/usr/include/trilinos/Kokkos_CrsMatrix.hpp is in libtrilinos-tpetra-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 | /*
//@HEADER
// ************************************************************************
//
// Kokkos: Node API and Parallel Node Kernels
// Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
*/
#ifndef KOKKOS_CRSMATRIX_H_
#define KOKKOS_CRSMATRIX_H_
/// \file Kokkos_CrsMatrix.hpp
/// \brief Local sparse matrix interface
/// \warning Do NOT include this file. This file is DEPRECATED!!!
/// Include Kokkos_Sparse_CrsMatrix.hpp instead.
#include <algorithm>
#include <Kokkos_Core.hpp>
#include <Kokkos_ArithTraits.hpp>
#include <Kokkos_StaticCrsGraph.hpp>
#ifdef KOKKOS_USE_CUSPARSE
# include <cusparse.h>
# include <Kokkos_CrsMatrix_CuSparse.hpp>
#endif // KOKKOS_USE_CUSPARSE
#ifdef KOKKOS_USE_MKL
# include <mkl.h>
# include <mkl_spblas.h>
# include <Kokkos_CrsMatrix_MKL.hpp>
#endif // KOKKOS_USE_MKL
//#include <Kokkos_Vectorization.hpp>
#include <impl/Kokkos_Error.hpp>
#include <Kokkos_Sparse_CrsMatrix.hpp>
namespace Kokkos {
#if true
using KokkosSparse::CrsMatrix;
using KokkosSparse::RowsPerThread;
using KokkosSparse::SparseRowView;
using KokkosSparse::SparseRowViewConst;
using KokkosSparse::DeviceConfig;
#else
/// \class SparseRowView
/// \brief View of a row of a sparse matrix.
/// \tparam MatrixType Sparse matrix type, such as (but not limited to) CrsMatrix.
///
/// This class provides a generic view of a row of a sparse matrix.
/// We intended this class to view a row of a CrsMatrix, but
/// MatrixType need not necessarily be CrsMatrix.
///
/// The row view is suited for computational kernels like sparse
/// matrix-vector multiply, as well as for modifying entries in the
/// sparse matrix. Whether the view is const or not, depends on
/// whether MatrixType is a const or nonconst view of the matrix. If
/// you always want a const view, use SparseRowViewConst (see below).
///
/// Here is an example loop over the entries in the row:
/// \code
/// typedef typename SparseRowView<MatrixType>::value_type value_type;
/// typedef typename SparseRowView<MatrixType>::ordinal_type ordinal_type;
///
/// SparseRowView<MatrixType> A_i = ...;
/// const int numEntries = A_i.length;
/// for (int k = 0; k < numEntries; ++k) {
/// value_type A_ij = A_i.value (k);
/// ordinal_type j = A_i.colidx (k);
/// // ... do something with A_ij and j ...
/// }
/// \endcode
///
/// MatrixType must provide the \c value_type and \c ordinal_type
/// typedefs. In addition, it must make sense to use SparseRowView to
/// view a row of MatrixType. In particular, the values and column
/// indices of a row must be accessible using the <tt>values</tt>
/// resp. <tt>colidx</tt> arrays given to the constructor of this
/// class, with a constant <tt>stride</tt> between successive entries.
/// The stride is one for the compressed sparse row storage format (as
/// is used by CrsMatrix), but may be greater than one for other
/// sparse matrix storage formats (e.g., ELLPACK or jagged diagonal).
template<class MatrixType, class SizeType = typename MatrixType::size_type>
struct SparseRowView {
//! The type of the values in the row.
typedef typename MatrixType::value_type value_type;
//! The type of the column indices in the row.
typedef typename MatrixType::ordinal_type ordinal_type;
//! The type of array offsets and strides.
typedef SizeType size_type;
private:
//! Array of values in the row.
value_type* values_;
//! Array of (local) column indices in the row.
ordinal_type* colidx_;
/// \brief Stride between successive entries in the row.
///
/// For compressed sparse row (CSR) storage, this is always one.
/// This might be greater than one for storage formats like ELLPACK.
const size_type stride_;
public:
/// \brief Constructor
///
/// \param values [in] Array of the row's values.
/// \param colidx [in] Array of the row's column indices.
/// \param stride [in] (Constant) stride between matrix entries in
/// each of the above arrays.
/// \param count [in] Number of entries in the row.
KOKKOS_INLINE_FUNCTION
SparseRowView (value_type* const values,
ordinal_type* const colidx__,
const size_type& stride,
const size_type& count) :
values_ (values), colidx_ (colidx__), stride_ (stride), length (count)
{}
/// \brief Constructor
///
/// \param values [in] Array of the row's values.
/// \param colidx [in] Array of the row's column indices.
/// \param stride [in] (Constant) stride between matrix entries in
/// each of the above arrays.
/// \param count [in] Number of entries in the row.
KOKKOS_INLINE_FUNCTION
SparseRowView (const typename MatrixType::values_type& values,
const typename MatrixType::index_type& colidx__,
const size_type& stride,
const size_type& count,
const size_type& idx) :
values_ (&values(idx)), colidx_ (&colidx__(idx)), stride_ (stride), length (count)
{}
/// \brief Number of entries in the row.
///
/// This is a public const field rather than a public const method,
/// in order to avoid possible overhead of a method call if the
/// compiler is unable to inline that method call.
///
/// We assume that rows contain no duplicate entries (i.e., entries
/// with the same column index). Thus, a row may have up to
/// A.numCols() entries. This means that the correct type of
/// 'length' is ordinal_type.
const ordinal_type length;
/// \brief Reference to the value of entry i in this row of the sparse matrix.
///
/// "Entry i" is not necessarily the entry with column index i, nor
/// does i necessarily correspond to the (local) row index.
KOKKOS_INLINE_FUNCTION
value_type& value (const ordinal_type& i) const {
return values_[i*stride_];
}
/// \brief Reference to the column index of entry i in this row of the sparse matrix.
///
/// "Entry i" is not necessarily the entry with column index i, nor
/// does i necessarily correspond to the (local) row index.
KOKKOS_INLINE_FUNCTION
ordinal_type& colidx (const ordinal_type& i) const {
return colidx_[i*stride_];
}
};
/// \class SparseRowViewConst
/// \brief Const view of a row of a sparse matrix.
/// \tparam MatrixType Sparse matrix type, such as (but not limited to) CrsMatrix.
///
/// This class is like SparseRowView, except that it provides a const
/// view. This class exists in order to let users get a const view of
/// a row of a nonconst matrix.
template<class MatrixType, class SizeType = typename MatrixType::size_type>
struct SparseRowViewConst {
//! The type of the values in the row.
typedef const typename MatrixType::non_const_value_type value_type;
//! The type of the column indices in the row.
typedef const typename MatrixType::non_const_ordinal_type ordinal_type;
//! The type of array offsets and strides.
typedef SizeType size_type;
private:
//! Array of values in the row.
value_type* values_;
//! Array of (local) column indices in the row.
ordinal_type* colidx_;
/// \brief Stride between successive entries in the row.
///
/// For compressed sparse row (CSR) storage, this is always one.
/// This might be greater than one for storage formats like ELLPACK.
const size_type stride_;
public:
/// \brief Constructor
///
/// \param values [in] Array of the row's values.
/// \param colidx [in] Array of the row's column indices.
/// \param stride [in] (Constant) stride between matrix entries in
/// each of the above arrays.
/// \param count [in] Number of entries in the row.
KOKKOS_INLINE_FUNCTION
SparseRowViewConst (value_type* const values,
ordinal_type* const colidx__,
const size_type& stride,
const size_type& count) :
values_ (values), colidx_ (colidx__), stride_ (stride), length (count)
{}
/// \brief Constructor
///
/// \param values [in] Array of the row's values.
/// \param colidx [in] Array of the row's column indices.
/// \param stride [in] (Constant) stride between matrix entries in
/// each of the above arrays.
/// \param count [in] Number of entries in the row.
KOKKOS_INLINE_FUNCTION
SparseRowViewConst (const typename MatrixType::values_type& values,
const typename MatrixType::index_type& colidx__,
const size_type& stride,
const size_type& count,
const size_type& idx) :
values_ (&values(idx)), colidx_ (&colidx__(idx)), stride_ (stride), length (count)
{}
/// \brief Number of entries in the row.
///
/// This is a public const field rather than a public const method,
/// in order to avoid possible overhead of a method call if the
/// compiler is unable to inline that method call.
///
/// We assume that rows contain no duplicate entries (i.e., entries
/// with the same column index). Thus, a row may have up to
/// A.numCols() entries. This means that the correct type of
/// 'length' is ordinal_type.
const ordinal_type length;
/// \brief (Const) reference to the value of entry i in this row of
/// the sparse matrix.
///
/// "Entry i" is not necessarily the entry with column index i, nor
/// does i necessarily correspond to the (local) row index.
KOKKOS_INLINE_FUNCTION
value_type& value (const ordinal_type& i) const {
return values_[i*stride_];
}
/// \brief (Const) reference to the column index of entry i in this
/// row of the sparse matrix.
///
/// "Entry i" is not necessarily the entry with column index i, nor
/// does i necessarily correspond to the (local) row index.
KOKKOS_INLINE_FUNCTION
ordinal_type& colidx (const ordinal_type& i) const {
return colidx_[i*stride_];
}
};
// A simple struct for storing a kernel launch configuration.
// This is currently used by CrsMatrix to allow the user to have some control
// over how kernels are launched, however it is currently only exercised by
// Stokhos. This is a simpler case of "state" needed by TPLs, and at this point
// is just a hack until we figure out how to support state in a general,
// extensible way.
struct DeviceConfig {
struct Dim3 {
size_t x, y, z;
Dim3(const size_t x_, const size_t y_ = 1, const size_t z_ = 1) :
x(x_), y(y_), z(z_) {}
};
Dim3 block_dim;
size_t num_blocks;
size_t num_threads_per_block;
DeviceConfig(const size_t num_blocks_ = 0,
const size_t threads_per_block_x_ = 0,
const size_t threads_per_block_y_ = 0,
const size_t threads_per_block_z_ = 1) :
block_dim(threads_per_block_x_,threads_per_block_y_,threads_per_block_z_),
num_blocks(num_blocks_),
num_threads_per_block(block_dim.x * block_dim.y * block_dim.z)
{}
};
/// \class CrsMatrix
/// \brief Compressed sparse row implementation of a sparse matrix.
/// \tparam ScalarType The type of entries in the sparse matrix.
/// \tparam OrdinalType The type of column indices in the sparse matrix.
/// \tparam Device The Kokkos Device type.
/// \tparam MemoryTraits Traits describing how Kokkos manages and
/// accesses data. The default parameter suffices for most users.
///
/// "Crs" stands for "compressed row sparse." This is the phrase
/// Trilinos traditionally uses to describe compressed sparse row
/// storage for sparse matrices, as described, for example, in Saad
/// (2nd ed.).
template<class ScalarType,
class OrdinalType,
class Device,
class MemoryTraits = void,
class SizeType = typename Kokkos::ViewTraits<OrdinalType*, Device, void, void>::size_type>
class CrsMatrix {
private:
typedef typename Kokkos::ViewTraits<ScalarType*,Device,void,void>::host_mirror_space host_mirror_space ;
public:
//! Type of the matrix's execution space.
typedef typename Device::execution_space execution_space;
//! Type of each value in the matrix.
typedef ScalarType value_type;
//! Type of each (column) index in the matrix.
typedef OrdinalType ordinal_type;
typedef MemoryTraits memory_traits;
/// \brief Type of each entry of the "row map."
///
/// The "row map" corresponds to the \c ptr array of row offsets in
/// compressed sparse row (CSR) storage.
typedef SizeType size_type;
//! Type of a host-memory mirror of the sparse matrix.
typedef CrsMatrix<ScalarType, OrdinalType, host_mirror_space, MemoryTraits> HostMirror;
//! Type of the graph structure of the sparse matrix.
typedef Kokkos::StaticCrsGraph<OrdinalType, Kokkos::LayoutLeft, Device, SizeType> StaticCrsGraphType;
//! Type of column indices in the sparse matrix.
typedef typename StaticCrsGraphType::entries_type index_type;
//! Nonconst version of the type of column indices in the sparse matrix.
typedef typename index_type::non_const_value_type non_const_ordinal_type;
//! Type of the "row map" (which contains the offset for each row's data).
typedef typename StaticCrsGraphType::row_map_type row_map_type;
//! Kokkos Array type of the entries (values) in the sparse matrix.
typedef Kokkos::View<value_type*, Kokkos::LayoutRight, execution_space, MemoryTraits> values_type;
//! Const version of the type of the entries in the sparse matrix.
typedef typename values_type::const_value_type const_value_type;
//! Nonconst version of the type of the entries in the sparse matrix.
typedef typename values_type::non_const_value_type non_const_value_type;
#ifdef KOKKOS_USE_CUSPARSE
cusparseHandle_t cusparse_handle;
cusparseMatDescr_t cusparse_descr;
#endif // KOKKOS_USE_CUSPARSE
/// \name Storage of the actual sparsity structure and values.
///
/// CrsMatrix uses the compressed sparse row (CSR) storage format to
/// store the sparse matrix. CSR is also called "compressed row
/// storage"; hence the name, which it inherits from Tpetra and from
/// Epetra before it.
//@{
//! The graph (sparsity structure) of the sparse matrix.
StaticCrsGraphType graph;
//! The 1-D array of values of the sparse matrix.
values_type values;
//@}
/// \brief Launch configuration that can be used by
/// overloads/specializations of MV_multiply().
///
/// This is a hack and needs to be replaced by a general
/// state mechanism.
DeviceConfig dev_config;
/// \brief Default constructor; constructs an empty sparse matrix.
///
/// FIXME (mfh 09 Aug 2013) numCols and nnz should be properties of
/// the graph, not the matrix. Then CrsMatrix needs methods to get
/// these from the graph.
CrsMatrix () :
numCols_ (0)
{}
//! Copy constructor (shallow copy).
template<typename SType,
typename OType,
class DType,
class MTType,
typename IType>
CrsMatrix (const CrsMatrix<SType,OType,DType,MTType,IType> & B) :
graph (B.graph),
values (B.values),
numCols_ (B.numCols ())
{}
/// \brief Construct with a graph that will be shared.
///
/// Allocate the values array for subsquent fill.
CrsMatrix (const std::string& arg_label,
const StaticCrsGraphType& arg_graph) :
graph (arg_graph),
values (arg_label, arg_graph.entries.dimension_0 ()),
numCols_ (maximum_entry (arg_graph) + 1)
{}
/// \brief Constructor that copies raw arrays of host data in
/// coordinate format.
///
/// On input, each entry of the sparse matrix is stored in val[k],
/// with row index rows[k] and column index cols[k]. We assume that
/// the entries are sorted in increasing order by row index.
///
/// This constructor is mainly useful for benchmarking or for
/// reading the sparse matrix's data from a file.
///
/// \param label [in] The sparse matrix's label.
/// \param nrows [in] The number of rows.
/// \param ncols [in] The number of columns.
/// \param annz [in] The number of entries.
/// \param val [in] The entries.
/// \param rows [in] The row indices. rows[k] is the row index of
/// val[k].
/// \param cols [in] The column indices. cols[k] is the column
/// index of val[k].
/// \param pad [in] If true, pad the sparse matrix's storage with
/// zeros in order to improve cache alignment and / or
/// vectorization.
///
/// FIXME (mfh 21 Jun 2013) The \c pad argument is currently not used.
CrsMatrix (const std::string &label,
OrdinalType nrows,
OrdinalType ncols,
size_type annz,
ScalarType* val,
OrdinalType* rows,
OrdinalType* cols,
bool pad = false)
{
(void) pad;
import (label, nrows, ncols, annz, val, rows, cols);
// FIXME (mfh 09 Aug 2013) Specialize this on the Device type.
// Only use cuSPARSE for the Cuda Device.
#ifdef KOKKOS_USE_CUSPARSE
// FIXME (mfh 09 Aug 2013) This is actually static initialization
// of the library; you should do it once for the whole program,
// not once per matrix. We need to protect this somehow.
cusparseCreate (&cusparse_handle);
// This is a per-matrix attribute. It encapsulates things like
// whether the matrix is lower or upper triangular, etc. Ditto
// for other TPLs like MKL.
cusparseCreateMatDescr (&cusparse_descr);
#endif // KOKKOS_USE_CUSPARSE
}
/// \brief Constructor that accepts a row map, column indices, and
/// values.
///
/// The matrix will store and use the row map, indices, and values
/// directly (by view, not by deep copy).
///
/// \param label [in] The sparse matrix's label.
/// \param nrows [in] The number of rows.
/// \param ncols [in] The number of columns.
/// \param annz [in] The number of entries.
/// \param vals [in/out] The entries.
/// \param rows [in/out] The row map (containing the offsets to the
/// data in each row).
/// \param cols [in/out] The column indices.
CrsMatrix (const std::string& label,
const OrdinalType nrows,
const OrdinalType ncols,
const size_type annz,
const values_type& vals,
const row_map_type& rows,
const index_type& cols) :
graph (cols, rows),
values (vals),
numCols_ (ncols)
{
const ordinal_type actualNumRows = (rows.dimension_0 () != 0) ?
static_cast<ordinal_type> (rows.dimension_0 () - static_cast<size_type> (1)) :
static_cast<ordinal_type> (0);
if (nrows != actualNumRows) {
std::ostringstream os;
os << "Input argument nrows = " << nrows << " != the actual number of "
"rows " << actualNumRows << " according to the 'rows' input argument.";
throw std::invalid_argument (os.str ());
}
if (annz != nnz ()) {
std::ostringstream os;
os << "Input argument annz = " << annz
<< " != this->nnz () = " << nnz () << ".";
throw std::invalid_argument (os.str ());
}
#ifdef KOKKOS_USE_CUSPARSE
cusparseCreate (&cusparse_handle);
cusparseCreateMatDescr (&cusparse_descr);
#endif // KOKKOS_USE_CUSPARSE
}
/// \brief Constructor that accepts a a static graph, and values.
///
/// The matrix will store and use the row map, indices, and values
/// directly (by view, not by deep copy).
///
/// \param label [in] The sparse matrix's label.
/// \param nrows [in] The number of rows.
/// \param ncols [in] The number of columns.
/// \param annz [in] The number of entries.
/// \param vals [in/out] The entries.
/// \param rows [in/out] The row map (containing the offsets to the
/// data in each row).
/// \param cols [in/out] The column indices.
CrsMatrix (const std::string& label,
const OrdinalType& ncols,
const values_type& vals,
const StaticCrsGraphType& graph_) :
graph (graph_),
values (vals),
numCols_ (ncols)
{
#ifdef KOKKOS_USE_CUSPARSE
cusparseCreate (&cusparse_handle);
cusparseCreateMatDescr (&cusparse_descr);
#endif // KOKKOS_USE_CUSPARSE
}
void
import (const std::string &label,
const OrdinalType nrows,
const OrdinalType ncols,
const size_type annz,
ScalarType* val,
OrdinalType* rows,
OrdinalType* cols);
// FIXME (mfh 29 Sep 2013) We need a way to disable atomic updates
// for ScalarType types that do not support them. We're pretty much
// limited to ScalarType = float, double, and {u}int{32,64}_t. It
// could make sense to do atomic add updates elementwise for complex
// numbers, but that's about it unless we have transactional memory
// extensions. Dan Sunderland explained to me that the "array of
// atomic int 'locks'" approach (for ScalarType that don't directly
// support atomic updates) won't work on GPUs.
KOKKOS_INLINE_FUNCTION
void
sumIntoValues (const OrdinalType rowi,
const OrdinalType cols[],
const OrdinalType ncol,
ScalarType vals[],
const bool force_atomic = false) const
{
SparseRowView<CrsMatrix> row_view = this->row (rowi);
const size_type length = row_view.length;
for (OrdinalType i = 0; i < ncol; ++i) {
for (size_type j = 0; j < length; ++j) {
if (row_view.colidx(j) == cols[i]) {
if (force_atomic) {
atomic_add(&row_view.value(j), vals[i]);
} else {
row_view.value(j) += vals[i];
}
break;
}
}
}
}
// FIXME (mfh 29 Sep 2013) See above notes on sumIntoValues.
KOKKOS_INLINE_FUNCTION
void
replaceValues (const OrdinalType rowi,
const OrdinalType cols[],
const OrdinalType ncol,
ScalarType vals[],
const bool force_atomic = false) const
{
SparseRowView<CrsMatrix> row_view = this->row (rowi);
const int length = row_view.length;
for (OrdinalType i = 0; i < ncol; ++i) {
for (int j = 0; j < length; ++j) {
if (row_view.colidx(j) == cols[i]) {
if (force_atomic) {
atomic_assign(&row_view.value(j), vals[i]);
} else {
row_view.value(j) = vals[i];
}
}
}
}
}
//! Attempt to assign the input matrix to \c *this.
template<typename aScalarType, typename aOrdinalType, class aDevice, class aMemoryTraits,typename aSizeType>
CrsMatrix&
operator= (const CrsMatrix<aScalarType, aOrdinalType, aDevice, aMemoryTraits, aSizeType>& mtx)
{
numCols_ = mtx.numCols ();
graph = mtx.graph;
values = mtx.values;
dev_config = mtx.dev_config;
return *this;
}
//! The number of rows in the sparse matrix.
KOKKOS_INLINE_FUNCTION ordinal_type numRows () const {
return graph.numRows ();
}
//! The number of columns in the sparse matrix.
KOKKOS_INLINE_FUNCTION ordinal_type numCols () const {
return numCols_;
}
//! The number of stored entries in the sparse matrix.
KOKKOS_INLINE_FUNCTION size_type nnz () const {
return graph.entries.dimension_0 ();
}
friend struct SparseRowView<CrsMatrix>;
/// \brief Return a view of row i of the matrix.
///
/// If row i does not belong to the matrix, return an empty view.
KOKKOS_INLINE_FUNCTION
SparseRowView<CrsMatrix> row (const ordinal_type i) const {
const size_type start = graph.row_map(i);
const size_type count = graph.row_map(i+1) - start;
if (count == 0) {
return SparseRowView<CrsMatrix> (NULL, NULL, 1, 0);
} else {
return SparseRowView<CrsMatrix> (values, graph.entries, 1, count, start);
}
}
/// \brief Return a const view of row i of the matrix.
///
/// If row i does not belong to the matrix, return an empty view.
KOKKOS_INLINE_FUNCTION
SparseRowViewConst<CrsMatrix> rowConst (const ordinal_type i) const {
const size_type start = graph.row_map(i);
const size_type count = graph.row_map(i+1) - start;
if (count == 0) {
return SparseRowViewConst<CrsMatrix> (NULL, NULL, 1, 0);
} else {
return SparseRowViewConst<CrsMatrix> (values, graph.entries, 1, count, start);
}
}
private:
ordinal_type numCols_;
};
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
template< typename ScalarType , typename OrdinalType, class Device, class MemoryTraits, typename SizeType >
void
CrsMatrix<ScalarType , OrdinalType, Device, MemoryTraits, SizeType >::
import (const std::string &label,
const OrdinalType nrows,
const OrdinalType ncols,
const size_type annz,
ScalarType* val,
OrdinalType* rows,
OrdinalType* cols)
{
std::string str = label;
values = values_type (str.append (".values"), annz);
numCols_ = ncols;
// FIXME (09 Aug 2013) CrsArray only takes std::vector for now.
// We'll need to fix that.
std::vector<int> row_lengths (nrows, 0);
// FIXME (mfh 21 Jun 2013) This calls for a parallel_for kernel.
for (OrdinalType i = 0; i < nrows; ++i) {
row_lengths[i] = rows[i + 1] - rows[i];
}
str = label;
graph = Kokkos::create_staticcrsgraph<StaticCrsGraphType> (str.append (".graph"), row_lengths);
typename values_type::HostMirror h_values = Kokkos::create_mirror_view (values);
typename index_type::HostMirror h_entries = Kokkos::create_mirror_view (graph.entries);
// FIXME (mfh 21 Jun 2013) This needs to be a parallel copy.
// Furthermore, why are the arrays copied twice? -- once here, to a
// host view, and once below, in the deep copy?
for (size_type i = 0; i < annz; ++i) {
if (val) {
h_values(i) = val[i];
}
h_entries(i) = cols[i];
}
Kokkos::deep_copy (values, h_values);
Kokkos::deep_copy (graph.entries, h_entries);
}
// FIXME (mfh 20 Mar 2015) Shouldn't this use ordinal_type instead of int?
template<class DeviceType>
inline int RowsPerThread(const int NNZPerRow) {
if(NNZPerRow == 0) return 1;
int result = 2;
while(result*NNZPerRow <= 2048) {
result*=2;
}
return result/2;
}
#ifdef KOKKOS_HAVE_CUDA
template<>
inline int RowsPerThread<Kokkos::Cuda>(const int NNZPerRow) {
return 1;
}
#endif
#endif
//----------------------------------------------------------------------------
template<class DeviceType, typename ScalarType, int NNZPerRow=27>
struct MV_MultiplyShflThreadsPerRow {
private:
typedef typename Kokkos::Impl::remove_const< ScalarType >::type value_type;
// The shuffle operation only works with CUDA, and only works for
// certain ScalarType types.
#ifdef KOKKOS_HAVE_CUDA
enum { shfl_possible =
Kokkos::Impl::is_same< DeviceType , Kokkos::Cuda >::value &&
(
Kokkos::Impl::is_same< value_type , unsigned int >::value ||
Kokkos::Impl::is_same< value_type , int >::value ||
Kokkos::Impl::is_same< value_type , float >::value ||
Kokkos::Impl::is_same< value_type , double >::value
)};
#else // NOT KOKKOS_HAVE_CUDA
enum { shfl_possible = 0 };
#endif // KOKKOS_HAVE_CUDA
public:
#if defined( __CUDA_ARCH__ )
enum { device_value = shfl_possible && ( 300 <= __CUDA_ARCH__ ) ?
(NNZPerRow<8?2:
(NNZPerRow<16?4:
(NNZPerRow<32?8:
(NNZPerRow<64?16:
32))))
:1 };
#else
enum { device_value = 1 };
#endif
#ifdef KOKKOS_HAVE_CUDA
inline static int host_value()
{ return shfl_possible && ( 300 <= Kokkos::Cuda::device_arch() ) ?
(NNZPerRow<8?2:
(NNZPerRow<16?4:
(NNZPerRow<32?8:
(NNZPerRow<64?16:
32))))
:1; }
#else // NOT KOKKOS_HAVE_CUDA
inline static int host_value() { return 1; }
#endif // KOKKOS_HAVE_CUDA
};
//----------------------------------------------------------------------------
template<class RangeVector,
class CrsMatrix,
class DomainVector,
class CoeffVector1,
class CoeffVector2,
int doalpha,
int dobeta>
struct MV_MultiplyFunctor {
typedef typename CrsMatrix::execution_space execution_space;
typedef typename CrsMatrix::size_type size_type;
typedef typename CrsMatrix::ordinal_type ordinal_type;
typedef typename CrsMatrix::non_const_value_type value_type;
typedef typename Kokkos::View<value_type*, execution_space> range_values;
typedef typename Kokkos::TeamPolicy<execution_space> team_policy;
typedef typename team_policy::member_type team_member;
CoeffVector1 beta;
CoeffVector2 alpha;
CrsMatrix m_A;
DomainVector m_x;
RangeVector m_y;
/// \brief The number of columns in the input and output MultiVectors.
///
/// Its approxpriate type is therefore size_type, but we don't
/// expect the input and output MultiVectors to have more columns
/// than the sparse matrix has rows or columns. Thus, we prefer the
/// (likely both smaller and signed, vs. the larger and likely
/// unsigned) size_type.
ordinal_type n;
int rows_per_thread;
MV_MultiplyFunctor (const CoeffVector1 beta_,
const CoeffVector2 alpha_,
const CrsMatrix m_A_,
const DomainVector m_x_,
const RangeVector m_y_,
const ordinal_type n_,
const int rows_per_thread_) :
beta (beta_), alpha (alpha_),
m_A (m_A_), m_x (m_x_), m_y (m_y_), n (n_),
rows_per_thread (rows_per_thread_)
{}
template<int UNROLL>
KOKKOS_INLINE_FUNCTION void
strip_mine (const team_member& dev, const size_type& iRow, const size_type& kk) const
{
value_type sum[UNROLL];
#ifdef KOKKOS_HAVE_PRAGMA_IVDEP
#pragma ivdep
#endif
#ifdef KOKKOS_HAVE_PRAGMA_UNROLL
#pragma unroll
#endif
for (int k = 0; k < UNROLL; ++k) {
// NOTE (mfh 09 Aug 2013) This requires that assignment from int
// (in this case, 0) to value_type be defined. It's not for
// types like arprec and dd_real.
//
// mfh 29 Sep 2013: On the other hand, arprec and dd_real won't
// work on CUDA devices anyway, since their methods aren't
// device functions. arprec has other issues (e.g., dynamic
// memory allocation, and the array-of-structs memory layout
// which is unfavorable to GPUs), but could be dealt with in the
// same way as Sacado's AD types.
sum[k] = 0;
}
const SparseRowViewConst<CrsMatrix> row = m_A.template rowConst<typename CrsMatrix::size_type>(iRow);
// NOTE (mfh 20 Mar 2015) Unfortunately, Kokkos::Vectorization
// lacks a typedef for determining the type of the return value of
// begin(). I know that it returns int now, but this may change
// at some point.
//
// The correct type of iEntry is ordinal_type. This is because we
// assume that rows have no duplicate entries. As a result, a row
// cannot have more entries than the number of columns in the
// matrix.
#ifdef KOKKOS_HAVE_PRAGMA_IVDEP
#pragma ivdep
#endif
#ifdef KOKKOS_HAVE_PRAGMA_UNROLL
#pragma unroll
#endif
#ifdef KOKKOS_HAVE_PRAGMA_LOOPCOUNT
#pragma loop count (15)
#endif
#ifdef __CUDA_ARCH__
for (ordinal_type iEntry = static_cast<ordinal_type> (threadIdx.x);
iEntry < static_cast<ordinal_type> (row.length);
iEntry += static_cast<ordinal_type> (blockDim.x)) {
#else
for (ordinal_type iEntry = 0;
iEntry < static_cast<ordinal_type> (row.length);
iEntry ++) {
#endif
const value_type val = row.value(iEntry);
const ordinal_type ind = row.colidx(iEntry);
#ifdef KOKKOS_HAVE_PRAGMA_UNROLL
#pragma unroll
#endif
for (int k = 0; k < UNROLL; ++k) {
sum[k] += val * m_x(ind, kk + k);
}
}
if (doalpha == -1) {
for (int ii=0; ii < UNROLL; ++ii) {
value_type sumt=sum[ii];
#ifdef __CUDA_ARCH__
if (blockDim.x > 1)
sumt += shfl_down(sumt, 1,blockDim.x);
if (blockDim.x > 2)
sumt += shfl_down(sumt, 2,blockDim.x);
if (blockDim.x > 4)
sumt += shfl_down(sumt, 4,blockDim.x);
if (blockDim.x > 8)
sumt += shfl_down(sumt, 8,blockDim.x);
if (blockDim.x > 16)
sumt += shfl_down(sumt, 16,blockDim.x);
#endif
sum[ii] = - sumt;
}
}
else {
for (int ii=0; ii < UNROLL; ++ii) {
value_type sumt = sum[ii];
#ifdef __CUDA_ARCH__
if (blockDim.x > 1)
sumt += shfl_down(sumt, 1,blockDim.x);
if (blockDim.x > 2)
sumt += shfl_down(sumt, 2,blockDim.x);
if (blockDim.x > 4)
sumt += shfl_down(sumt, 4,blockDim.x);
if (blockDim.x > 8)
sumt += shfl_down(sumt, 8,blockDim.x);
if (blockDim.x > 16)
sumt += shfl_down(sumt, 16,blockDim.x);
#endif
sum[ii] = sumt;
}
}
#ifdef __CUDA_ARCH__
if (threadIdx.x==0) {
#else
if (true) {
#endif
if (doalpha * doalpha != 1) {
#ifdef KOKKOS_HAVE_PRAGMA_IVDEP
#pragma ivdep
#endif
#ifdef KOKKOS_HAVE_PRAGMA_UNROLL
#pragma unroll
#endif
for (int k = 0; k < UNROLL; ++k) {
sum[k] *= alpha(kk + k);
}
}
if (dobeta == 0) {
#ifdef KOKKOS_HAVE_PRAGMA_IVDEP
#pragma ivdep
#endif
#ifdef KOKKOS_HAVE_PRAGMA_UNROLL
#pragma unroll
#endif
for (int k = 0; k < UNROLL; ++k) {
m_y(iRow, kk + k) = sum[k];
}
} else if (dobeta == 1) {
#ifdef KOKKOS_HAVE_PRAGMA_IVDEP
#pragma ivdep
#endif
#ifdef KOKKOS_HAVE_PRAGMA_UNROLL
#pragma unroll
#endif
for (int k = 0; k < UNROLL; ++k) {
m_y(iRow, kk + k) += sum[k];
}
} else if (dobeta == -1) {
#ifdef KOKKOS_HAVE_PRAGMA_IVDEP
#pragma ivdep
#endif
#ifdef KOKKOS_HAVE_PRAGMA_UNROLL
#pragma unroll
#endif
for (int k = 0; k < UNROLL; ++k) {
m_y(iRow, kk + k) = -m_y(iRow, kk + k) + sum[k];
}
} else {
#ifdef KOKKOS_HAVE_PRAGMA_IVDEP
#pragma ivdep
#endif
#ifdef KOKKOS_HAVE_PRAGMA_UNROLL
#pragma unroll
#endif
for (int k = 0; k < UNROLL; ++k) {
m_y(iRow, kk + k) = beta(kk + k) * m_y(iRow, kk + k) + sum[k] ;
}
}
}
}
KOKKOS_INLINE_FUNCTION void
strip_mine_1 (const team_member& dev, const size_type& iRow) const
{
value_type sum = 0;
const SparseRowViewConst<CrsMatrix> row = m_A.template rowConst<typename CrsMatrix::size_type>(iRow);
// NOTE (mfh 20 Mar 2015) Unfortunately, Kokkos::Vectorization
// lacks a typedef for determining the type of the return value of
// begin(). I know that it returns int now, but this may change
// at some point.
//
// The correct type of iEntry is ordinal_type. This is because we
// assume that rows have no duplicate entries. As a result, a row
// cannot have more entries than the number of columns in the
// matrix.
#ifdef KOKKOS_HAVE_PRAGMA_IVDEP
#pragma ivdep
#endif
#ifdef KOKKOS_HAVE_PRAGMA_UNROLL
#pragma unroll
#endif
#ifdef KOKKOS_HAVE_PRAGMA_LOOPCOUNT
#pragma loop count (15)
#endif
#ifdef __CUDA_ARCH__
for (ordinal_type iEntry = static_cast<ordinal_type> (threadIdx.x);
iEntry < static_cast<ordinal_type> (row.length);
iEntry += static_cast<ordinal_type> (blockDim.x)) {
#else
for (ordinal_type iEntry = 0;
iEntry < static_cast<ordinal_type> (row.length);
iEntry ++) {
#endif
sum += row.value(iEntry) * m_x(row.colidx(iEntry),0);
}
#ifdef __CUDA_ARCH__
if (blockDim.x > 1)
sum += shfl_down(sum, 1,blockDim.x);
if (blockDim.x > 2)
sum += shfl_down(sum, 2,blockDim.x);
if (blockDim.x > 4)
sum += shfl_down(sum, 4,blockDim.x);
if (blockDim.x > 8)
sum += shfl_down(sum, 8,blockDim.x);
if (blockDim.x > 16)
sum += shfl_down(sum, 16,blockDim.x);
#endif
#ifdef __CUDA_ARCH__
if (threadIdx.x==0) {
#else
if (true) {
#endif
if (doalpha == -1) {
sum *= value_type(-1);
} else if (doalpha * doalpha != 1) {
sum *= alpha(0);
}
if (dobeta == 0) {
m_y(iRow, 0) = sum ;
} else if (dobeta == 1) {
m_y(iRow, 0) += sum ;
} else if (dobeta == -1) {
m_y(iRow, 0) = -m_y(iRow, 0) + sum;
} else {
m_y(iRow, 0) = beta(0) * m_y(iRow, 0) + sum;
}
}
}
KOKKOS_INLINE_FUNCTION void
operator() (const team_member& dev) const
{
for (int loop = 0; loop < rows_per_thread; ++loop) {
// NOTE (mfh 20 Mar 2015) Unfortunately, Kokkos::Vectorization
// lacks a typedef for determining the type of the return value
// of global_thread_rank(). I know that it returns int now, but
// this may change at some point.
//
// iRow represents a row of the matrix, so its correct type is
// ordinal_type.
const ordinal_type iRow = (dev.league_rank() * dev.team_size() + dev.team_rank())
* rows_per_thread + loop;
if (iRow >= m_A.numRows ()) {
return;
}
// mfh 20 Mar 2015: This relates to n, so its correct type is
// ordinal_type. Once we can use C++11 without protection, the
// right thing to do would be to use decltype to pick up n's
// type here, rather than assuming that it's ordinal_type.
ordinal_type kk = 0;
#ifdef KOKKOS_FAST_COMPILE
for (; kk + 4 <= n; kk += 4) {
strip_mine<4>(dev, iRow, kk);
}
for( ; kk < n; ++kk) {
strip_mine<1>(dev, iRow, kk);
}
#else
# ifdef __CUDA_ARCH__
if ((n > 8) && (n % 8 == 1)) {
strip_mine<9>(dev, iRow, kk);
kk += 9;
}
for(; kk + 8 <= n; kk += 8)
strip_mine<8>(dev, iRow, kk);
if(kk < n)
switch(n - kk) {
# else // NOT a CUDA device
if ((n > 16) && (n % 16 == 1)) {
strip_mine<17>(dev, iRow, kk);
kk += 17;
}
for (; kk + 16 <= n; kk += 16) {
strip_mine<16>(dev, iRow, kk);
}
if(kk < n)
switch(n - kk) {
case 15:
strip_mine<15>(dev, iRow, kk);
break;
case 14:
strip_mine<14>(dev, iRow, kk);
break;
case 13:
strip_mine<13>(dev, iRow, kk);
break;
case 12:
strip_mine<12>(dev, iRow, kk);
break;
case 11:
strip_mine<11>(dev, iRow, kk);
break;
case 10:
strip_mine<10>(dev, iRow, kk);
break;
case 9:
strip_mine<9>(dev, iRow, kk);
break;
case 8:
strip_mine<8>(dev, iRow, kk);
break;
# endif // __CUDA_ARCH__
case 7:
strip_mine<7>(dev, iRow, kk);
break;
case 6:
strip_mine<6>(dev, iRow, kk);
break;
case 5:
strip_mine<5>(dev, iRow, kk);
break;
case 4:
strip_mine<4>(dev, iRow, kk);
break;
case 3:
strip_mine<3>(dev, iRow, kk);
break;
case 2:
strip_mine<2>(dev, iRow, kk);
break;
case 1:
strip_mine_1(dev, iRow);
break;
}
#endif // KOKKOS_FAST_COMPILE
}
}
};
template<class RangeVector,
class CrsMatrix,
class DomainVector,
class CoeffVector1,
class CoeffVector2,
int doalpha,
int dobeta>
struct MV_MultiplySingleFunctor {
typedef typename CrsMatrix::execution_space execution_space;
typedef typename CrsMatrix::ordinal_type ordinal_type;
typedef typename CrsMatrix::non_const_value_type value_type;
typedef typename Kokkos::View<value_type*, typename CrsMatrix::execution_space> range_values;
typedef typename Kokkos::TeamPolicy<execution_space> team_policy;
typedef typename team_policy::member_type team_member;
CoeffVector1 beta;
CoeffVector2 alpha;
CrsMatrix m_A;
DomainVector m_x;
RangeVector m_y;
ordinal_type rows_per_thread;
MV_MultiplySingleFunctor (const CoeffVector1 beta_,
const CoeffVector2 alpha_,
const CrsMatrix m_A_,
const DomainVector m_x_,
const RangeVector m_y_,
const int rows_per_thread_) :
beta (beta_), alpha (alpha_),
m_A (m_A_), m_x (m_x_), m_y (m_y_),
rows_per_thread (rows_per_thread_)
{}
KOKKOS_INLINE_FUNCTION void
operator() (const team_member& dev) const
{
// This should be a thread loop as soon as we can use C++11.
//
// FIXME (mfh 20 Mar 2015, 11 Apr 2015) The correct type of
// 'loop' should be ordinal_type, not int. Ditto for
// rows_per_thread. The cast avoids a build warning.
for (int loop = 0; loop < static_cast<int> (rows_per_thread); ++loop) {
// NOTE (mfh 20 Mar 2015) Unfortunately, Kokkos::Vectorization
// lacks a typedef for determining the type of the return
// value of global_thread_rank(). I know that it returns int
// now, but this may change at some point.
//
// iRow represents a row of the matrix, so its correct type is
// ordinal_type.
const ordinal_type iRow = (dev.league_rank() * dev.team_size() + dev.team_rank())
* rows_per_thread + loop;
if (iRow >= m_A.numRows ()) {
return;
}
const SparseRowViewConst<CrsMatrix> row = m_A.template rowConst<typename CrsMatrix::size_type>(iRow);
const ordinal_type row_length = static_cast<ordinal_type> (row.length);
value_type sum = 0;
// Use explicit Cuda below to avoid C++11 for now. This should be a vector reduce loop !
#ifdef KOKKOS_HAVE_PRAGMA_IVDEP
#pragma ivdep
#endif
#ifdef KOKKOS_HAVE_PRAGMA_UNROLL
#pragma unroll
#endif
#ifdef KOKKOS_HAVE_PRAGMA_LOOPCOUNT
#pragma loop count (15)
#endif
#ifdef __CUDA_ARCH__
for (ordinal_type iEntry = static_cast<ordinal_type> (threadIdx.x);
iEntry < static_cast<ordinal_type> (row_length);
iEntry += static_cast<ordinal_type> (blockDim.x)) {
#else
for (ordinal_type iEntry = 0;
iEntry < static_cast<ordinal_type> (row_length);
iEntry ++) {
#endif
sum += row.value(iEntry) * m_x(row.colidx(iEntry));
}
#ifdef __CUDA_ARCH__
if (blockDim.x > 1)
sum += shfl_down(sum, 1,blockDim.x);
if (blockDim.x > 2)
sum += shfl_down(sum, 2,blockDim.x);
if (blockDim.x > 4)
sum += shfl_down(sum, 4,blockDim.x);
if (blockDim.x > 8)
sum += shfl_down(sum, 8,blockDim.x);
if (blockDim.x > 16)
sum += shfl_down(sum, 16,blockDim.x);
if (threadIdx.x==0) {
#else
if (true) {
#endif
if (doalpha == -1) {
sum *= value_type(-1);
} else if (doalpha * doalpha != 1) {
sum *= alpha(0);
}
if (dobeta == 0) {
m_y(iRow) = sum ;
} else if (dobeta == 1) {
m_y(iRow) += sum ;
} else if (dobeta == -1) {
m_y(iRow) = -m_y(iRow) + sum;
} else {
m_y(iRow) = beta(0) * m_y(iRow) + sum;
}
}
}
}
};
namespace Impl {
template <class RangeVector,
class CrsMatrix,
class DomainVector,
class CoeffVector1,
class CoeffVector2>
void
MV_Multiply_Check_Compatibility (const CoeffVector1 &betav,
const RangeVector &y,
const CoeffVector2 &alphav,
const CrsMatrix &A,
const DomainVector &x,
const int& doalpha,
const int& dobeta)
{
typename DomainVector::size_type numVecs = x.dimension_1();
typename DomainVector::size_type numRows = A.numRows();
typename DomainVector::size_type numCols = A.numCols();
if (y.dimension_1() != numVecs) {
std::ostringstream msg;
msg << "Error in CRSMatrix - Vector Multiply (y = by + aAx): 2nd dimensions of y and x do not match\n";
msg << "\t Labels are: y(" << y.tracker().label() << ") b("
<< betav.tracker().label() << ") a("
<< alphav.tracker().label() << ") x("
<< A.values.tracker().label() << ") x("
<< x.tracker().label() << ")\n";
msg << "\t Dimensions are: y(" << y.dimension_0() << "," << y.dimension_1() << ") x(" << x.dimension_0() << "," << x.dimension_1() << ")\n";
Impl::throw_runtime_exception( msg.str() );
}
if (numRows > y.dimension_0()) {
std::ostringstream msg;
msg << "Error in CRSMatrix - Vector Multiply (y = by + aAx): dimensions of y and A do not match\n";
msg << "\t Labels are: y(" << y.tracker().label() << ") b("
<< betav.tracker().label() << ") a("
<< alphav.tracker().label() << ") x("
<< A.values.tracker().label() << ") x("
<< x.tracker().label() << ")\n";
msg << "\t Dimensions are: y(" << y.dimension_0() << "," << y.dimension_1() << ") A(" << A.numRows() << "," << A.numCols() << ")\n";
Impl::throw_runtime_exception( msg.str() );
}
if (numCols > x.dimension_0()) {
std::ostringstream msg;
msg << "Error in CRSMatrix - Vector Multiply (y = by + aAx): dimensions of x and A do not match\n";
msg << "\t Labels are: y(" << y.tracker().label() << ") b("
<< betav.tracker().label() << ") a("
<< alphav.tracker().label() << ") x("
<< A.values.tracker().label() << ") x("
<< x.tracker().label() << ")\n";
msg << "\t Dimensions are: x(" << x.dimension_0() << "," << x.dimension_1() << ") A(" << A.numRows() << "," << A.numCols() << ")\n";
Impl::throw_runtime_exception( msg.str() );
}
if (dobeta==2) {
if (betav.dimension_0()!=numVecs) {
std::ostringstream msg;
msg << "Error in CRSMatrix - Vector Multiply (y = by + aAx): 2nd dimensions of y and b do not match\n";
msg << "\t Labels are: y(" << y.tracker().label() << ") b("
<< betav.tracker().label() << ") a("
<< alphav.tracker().label() << ") x("
<< A.values.tracker().label() << ") x("
<< x.tracker().label() << ")\n";
msg << "\t Dimensions are: y(" << y.dimension_0() << "," << y.dimension_1() << ") b(" << betav.dimension_0() << ")\n";
Impl::throw_runtime_exception( msg.str() );
}
}
if(doalpha==2) {
if(alphav.dimension_0()!=numVecs) {
std::ostringstream msg;
msg << "Error in CRSMatrix - Vector Multiply (y = by + aAx): 2nd dimensions of x and b do not match\n";
msg << "\t Labels are: y(" << y.tracker().label() << ") b("
<< betav.tracker().label() << ") a("
<< alphav.tracker().label() << ") x("
<< A.values.tracker().label() << ") x("
<< x.tracker().label() << ")\n";
msg << "\t Dimensions are: x(" << x.dimension_0() << "," << x.dimension_1() << ") b(" << betav.dimension_0() << ")\n";
Impl::throw_runtime_exception( msg.str() );
}
}
}
} // namespace Impl
// This TransposeFunctor is functional, but not necessarily performant.
template<class RangeVector,
class CrsMatrix,
class DomainVector,
class CoeffVector1,
class CoeffVector2,
int doalpha,
int dobeta,
bool conjugate = false,
int NNZPerRow = 27>
struct MV_MultiplyTransposeFunctor {
typedef typename CrsMatrix::execution_space execution_space;
typedef typename CrsMatrix::ordinal_type ordinal_type;
typedef typename CrsMatrix::size_type size_type;
typedef typename CrsMatrix::non_const_value_type value_type;
typedef typename Kokkos::View<value_type*, execution_space> range_values;
typedef MV_MultiplyShflThreadsPerRow<execution_space, value_type, NNZPerRow> ShflThreadsPerRow;
CoeffVector1 beta;
CoeffVector2 alpha;
CrsMatrix m_A ;
DomainVector m_x ;
RangeVector m_y ;
ordinal_type n;
// This is an iteration over rows of the matrix (modulo the
// shuffle width), so the correct type of i is ordinal_type.
KOKKOS_INLINE_FUNCTION
void operator() (const ordinal_type i) const {
typedef Kokkos::Details::ArithTraits<value_type> ATV;
const ordinal_type iRow = i / ShflThreadsPerRow::device_value;
const int lane = static_cast<int> (i) % ShflThreadsPerRow::device_value;
const SparseRowViewConst<CrsMatrix> row = m_A.template rowConst<typename CrsMatrix::size_type>(iRow);
for (ordinal_type iEntry = static_cast<ordinal_type> (lane);
iEntry < static_cast<ordinal_type> (row.length);
iEntry += static_cast<ordinal_type> (ShflThreadsPerRow::device_value)) {
const value_type val = conjugate ?
ATV::conj (row.value(iEntry)) :
row.value(iEntry);
const ordinal_type ind = row.colidx(iEntry);
if (doalpha != 1) {
#ifdef KOKKOS_HAVE_PRAGMA_UNROLL
#pragma unroll
#endif
for (ordinal_type k = 0; k < n; ++k) {
atomic_add (&m_y(ind,k), value_type(alpha(k) * val * m_x(iRow, k)));
}
} else {
#ifdef KOKKOS_HAVE_PRAGMA_UNROLL
#pragma unroll
#endif
for (ordinal_type k = 0; k < n; ++k) {
atomic_add (&m_y(ind,k), value_type(val * m_x(iRow, k)));
}
}
}
}
};
// This TansposeFunctor is functional, but not necessarily performant.
template<class RangeVector,
class CrsMatrix,
class DomainVector,
class CoeffVector1,
class CoeffVector2,
int doalpha,
int dobeta,
bool conjugate = false,
int NNZPerRow = 27 >
struct MV_MultiplyTransposeSingleFunctor {
typedef typename CrsMatrix::execution_space execution_space;
typedef typename CrsMatrix::ordinal_type ordinal_type;
typedef typename CrsMatrix::non_const_value_type value_type;
typedef typename Kokkos::View<value_type*, execution_space> range_values;
typedef MV_MultiplyShflThreadsPerRow< execution_space , value_type , NNZPerRow > ShflThreadsPerRow ;
CoeffVector1 beta;
CoeffVector2 alpha;
CrsMatrix m_A ;
DomainVector m_x ;
RangeVector m_y ;
ordinal_type n;
KOKKOS_INLINE_FUNCTION
void operator() (const ordinal_type i) const {
typedef Kokkos::Details::ArithTraits<value_type> ATV;
const ordinal_type iRow = i / ShflThreadsPerRow::device_value;
const int lane = static_cast<int> (i) % ShflThreadsPerRow::device_value;
const SparseRowViewConst<CrsMatrix> row = m_A.template rowConst<typename CrsMatrix::size_type>(iRow);
for (ordinal_type iEntry = static_cast<ordinal_type> (lane);
iEntry < static_cast<ordinal_type> (row.length);
iEntry += static_cast<ordinal_type> (ShflThreadsPerRow::device_value)) {
const value_type val = conjugate ?
ATV::conj (row.value(iEntry)) :
row.value(iEntry);
const ordinal_type ind = row.colidx(iEntry);
if (doalpha != 1) {
atomic_add (&m_y(ind), value_type(alpha(0) * val * m_x(iRow)));
} else {
atomic_add (&m_y(ind), value_type(val * m_x(iRow)));
}
}
}
};
template <class RangeVector,
class TCrsMatrix,
class DomainVector,
class CoeffVector1,
class CoeffVector2,
int doalpha,
int dobeta>
void
MV_MultiplyTranspose (typename Kokkos::Impl::enable_if<DomainVector::Rank == 2, const CoeffVector1>::type& betav,
const RangeVector &y,
const CoeffVector2 &alphav,
const TCrsMatrix &A,
const DomainVector &x,
const bool conjugate = false)
{
typedef typename TCrsMatrix::ordinal_type ordinal_type;
// FIXME (mfh 02 Jan 2015) Is numRows() always signed? More
// importantly, if the calling process owns zero rows in the row
// Map, numRows() should return 0, not -1.
//
//Special case for zero Rows RowMap
if (A.numRows () == static_cast<ordinal_type> (-1)) {
return;
}
if (doalpha == 0) {
if (dobeta == 2) {
MV_MulScalar (y, betav, y);
} else {
MV_MulScalar (y, static_cast<typename RangeVector::const_value_type> (dobeta), y);
}
return;
} else {
typedef View< typename RangeVector::non_const_data_type ,
typename RangeVector::array_layout ,
typename RangeVector::execution_space ,
typename RangeVector::memory_traits >
RangeVectorType;
typedef View< typename DomainVector::const_data_type ,
typename DomainVector::array_layout ,
typename DomainVector::execution_space ,
Kokkos::MemoryRandomAccess >
DomainVectorType;
typedef View< typename CoeffVector1::const_data_type ,
typename CoeffVector1::array_layout ,
typename CoeffVector1::execution_space ,
Kokkos::MemoryRandomAccess >
CoeffVector1Type;
typedef View< typename CoeffVector2::const_data_type ,
typename CoeffVector2::array_layout ,
typename CoeffVector2::execution_space ,
Kokkos::MemoryRandomAccess >
CoeffVector2Type;
typedef CrsMatrix<typename TCrsMatrix::const_value_type,
typename TCrsMatrix::ordinal_type,
typename TCrsMatrix::execution_space,
typename TCrsMatrix::memory_traits,
typename TCrsMatrix::size_type> CrsMatrixType;
//Impl::MV_Multiply_Check_Compatibility(betav,y,alphav,A,x,doalpha,dobeta);
/*
#ifndef KOKKOS_FAST_COMPILE
if(x.dimension_1()==1) {
typedef View<typename DomainVectorType::const_value_type*,typename DomainVector::array_layout ,typename DomainVectorType::execution_space,Kokkos::MemoryRandomAccess> DomainVector1D;
typedef View<typename DomainVectorType::const_value_type*,typename DomainVector::array_layout ,typename DomainVectorType::execution_space> DomainVector1DPlain;
typedef View<typename RangeVectorType::value_type*,typename RangeVector::array_layout ,typename RangeVectorType::execution_space,typename RangeVector::memory_traits> RangeVector1D;
Kokkos::subview( y , ALL(),0 );
if (conjugate) {
typedef MV_MultiplySingleFunctor<RangeVector1D, CrsMatrixType, DomainVector1D,
CoeffVector1Type, CoeffVector2Type, doalpha, dobeta, true> OpType;
OpType op;
const typename CrsMatrixType::ordinal_type nrow = A.numRows ();
op.m_A = A;
op.m_x = Kokkos::subview (x, ALL (), 0);
op.m_y = Kokkos::subview (y, ALL(), 0);
op.beta = betav;
op.alpha = alphav;
op.n = x.dimension(1);
Kokkos::parallel_for (nrow * OpType::ShflThreadsPerRow::host_value(), op);
}
else {
typedef MV_MultiplySingleFunctor<RangeVector1D, CrsMatrixType, DomainVector1D,
CoeffVector1Type, CoeffVector2Type, doalpha, dobeta, false> OpType;
OpType op;
const typename CrsMatrixType::ordinal_type nrow = A.numRows ();
op.m_A = A;
op.m_x = Kokkos::subview (x, ALL (), 0);
op.m_y = Kokkos::subview (y, ALL(), 0);
op.beta = betav;
op.alpha = alphav;
op.n = x.dimension(1);
Kokkos::parallel_for (nrow * OpType::ShflThreadsPerRow::host_value(), op);
}
}
else {
if (conjugate) {
typedef MV_MultiplyFunctor<RangeVectorType, CrsMatrixType, DomainVectorType,
CoeffVector1Type, CoeffVector2Type, doalpha, dobeta, true> OpType ;
OpType op ;
const typename CrsMatrixType::ordinal_type nrow = A.numRows();
op.m_A = A ;
op.m_x = x ;
op.m_y = y ;
op.beta = betav;
op.alpha = alphav;
op.n = x.dimension(1);
Kokkos::parallel_for(nrow*OpType::ShflThreadsPerRow::host_value() , op);
}
else {
typedef MV_MultiplyFunctor<RangeVectorType, CrsMatrixType, DomainVectorType,
CoeffVector1Type, CoeffVector2Type, doalpha, dobeta, false> OpType ;
OpType op ;
const typename CrsMatrixType::ordinal_type nrow = A.numRows();
op.m_A = A ;
op.m_x = x ;
op.m_y = y ;
op.beta = betav;
op.alpha = alphav;
op.n = x.dimension(1);
Kokkos::parallel_for(nrow*OpType::ShflThreadsPerRow::host_value() , op);
}
}
#else // NOT KOKKOS_FAST_COMPILE
*/
// FIXME (mfh 20 Mar 2015) The dimension doesn't have type int.
// On the other hand, this is the number of columns in the input
// (and output) MultiVectors, so it's not likely to be large (the
// typical case is < 100).
int numVecs = x.dimension_1();
CoeffVector1 beta = betav;
CoeffVector2 alpha = alphav;
if (doalpha != 2) {
alpha = CoeffVector2("CrsMatrix::auto_a", numVecs);
typename CoeffVector2::HostMirror h_a = Kokkos::create_mirror_view(alpha);
typename CoeffVector2::value_type s_a = (typename CoeffVector2::value_type) doalpha;
for (int i = 0; i < numVecs; ++i) {
h_a(i) = s_a;
}
Kokkos::deep_copy (alpha, h_a);
}
if (dobeta != 2) {
beta = CoeffVector1("CrsMatrix::auto_b", numVecs);
typename CoeffVector1::HostMirror h_b = Kokkos::create_mirror_view(beta);
typename CoeffVector1::value_type s_b = (typename CoeffVector1::value_type) dobeta;
for (int i = 0; i < numVecs; ++i) {
h_b(i) = s_b;
}
Kokkos::deep_copy (beta, h_b);
}
if (dobeta == 2) {
MV_MulScalar (y, betav, y);
} else {
if (dobeta != 1) {
MV_MulScalar (y, static_cast<typename RangeVector::const_value_type> (dobeta), y);
}
}
const ordinal_type nrow = A.numRows ();
if (conjugate) {
typedef MV_MultiplyTransposeFunctor<RangeVectorType, CrsMatrixType,
DomainVectorType, CoeffVector1Type,
CoeffVector2Type, 2, 2, true> OpType;
OpType op ;
op.m_A = A;
op.m_x = x;
op.m_y = y;
op.beta = beta;
op.alpha = alpha;
op.n = x.dimension_1();
Kokkos::parallel_for (nrow * OpType::ShflThreadsPerRow::host_value (), op);
}
else {
typedef MV_MultiplyTransposeFunctor<RangeVectorType, CrsMatrixType,
DomainVectorType, CoeffVector1Type,
CoeffVector2Type, 2, 2, false> OpType;
OpType op ;
op.m_A = A;
op.m_x = x;
op.m_y = y;
op.beta = beta;
op.alpha = alpha;
op.n = x.dimension_1();
Kokkos::parallel_for (nrow * OpType::ShflThreadsPerRow::host_value (), op);
}
//#endif // KOKKOS_FAST_COMPILE
}
}
template<class RangeVector,
class CrsMatrix,
class DomainVector,
class CoeffVector1,
class CoeffVector2>
void
MV_MultiplyTranspose (const CoeffVector1& betav,
const RangeVector& y,
const CoeffVector2& alphav,
const CrsMatrix& A,
const DomainVector& x,
int beta,
int alpha,
const bool conjugate = false)
{
if (beta == 0) {
if (alpha == 0) {
MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
CoeffVector2, 0, 0 > (betav, y, alphav, A, x, conjugate);
}
else if (alpha == 1) {
MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
CoeffVector2, 1, 0 > (betav, y, alphav, A, x, conjugate);
}
else if (alpha == -1) {
MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
CoeffVector2, -1, 0 > (betav, y, alphav, A, x, conjugate);
}
else {
MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
CoeffVector2, 2, 0 > (betav, y, alphav, A, x, conjugate);
}
} else if (beta == 1) {
if (alpha == 0) {
return;
}
else if (alpha == 1) {
MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
CoeffVector2, 1, 1 > (betav, y, alphav, A, x, conjugate);
}
else if (alpha == -1) {
MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
CoeffVector2, -1, 1 > (betav, y, alphav, A, x, conjugate);
}
else {
MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
CoeffVector2, 2, 1 > (betav, y, alphav, A, x, conjugate);
}
} else if (beta == -1) {
if (alpha == 0) {
MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
CoeffVector2, 0, -1 > (betav, y, alphav, A, x, conjugate);
}
else if (alpha == 1) {
MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
CoeffVector2, 1, -1 > (betav, y, alphav, A, x, conjugate);
}
else if (alpha == -1) {
MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
CoeffVector2, -1, -1 > (betav, y, alphav, A, x, conjugate);
}
else {
MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
CoeffVector2, 2, -1 > (betav, y, alphav, A, x, conjugate);
}
} else {
if (alpha == 0) {
MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
CoeffVector2, 0, 2 > (betav, y, alphav, A, x, conjugate);
}
else if (alpha == 1) {
MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
CoeffVector2, 1, 2 > (betav, y, alphav, A, x, conjugate);
}
else if (alpha == -1) {
MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
CoeffVector2, -1, 2 > (betav, y, alphav, A, x, conjugate);
}
else {
MV_MultiplyTranspose<RangeVector, CrsMatrix, DomainVector, CoeffVector1,
CoeffVector2, 2, 2> (betav, y, alphav, A, x, conjugate);
}
}
}
template<class RangeVector, class CrsMatrix, class DomainVector>
void
MV_MultiplyTranspose (typename RangeVector::const_value_type s_b,
const RangeVector& y,
typename DomainVector::const_value_type s_a,
const CrsMatrix& A,
const DomainVector& x,
const bool conjugate = false)
{
/*#ifdef KOKKOS_USE_CUSPARSE
if (MV_Multiply_Try_CuSparse (s_b, y, s_a, A, x, conjugate)) {
return;
}
#endif // KOKKOSE_USE_CUSPARSE
#ifdef KOKKOS_USE_MKL
if (MV_Multiply_Try_MKL (s_b, y, s_a, A, x, conjugate)) {
return;
}
#endif // KOKKOS_USE_MKL*/
typedef Kokkos::View<typename RangeVector::value_type*,
typename RangeVector::execution_space> aVector;
aVector a;
aVector b;
int numVecs = x.dimension_1();
if (s_b == 0) {
if (s_a == 0)
return MV_MultiplyTranspose (a, y, a, A, x, 0, 0, conjugate);
else if (s_a == 1)
return MV_MultiplyTranspose (a, y, a, A, x, 0, 1, conjugate);
else if (s_a == static_cast<typename DomainVector::const_value_type> (-1))
return MV_MultiplyTranspose (a, y, a, A, x, 0, -1, conjugate);
else {
a = aVector("a", numVecs);
typename aVector::HostMirror h_a = Kokkos::create_mirror_view (a);
for (int i = 0; i < numVecs; ++i) {
h_a(i) = s_a;
}
Kokkos::deep_copy (a, h_a);
return MV_MultiplyTranspose (a, y, a, A, x, 0, 2, conjugate);
}
} else if (s_b == 1) {
if (s_a == 0)
return MV_MultiplyTranspose (a, y, a, A, x, 1, 0, conjugate);
else if (s_a == 1)
return MV_MultiplyTranspose (a, y, a, A, x, 1, 1, conjugate);
else if (s_a == static_cast<typename DomainVector::const_value_type> (-1))
return MV_MultiplyTranspose (a, y, a, A, x, 1, -1, conjugate);
else {
a = aVector("a", numVecs);
typename aVector::HostMirror h_a = Kokkos::create_mirror_view (a);
for (int i = 0; i < numVecs; ++i) {
h_a(i) = s_a;
}
Kokkos::deep_copy (a, h_a);
return MV_MultiplyTranspose (a, y, a, A, x, 1, 2, conjugate);
}
} else if (s_b == static_cast<typename RangeVector::const_value_type> (-1)) {
if (s_a == 0)
return MV_MultiplyTranspose (a, y, a, A, x, -1, 0, conjugate);
else if (s_a == 1)
return MV_MultiplyTranspose (a, y, a, A, x, -1, 1, conjugate);
else if (s_a == static_cast<typename DomainVector::const_value_type> (-1))
return MV_MultiplyTranspose (a, y, a, A, x, -1, -1, conjugate);
else {
a = aVector("a", numVecs);
typename aVector::HostMirror h_a = Kokkos::create_mirror_view (a);
for (int i = 0; i < numVecs; ++i) {
h_a(i) = s_a;
}
Kokkos::deep_copy (a, h_a);
return MV_MultiplyTranspose (a, y, a, A, x, -1, 2, conjugate);
}
} else {
b = aVector("b", numVecs);
typename aVector::HostMirror h_b = Kokkos::create_mirror_view (b);
for (int i = 0; i < numVecs; ++i) {
h_b(i) = s_b;
}
Kokkos::deep_copy (b, h_b);
if (s_a == 0)
return MV_MultiplyTranspose (b, y, a, A, x, 2, 0, conjugate);
else if (s_a == 1)
return MV_MultiplyTranspose (b, y, a, A, x, 2, 1, conjugate);
else if (s_a == static_cast<typename DomainVector::const_value_type> (-1))
return MV_MultiplyTranspose (b, y, a, A, x, 2, -1, conjugate);
else {
a = aVector("a", numVecs);
typename aVector::HostMirror h_a = Kokkos::create_mirror_view (a);
for (int i = 0; i < numVecs; ++i) {
h_a(i) = s_a;
}
Kokkos::deep_copy (a, h_a);
return MV_MultiplyTranspose (b, y, a, A, x, 2, 2, conjugate);
}
}
}
template<class RangeVector,
class TCrsMatrix,
class DomainVector,
class CoeffVector1,
class CoeffVector2,
int doalpha,
int dobeta>
void
MV_MultiplySingle (typename Kokkos::Impl::enable_if<DomainVector::Rank == 1, const CoeffVector1>::type& betav,
const RangeVector &y,
const CoeffVector2 &alphav,
const TCrsMatrix& A,
const DomainVector& x)
{
typedef typename TCrsMatrix::ordinal_type ordinal_type;
if (A.numRows () <= static_cast<ordinal_type> (0)) {
return;
}
if (doalpha == 0) {
if (dobeta==2) {
V_MulScalar (y, betav, y);
}
else {
V_MulScalar (y, typename RangeVector::value_type (dobeta), y);
}
return;
} else {
typedef View< typename RangeVector::non_const_data_type ,
typename RangeVector::array_layout ,
typename RangeVector::execution_space ,
typename RangeVector::memory_traits >
RangeVectorType;
typedef View< typename DomainVector::const_data_type ,
typename DomainVector::array_layout ,
typename DomainVector::execution_space ,
//typename DomainVector::memory_traits >
Kokkos::MemoryRandomAccess >
DomainVectorType;
typedef View< typename CoeffVector1::const_data_type ,
typename CoeffVector1::array_layout ,
typename CoeffVector1::execution_space ,
Kokkos::MemoryRandomAccess >
CoeffVector1Type;
typedef View< typename CoeffVector2::const_data_type ,
typename CoeffVector2::array_layout ,
typename CoeffVector2::execution_space ,
Kokkos::MemoryRandomAccess >
CoeffVector2Type;
typedef CrsMatrix<typename TCrsMatrix::const_value_type,
typename TCrsMatrix::ordinal_type,
typename TCrsMatrix::execution_space,
typename TCrsMatrix::memory_traits,
typename TCrsMatrix::size_type>
CrsMatrixType;
typedef typename CrsMatrixType::size_type size_type;
Impl::MV_Multiply_Check_Compatibility(betav,y,alphav,A,x,doalpha,dobeta);
// NNZPerRow could be anywhere from 0, to A.numRows()*A.numCols().
// Thus, the appropriate type is size_type.
const size_type NNZPerRow = A.nnz () / A.numRows ();
int vector_length = 1;
while( (static_cast<size_type> (vector_length*2*3) <= NNZPerRow) && (vector_length<32) ) vector_length*=2;
#ifndef KOKKOS_FAST_COMPILE // This uses templated fucntions on doalpha and dobeta and will produce 16 kernels
typedef MV_MultiplySingleFunctor<RangeVectorType, CrsMatrixType, DomainVectorType,
CoeffVector1Type, CoeffVector2Type, doalpha, dobeta > OpType ;
const typename CrsMatrixType::ordinal_type nrow = A.numRows();
OpType op(betav,alphav,A,x,y,RowsPerThread<typename RangeVector::execution_space >(NNZPerRow)) ;
const int rows_per_thread = RowsPerThread<typename RangeVector::execution_space >(NNZPerRow);
const int team_size = Kokkos::TeamPolicy< typename RangeVector::execution_space >::team_size_recommended(op,vector_length);
const int rows_per_team = rows_per_thread * team_size;
const int nteams = (nrow+rows_per_team-1)/rows_per_team;
Kokkos::parallel_for( Kokkos::TeamPolicy< typename RangeVector::execution_space >
( nteams , team_size , vector_length ) , op );
#else // NOT KOKKOS_FAST_COMPILE
typedef MV_MultiplySingleFunctor<RangeVectorType, CrsMatrixType, DomainVectorType,
CoeffVector1Type, CoeffVector2Type, 2, 2> OpType ;
int numVecs = x.dimension_1(); // == 1
CoeffVector1 beta = betav;
CoeffVector2 alpha = alphav;
if(doalpha!=2) {
alpha = CoeffVector2("CrsMatrix::auto_a", numVecs);
typename CoeffVector2::HostMirror h_a = Kokkos::create_mirror_view(alpha);
typename CoeffVector2::value_type s_a = (typename CoeffVector2::value_type) doalpha;
for(int i = 0; i < numVecs; i++)
h_a(i) = s_a;
Kokkos::deep_copy(alpha, h_a);
}
if(dobeta!=2) {
beta = CoeffVector1("CrsMatrix::auto_b", numVecs);
typename CoeffVector1::HostMirror h_b = Kokkos::create_mirror_view(beta);
typename CoeffVector1::value_type s_b = (typename CoeffVector1::value_type) dobeta;
for(int i = 0; i < numVecs; i++)
h_b(i) = s_b;
Kokkos::deep_copy(beta, h_b);
}
const typename CrsMatrixType::ordinal_type nrow = A.numRows();
OpType op(beta,alpha,A,x,y,RowsPerThread<typename RangeVector::execution_space >(NNZPerRow)) ;
const int team_size = Kokkos::TeamPolicy< typename RangeVector::execution_space >::team_size_recommended(op,vector_length);
const int rows_per_team = rows_per_thread * team_size;
const int nteams = (nrow+rows_per_team-1)/rows_per_team;
Kokkos::parallel_for( Kokkos::TeamPolicy< typename RangeVector::execution_space >
( nteams , team_size , vector_length ) , op );
#endif // KOKKOS_FAST_COMPILE
}
}
/*
template <class RangeVector,
class TCrsMatrix,
class DomainVector,
class CoeffVector1,
class CoeffVector2,
int doalpha,
int dobeta>
void
MV_Multiply (typename Kokkos::Impl::enable_if<DomainVector::Rank == 2, const CoeffVector1>::type& betav,
const RangeVector &y,
const CoeffVector2 &alphav,
const TCrsMatrix &A,
const DomainVector &x)
{
//Special case for zero Rows RowMap
if(A.numRows() <= 0) return;
if (doalpha == 0) {
if (dobeta==2) {
MV_MulScalar(y,betav,y);
} else {
MV_MulScalar(y,static_cast<typename RangeVector::const_value_type> (dobeta),y);
}
return;
} else {
typedef View< typename RangeVector::non_const_data_type ,
typename RangeVector::array_layout ,
typename RangeVector::execution_space ,
typename RangeVector::memory_traits >
RangeVectorType;
typedef View< typename DomainVector::const_data_type ,
typename DomainVector::array_layout ,
typename DomainVector::execution_space ,
Kokkos::MemoryRandomAccess >
DomainVectorType;
typedef View< typename CoeffVector1::const_data_type ,
typename CoeffVector1::array_layout ,
typename CoeffVector1::execution_space ,
Kokkos::MemoryRandomAccess >
CoeffVector1Type;
typedef View< typename CoeffVector2::const_data_type ,
typename CoeffVector2::array_layout ,
typename CoeffVector2::execution_space ,
Kokkos::MemoryRandomAccess >
CoeffVector2Type;
typedef CrsMatrix<typename TCrsMatrix::const_value_type,
typename TCrsMatrix::ordinal_type,
typename TCrsMatrix::execution_space,
typename TCrsMatrix::memory_traits,
typename TCrsMatrix::size_type> CrsMatrixType;
Impl::MV_Multiply_Check_Compatibility(betav,y,alphav,A,x,doalpha,dobeta);
const int NNZPerRow = A.nnz()/A.numRows();
#ifndef KOKKOS_FAST_COMPILE
if(x.dimension_1()==1) {
typedef View<typename DomainVectorType::const_value_type*,typename DomainVector::array_layout ,typename DomainVectorType::execution_space> DomainVector1D;
typedef View<typename RangeVectorType::value_type*,typename RangeVector::array_layout ,typename RangeVectorType::execution_space,typename RangeVector::memory_traits> RangeVector1D;
RangeVector1D y_sub = RangeVector1D(y.ptr_on_device(),y.dimension_0());
DomainVector1D x_sub = DomainVector1D(x.ptr_on_device(),x.dimension_0());
return MV_MultiplySingle<RangeVector1D,TCrsMatrix,DomainVector1D,CoeffVector1,CoeffVector2,doalpha,dobeta>
(betav,y_sub,alphav,A,x_sub);
} else {
//Currently for multiple right hand sides its not worth it to use more than 8 threads per row on GPUs
int vector_length = 1;
while( (vector_length*2*3 <= NNZPerRow) && (vector_length<8) ) vector_length*=2;
typedef MV_MultiplyFunctor<RangeVectorType, CrsMatrixType, DomainVectorType,
CoeffVector1Type, CoeffVector2Type, doalpha, dobeta> OpType ;
OpType op(betav,alphav,A,x,y,x.dimension_1(),RowsPerThread<typename RangeVector::execution_space >(NNZPerRow)) ;
const int rows_per_thread = RowsPerThread<typename RangeVector::execution_space >(NNZPerRow);
const int team_size = Kokkos::TeamPolicy< typename RangeVector::execution_space >::team_size_recommended(op,vector_length);
const int rows_per_team = rows_per_thread * team_size;
const int nteams = (A.numRows()+rows_per_team-1)/rows_per_team;
Kokkos::parallel_for( Kokkos::TeamPolicy< typename RangeVector::execution_space >
( nteams, team_size, vector_length ) , op );
}
#else // NOT KOKKOS_FAST_COMPILE
//Currently for multiple right hand sides its not worth it to use more than 8 threads per row on GPUs
int vector_length = 1;
while( (vector_length*2*3 <= NNZPerRow) && (vector_length<8) ) vector_length*=2;
typedef MV_MultiplyFunctor<RangeVectorType, CrsMatrixType, DomainVectorType,
CoeffVector1Type, CoeffVector2Type, 2, 2> OpType ;
int numVecs = x.dimension_1();
CoeffVector1 beta = betav;
CoeffVector2 alpha = alphav;
if (doalpha != 2) {
alpha = CoeffVector2("CrsMatrix::auto_a", numVecs);
typename CoeffVector2::HostMirror h_a = Kokkos::create_mirror_view(alpha);
typename CoeffVector2::value_type s_a = (typename CoeffVector2::value_type) doalpha;
for (int i = 0; i < numVecs; ++i)
h_a(i) = s_a;
Kokkos::deep_copy(alpha, h_a);
}
if (dobeta != 2) {
beta = CoeffVector1("CrsMatrix::auto_b", numVecs);
typename CoeffVector1::HostMirror h_b = Kokkos::create_mirror_view(beta);
typename CoeffVector1::value_type s_b = (typename CoeffVector1::value_type) dobeta;
for(int i = 0; i < numVecs; i++)
h_b(i) = s_b;
Kokkos::deep_copy(beta, h_b);
}
const typename CrsMatrixType::ordinal_type nrow = A.numRows();
OpType op(betav,alphav,A,x,y,x.dimension_1(),RowsPerThread<typename RangeVector::execution_space >(NNZPerRow)) ;
const int rows_per_thread = RowsPerThread<typename RangeVector::execution_space >(NNZPerRow);
const int team_size = Kokkos::TeamPolicy< typename RangeVector::execution_space >::team_size_recommended(op,vector_length);
const int rows_per_team = rows_per_thread * team_size;
const int nteams = (A.numRows()+rows_per_team-1)/rows_per_team;
Kokkos::parallel_for( Kokkos::TeamPolicy< typename RangeVector::execution_space >
( nteams , team_size , vector_length ) , op );
#endif // KOKKOS_FAST_COMPILE
}
}
template<class RangeVector,
class TCrsMatrix,
class DomainVector,
class CoeffVector1,
class CoeffVector2,
int doalpha,
int dobeta>
void
MV_Multiply (typename Kokkos::Impl::enable_if<DomainVector::Rank == 1, const CoeffVector1>::type& betav,
const RangeVector &y,
const CoeffVector2 &alphav,
const TCrsMatrix& A,
const DomainVector& x) {
return MV_MultiplySingle<RangeVector,TCrsMatrix,DomainVector,CoeffVector1,CoeffVector2,doalpha,dobeta>
(betav,y,alphav,A,x);
}
template<class RangeVector, class CrsMatrix, class DomainVector, class CoeffVector1, class CoeffVector2>
void
MV_Multiply (const CoeffVector1& betav,
const RangeVector& y,
const CoeffVector2& alphav,
const CrsMatrix& A,
const DomainVector& x,
int beta,
int alpha)
{
if (beta == 0) {
if(alpha == 0)
MV_Multiply<RangeVector, CrsMatrix, DomainVector, CoeffVector1, CoeffVector2, 0, 0>(betav, y, alphav, A , x);
else if(alpha == 1)
MV_Multiply<RangeVector, CrsMatrix, DomainVector, CoeffVector1, CoeffVector2, 1, 0>(betav, y, alphav, A , x);
else if(alpha == -1)
MV_Multiply < RangeVector, CrsMatrix, DomainVector, CoeffVector1, CoeffVector2, -1, 0 > (betav, y, alphav, A , x);
else
MV_Multiply<RangeVector, CrsMatrix, DomainVector, CoeffVector1, CoeffVector2, 2, 0>(betav, y, alphav, A , x);
} else if(beta == 1) {
if(alpha == 0)
return;
else if(alpha == 1)
MV_Multiply<RangeVector, CrsMatrix, DomainVector, CoeffVector1, CoeffVector2, 1, 1>(betav, y, alphav, A , x);
else if(alpha == -1)
MV_Multiply < RangeVector, CrsMatrix, DomainVector, CoeffVector1, CoeffVector2, -1, 1 > (betav, y, alphav, A , x);
else
MV_Multiply<RangeVector, CrsMatrix, DomainVector, CoeffVector1, CoeffVector2, 2, 1>(betav, y, alphav, A , x);
} else if(beta == -1) {
if(alpha == 0)
MV_Multiply<RangeVector, CrsMatrix, DomainVector, CoeffVector1, CoeffVector2, 0, -1>(betav, y, alphav, A , x);
else if(alpha == 1)
MV_Multiply < RangeVector, CrsMatrix, DomainVector, CoeffVector1, CoeffVector2, 1, -1 > (betav, y, alphav, A , x);
else if(alpha == -1)
MV_Multiply < RangeVector, CrsMatrix, DomainVector, CoeffVector1, CoeffVector2, -1, -1 > (betav, y, alphav, A , x);
else
MV_Multiply < RangeVector, CrsMatrix, DomainVector, CoeffVector1, CoeffVector2, 2, -1 > (betav, y, alphav, A , x);
} else {
if(alpha == 0)
MV_Multiply<RangeVector, CrsMatrix, DomainVector, CoeffVector1, CoeffVector2, 0, 2>(betav, y, alphav, A , x);
else if(alpha == 1)
MV_Multiply<RangeVector, CrsMatrix, DomainVector, CoeffVector1, CoeffVector2, 1, 2>(betav, y, alphav, A , x);
else if(alpha == -1)
MV_Multiply < RangeVector, CrsMatrix, DomainVector, CoeffVector1, CoeffVector2, -1, 2 > (betav, y, alphav, A , x);
else
MV_Multiply<RangeVector, CrsMatrix, DomainVector, CoeffVector1, CoeffVector2, 2, 2>(betav, y, alphav, A , x);
}
}
template <class RangeVector, class CrsMatrix, class DomainVector,
class Value1, class Layout1, class Device1, class MemoryManagement1,
class Value2, class Layout2, class Device2, class MemoryManagement2>
void
MV_Multiply (const Kokkos::View<Value1, Layout1, Device1, MemoryManagement1>& betav,
const RangeVector& y,
const Kokkos::View<Value2, Layout2, Device2, MemoryManagement2>& alphav,
const CrsMatrix& A,
const DomainVector& x)
{
return MV_Multiply (betav, y, alphav, A, x, 2, 2);
}
template <class RangeVector, class CrsMatrix, class DomainVector,
class Value1, class Layout1, class Device1, class MemoryManagement1>
void
MV_Multiply (const RangeVector& y,
const Kokkos::View<Value1, Layout1, Device1, MemoryManagement1>& alphav,
const CrsMatrix& A,
const DomainVector& x)
{
return MV_Multiply (alphav, y, alphav, A, x, 0, 2);
}
template<class RangeVector, class CrsMatrix, class DomainVector>
void
MV_Multiply (const RangeVector& y,
const CrsMatrix& A,
const DomainVector& x)
{
// FIXME (mfh 21 Jun 2013) The way this code is supposed to work, is
// that it tests at run time for each TPL in turn. Shouldn't it
// rather dispatch on the Device type? But I suppose the "try"
// functions do that.
//
// We want to condense this a bit: "Try TPLs" function that tests
// all the suitable TPLs at run time. This would be a run-time test
// that compares the Scalar and Device types to those accepted by
// the TPL(s).
#ifdef KOKKOS_USE_CUSPARSE
if (CuSparse::MV_Multiply_Try_CuSparse (0.0, y, 1.0, A, x)) {
return;
}
#endif // KOKKOS_USE_CUSPARSE
#ifdef KOKKOS_USE_MKL
if (MV_Multiply_Try_MKL (0.0, y, 1.0, A, x)) {
return;
}
#endif // KOKKOS_USE_MKL
typedef Kokkos::View<typename DomainVector::value_type*, typename DomainVector::execution_space> aVector;
aVector a;
return MV_Multiply (a, y, a, A, x, 0, 1);
}
template<class RangeVector, class CrsMatrix, class DomainVector>
void
MV_Multiply (const RangeVector& y,
typename DomainVector::const_value_type s_a,
const CrsMatrix& A,
const DomainVector& x)
{
#ifdef KOKKOS_USE_CUSPARSE
if (CuSparse::MV_Multiply_Try_CuSparse (0.0, y, s_a, A, x)) {
return;
}
#endif // KOKKOS_USE_CUSPARSE
#ifdef KOKKOS_USE_MKL
if (MV_Multiply_Try_MKL (0.0, y, s_a, A, x)) {
return;
}
#endif // KOKKOS_USE_MKL
typedef Kokkos::View<typename RangeVector::value_type*, typename RangeVector::execution_space> aVector;
aVector a;
const int numVecs = x.dimension_1();
//if ((s_a < 1) && (s_a != 0)) {
if (s_a == -1.0) {
return MV_Multiply (a, y, a, A, x, 0, -1);
} else if (s_a == 1) {
return MV_Multiply (a, y, a, A, x, 0, 1);
}
if (s_a != 0) {
a = aVector("a", numVecs);
typename aVector::HostMirror h_a = Kokkos::create_mirror_view (a);
for (int i = 0; i < numVecs; ++i) {
h_a(i) = s_a;
}
Kokkos::deep_copy(a, h_a);
return MV_Multiply (a, y, a, A, x, 0, 2);
}
}
template<class RangeVector, class CrsMatrix, class DomainVector>
void
MV_Multiply (typename RangeVector::const_value_type s_b,
const RangeVector& y,
typename DomainVector::const_value_type s_a,
const CrsMatrix& A,
const DomainVector& x)
{
#ifdef KOKKOS_USE_CUSPARSE
if (CuSparse::MV_Multiply_Try_CuSparse (s_b, y, s_a, A, x)) {
return;
}
#endif // KOKKOSE_USE_CUSPARSE
#ifdef KOKKOS_USE_MKL
if (MV_Multiply_Try_MKL (s_b, y, s_a, A, x)) {
return;
}
#endif // KOKKOS_USE_MKL
typedef Kokkos::View<typename RangeVector::value_type*, typename RangeVector::execution_space> aVector;
aVector a;
aVector b;
int numVecs = x.dimension_1();
// [HCE 2013/12/09] Following 'if' appears to be a mistake and has been commented out
// if(numVecs==1)
if (s_b == 0) {
if (s_a == 0)
return MV_Multiply (a, y, a, A, x, 0, 0);
else if (s_a == 1)
return MV_Multiply (a, y, a, A, x, 0, 1);
else if (s_a == static_cast<typename DomainVector::const_value_type> (-1))
return MV_Multiply (a, y, a, A, x, 0, -1);
else {
a = aVector("a", numVecs);
typename aVector::HostMirror h_a = Kokkos::create_mirror_view(a);
for (int i = 0; i < numVecs; ++i) {
h_a(i) = s_a;
}
Kokkos::deep_copy (a, h_a);
return MV_Multiply (a, y, a, A, x, 0, 2);
}
} else if (s_b == 1) {
if (s_a == 0)
return MV_Multiply (a, y, a, A, x, 1, 0);
else if (s_a == 1)
return MV_Multiply (a, y, a, A, x, 1, 1);
else if (s_a == static_cast<typename DomainVector::const_value_type> (-1))
return MV_Multiply (a, y, a, A, x, 1, -1);
else {
a = aVector("a", numVecs);
typename aVector::HostMirror h_a = Kokkos::create_mirror_view(a);
for (int i = 0; i < numVecs; ++i) {
h_a(i) = s_a;
}
Kokkos::deep_copy (a, h_a);
return MV_Multiply (a, y, a, A, x, 1, 2);
}
} else if (s_b == static_cast<typename RangeVector::const_value_type> (-1)) {
if (s_a == 0)
return MV_Multiply (a, y, a, A, x, -1, 0);
else if (s_a == 1)
return MV_Multiply (a, y, a, A, x, -1, 1);
else if (s_a == static_cast<typename DomainVector::const_value_type> (-1))
return MV_Multiply (a, y, a, A, x, -1, -1);
else {
a = aVector("a", numVecs);
typename aVector::HostMirror h_a = Kokkos::create_mirror_view(a);
for (int i = 0; i < numVecs; ++i) {
h_a(i) = s_a;
}
Kokkos::deep_copy (a, h_a);
return MV_Multiply (a, y, a, A, x, -1, 2);
}
} else {
b = aVector("b", numVecs);
typename aVector::HostMirror h_b = Kokkos::create_mirror_view(b);
for (int i = 0; i < numVecs; ++i) {
h_b(i) = s_b;
}
Kokkos::deep_copy(b, h_b);
if (s_a == 0)
return MV_Multiply (b, y, a, A, x, 2, 0);
else if (s_a == 1)
return MV_Multiply (b, y, a, A, x, 2, 1);
else if (s_a == static_cast<typename DomainVector::const_value_type> (-1))
return MV_Multiply (b, y, a, A, x, 2, -1);
else {
a = aVector("a", numVecs);
typename aVector::HostMirror h_a = Kokkos::create_mirror_view(a);
for (int i = 0; i < numVecs; ++i) {
h_a(i) = s_a;
}
Kokkos::deep_copy (a, h_a);
return MV_Multiply (b, y, a, A, x, 2, 2);
}
}
}
namespace KokkosCrsMatrix {
/// \brief Copy the CrsMatrix B into the CrsMatrix A.
/// \tparam CrsMatrixDst CrsMatrix specialization of the destination
/// (Dst) matrix A.
/// \tparam CrsMatrixSrc CrsMatrix specialization of the source
/// (Src) matrix B.
///
/// The two CrsMatrix specializations CrsMatrixDst and CrsMatrixSrc
/// need not be the same. However, it must be possible to deep_copy
/// their column indices and their values.
///
/// The target matrix must already be allocated, and must have the
/// same number of rows and number of entries as the source matrix.
/// It need not have the same row map as the source matrix.
template <class CrsMatrixDst, class CrsMatrixSrc>
void deep_copy (CrsMatrixDst A, CrsMatrixSrc B) {
Kokkos::deep_copy(A.graph.entries, B.graph.entries);
// FIXME (mfh 09 Aug 2013) This _should_ copy the row map. We
// couldn't do it before because the row map was const, forbidding
// deep_copy.
//
//Kokkos::deep_copy(A.graph.row_map,B.graph.row_map);
Kokkos::deep_copy(A.values, B.values);
// FIXME (mfh 09 Aug 2013) Be sure to copy numRows, numCols, and
// nnz as well.
// (CRT 25 Sep 2013) don't copy rather check that they match.
// Deep_copy in Kokkos is intended for copy between compatible objects.
}
} // namespace KokkosCrsMatrix
*/
} // namespace Kokkos
#endif /* KOKKOS_CRSMATRIX_H_ */
|