX) const;
void GBTRF(const int m, const int n, const int kl, const int ku, std::complex<double>* A, const int lda, int* IPIV, int* info) const;
void GBTRS(const char TRANS, const int n, const int kl, const int ku, const int nrhs, const std::complex<double>* A, const int lda, const int* IPIV, std::complex<double>* B, const int ldb, int* info) const;
void GTTRF(const int n, std::complex<double>* dl, std::complex<double>* d, std::complex<double>* du, std::complex<double>* du2, int* IPIV, int* info) const;
void GTTRS(const char TRANS, const int n, const int nrhs, const std::complex<double>* dl, const std::complex<double>* d, const std::complex<double>* du, const std::complex<double>* du2, const int* IPIV, std::complex<double>* B, const int ldb, int* info) const;
void GETRI(const int n, std::complex<double>* A, const int lda, const int* IPIV, std::complex<double>* WORK, const int lwork, int* info) const;
void LATRS (const char UPLO, const char TRANS, const char DIAG, const char NORMIN, const int N, std::complex<double>* A, const int LDA, std::complex<double>* X, double* SCALE, double* CNORM, int* INFO) const;
void GECON(const char NORM, const int n, const std::complex<double>* A, const int lda, const double anorm, double* rcond, std::complex<double>* WORK, double* RWORK, int* info) const;
void GBCON(const char NORM, const int n, const int kl, const int ku, const std::complex<double>* A, const int lda, int* IPIV, const double anorm, double* rcond, std::complex<double>* WORK, double* RWORK, int* info) const;
double LANGB(const char NORM, const int n, const int kl, const int ku, const std::complex<double>* A, const int lda, double* WORK) const;
void GESV(const int n, const int nrhs, std::complex<double>* A, const int lda, int* IPIV, std::complex<double>* B, const int ldb, int* info) const;
void GEEQU(const int m, const int n, const std::complex<double>* A, const int lda, double* R, double* C, double* rowcond, double* colcond, double* amax, int* info) const;
void GERFS(const char TRANS, const int n, const int nrhs, const std::complex<double>* A, const int lda, const std::complex<double>* AF, const int ldaf, const int* IPIV, const std::complex<double>* B, const int ldb, std::complex<double>* X, const int ldx, double* FERR, double* BERR, std::complex<double>* WORK, double* RWORK, int* info) const;
void GBEQU(const int m, const int n, const int kl, const int ku, const std::complex<double>* A, const int lda, double* R, double* C, double* rowcond, double* colcond, double* amax, int* info) const;
void GBRFS(const char TRANS, const int n, const int kl, const int ku, const int nrhs, const std::complex<double>* A, const int lda, const std::complex<double>* AF, const int ldaf, const int* IPIV, const std::complex<double>* B, const int ldb, std::complex<double>* X, const int ldx, double* FERR, double* BERR, std::complex<double>* WORK, double* RWORK, int* info) const;
void GESVX(const char FACT, const char TRANS, const int n, const int nrhs, std::complex<double>* A, const int lda, std::complex<double>* AF, const int ldaf, int* IPIV, char EQUED, double* R, double* C, std::complex<double>* B, const int ldb, std::complex<double>* X, const int ldx, double* rcond, double* FERR, double* BERR, std::complex<double>* WORK, double* RWORK, int* info) const;
void GEHRD(const int n, const int ilo, const int ihi, std::complex<double>* A, const int lda, std::complex<double>* TAU, std::complex<double>* WORK, const int lwork, int* info) const;
void TRTRS(const char UPLO, const char TRANS, const char DIAG, const int n, const int nrhs, const std::complex<double>* A, const int lda, std::complex<double>* B, const int ldb, int* info) const;
void TRTRI(const char UPLO, const char DIAG, const int n, const std::complex<double>* A, const int lda, int* info) const;
// Symmetric eigenvalue routines.
void STEQR(const char COMPZ, const int n, double* D, double* E, std::complex<double>* Z, const int ldz, double* WORK, int* info) const;
void HEEV(const char JOBZ, const char UPLO, const int n, std::complex<double>* A, const int lda, double* W, std::complex<double>* WORK, const int lwork, double* RWORK, int* info) const;
void HEGV(const int itype, const char JOBZ, const char UPLO, const int n, std::complex<double>* A, const int lda, std::complex<double>* B, const int ldb, double* W, std::complex<double>* WORK, const int lwork, double *RWORK, int* info) const;
// Non-hermitian eigenvalue routines.
void HSEQR(const char JOB, const char COMPZ, const int n, const int ilo, const int ihi, std::complex<double>* H, const int ldh, std::complex<double>* W, std::complex<double>* Z, const int ldz, std::complex<double>* WORK, const int lwork, int* info) const;
void GEES(const char JOBVS, const char SORT, int (*ptr2func)(std::complex<double>*), const int n, std::complex<double>* A, const int lda, int* sdim, std::complex<double>* W, std::complex<double>* VS, const int ldvs, std::complex<double>* WORK, const int lwork, double* RWORK, int* BWORK, int* info) const;
void GEES(const char JOBVS, const int n, std::complex<double>* A, const int lda, int* sdim, double* WR, double* WI, std::complex<double>* VS, const int ldvs, std::complex<double>* WORK, const int lwork, double* RWORK, int* BWORK, int* info) const;
void GEEV(const char JOBVL, const char JOBVR, const int n, std::complex<double>* A, const int lda, std::complex<double>* W, std::complex<double>* VL, const int ldvl, std::complex<double>* VR, const int ldvr, std::complex<double>* WORK, const int lwork, double* RWORK, int* info) const;
void GEEV(const char JOBVL, const char JOBVR, const int n, std::complex<double>* A, const int lda, double* WR, double* WI, std::complex<double>* VL, const int ldvl, std::complex<double>* VR, const int ldvr, std::complex<double>* WORK, const int lwork, double* RWORK, int* info) const;
void GEEVX(const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const int n, std::complex<double>* A, const int lda, std::complex<double>* W, std::complex<double>* VL, const int ldvl, std::complex<double>* VR, const int ldvr, int* ilo, int* ihi, double* SCALE, double* abnrm, double* RCONDE, double* RCONDV, std::complex<double>* WORK, const int lwork, double* RWORK, int* info) const;
void GGEVX(const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const int n, std::complex<double>* A, const int lda, std::complex<double>* B, const int ldb, std::complex<double>* ALPHA, std::complex<double>* BETA, std::complex<double>* VL, const int ldvl, std::complex<double>* VR, const int ldvr, int* ilo, int* ihi, double* lscale, double* rscale, double* abnrm, double* bbnrm, double* RCONDE, double* RCONDV, std::complex<double>* work, const int lwork, double* RWORK, int* IWORK, int* BWORK, int* info) const;
void GGEVX(const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const int n, std::complex<double>* A, const int lda, std::complex<double>* B, const int ldb, double* ALPHAR, double* ALPHAI, std::complex<double>* BETA, std::complex<double>* VL, const int ldvl, std::complex<double>* VR, const int ldvr, int* ilo, int* ihi, double* lscale, double* rscale, double* abnrm, double* bbnrm, double* RCONDE, double* RCONDV, std::complex<double>* work, const int lwork, double* RWORK, int* IWORK, int* BWORK, int* info) const;
void GGEV(const char JOBVL, const char JOBVR, const int n, std::complex<double> *A, const int lda, std::complex<double> *B, const int ldb, std::complex<double>* ALPHA, std::complex<double>* BETA, std::complex<double>* VL, const int ldvl, std::complex<double>*VR, const int ldvr, std::complex<double> *WORK, const int lwork, double* RWORK, int* info) const;
// SVD routine
void GESVD(const char JOBU, const char JOBVT, const int m, const int n, std::complex<double>* A, const int lda, double* S, std::complex<double>* U, const int ldu, std::complex<double>* V, const int ldv, std::complex<double>* WORK, const int lwork, double* RWORK, int* info) const;
// Triangular matrix routines.
void TREVC(const char SIDE, const char HOWMNY, int* select, const int n, const std::complex<double>* T, const int ldt, std::complex<double>* VL, const int ldvl, std::complex<double>* VR, const int ldvr, const int mm, int* m, std::complex<double>* WORK, double* RWORK, int* info) const;
void TREVC(const char SIDE, const int n, const std::complex<double>* T, const int ldt, std::complex<double>* VL, const int ldvl, std::complex<double>* VR, const int ldvr, const int mm, int* m, std::complex<double>* WORK, double* RWORK, int* info) const;
void TREXC(const char COMPQ, const int n, std::complex<double>* T, const int ldt, std::complex<double>* Q, const int ldq, int ifst, int ilst, std::complex<double>* WORK, int* info) const;
// Rotation/reflection generators
void LARTG( const std::complex<double> f, const std::complex<double> g, double* c, std::complex<double>* s, std::complex<double>* r ) const;
void LARFG( const int n, std::complex<double>* alpha, std::complex<double>* x, const int incx, std::complex<double>* tau ) const;
// Matrix balancing routines.
void GEBAL(const char JOBZ, const int n, std::complex<double>* A, const int lda, int ilo, int ihi, double* scale, int* info) const;
void GEBAK(const char JOBZ, const char SIDE, const int n, const int ilo, const int ihi, const double* scale, const int m, std::complex<double>* V, const int ldv, int* info) const;
// Random number generators
std::complex<double> LARND( const int idist, int* seed ) const;
void LARNV( const int idist, int* seed, const int n, std::complex<double>* v ) const;
// Machine characteristics
int ILAENV( const int ispec, const std::string& NAME, const std::string& OPTS, const int N1 = -1, const int N2 = -1, const int N3 = -1, const int N4 = -1 ) const;
};
// END INT, COMPLEX<DOUBLE> SPECIALIZATION DECLARATION //
#endif // HAVE_TEUCHOS_COMPLEX
#ifdef HAVE_TEUCHOSCORE_QUADMATH
// BEGIN int, __float128 SPECIALIZATION DECLARATION //
// mfh 18 Sep 2015: I had to write this specialization by hand,
// since LAPACK does not provide it, so it is not complete.
template<>
class TEUCHOSNUMERICS_LIB_DLL_EXPORT LAPACK<int, __float128>
{
public:
inline LAPACK(void) {}
inline LAPACK(const LAPACK<int, __float128>& lapack) {}
inline virtual ~LAPACK(void) {}
void GEQRF(const int m, const int n, __float128* A, const int lda, __float128* TAU, __float128* WORK, const int lwork, int* info) const;
void GEQR2(const int m, const int n, __float128 A[], const int lda, __float128 TAU[], __float128 WORK[], int* const info) const;
void GETRF(const int m, const int n, __float128* A, const int lda, int* IPIV, int* info) const;
void GETRS(const char TRANS, const int n, const int nrhs, const __float128* A, const int lda, const int* IPIV, __float128* B, const int ldb, int* info) const;
void GETRI(const int n, __float128* A, const int lda, const int* IPIV, __float128* WORK, const int lwork, int* info) const;
void LASWP (const int N, __float128 A[], const int LDA, const int K1, const int K2, const int IPIV[], const int INCX) const;
void ORM2R(const char SIDE, const char TRANS, const int m, const int n, const int k, const __float128 A[], const int lda, const __float128 TAU[], __float128 C[], const int ldc, __float128 WORK[], int* const info) const;
void ORGQR(const int m, const int n, const int k, __float128* A, const int lda, const __float128* TAU, __float128* WORK, const int lwork, int* info) const;
void UNGQR(const int m, const int n, const int k, __float128* A, const int lda, const __float128* TAU, __float128* WORK, const int lwork, int* info) const;
void LARFG( const int n, __float128* alpha, __float128* x, const int incx, __float128* tau ) const;
__float128 LAPY2 (const __float128 x, const __float128 y) const;
void LASCL (const char TYPE, const int kl, const int ku, const __float128 cfrom, const __float128 cto, const int m, const int n, __float128* A, const int lda, int* info) const;
void GBTRF (const int m, const int n, const int kl, const int ku, __float128* A, const int lda, int* IPIV, int* info) const;
void GBTRS (const char TRANS, const int n, const int kl, const int ku, const int nrhs, const __float128* A, const int lda, const int* IPIV, __float128* B, const int ldb, int* info) const;
};
// END int, __float128 SPECIALIZATION DECLARATION //
#endif // HAVE_TEUCHOSCORE_QUADMATH
#endif // DOXYGEN_SHOULD_SKIP_THIS
} // namespace Teuchos
#endif // _TEUCHOS_LAPACK_HPP_
|