This file is indexed.

/usr/include/trilinos/TbbTsqr.hpp is in libtrilinos-tpetra-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
//@HEADER
// ************************************************************************
//
//          Kokkos: Node API and Parallel Node Kernels
//              Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER

/// \file TbbTsqr.hpp
/// \brief Intranode TSQR, parallelized with Intel TBB.
///
#ifndef __TSQR_TbbTsqr_hpp
#define __TSQR_TbbTsqr_hpp

#include <TbbTsqr_TbbParallelTsqr.hpp>
#include <Tsqr_TimeStats.hpp>
#include <Teuchos_ParameterList.hpp>
#include <Teuchos_ParameterListExceptions.hpp>
#include <Teuchos_Time.hpp>
// #include <TbbRecursiveTsqr.hpp>

#include <stdexcept>
#include <string>
#include <utility> // std::pair
#include <vector>


namespace TSQR {
  namespace TBB {

    /// \class TbbTsqr
    /// \brief Intranode TSQR, parallelized with Intel TBB
    ///
    /// TSQR factorization for a dense, tall and skinny matrix stored
    /// on a single node.  Parallelized using Intel's Threading
    /// Building Blocks.
    ///
    /// \note TSQR only needs to know about the local ordinal type
    ///   (LocalOrdinal), not about the global ordinal type.
    ///   TimerType may be any class with the same interface as
    ///   TrivialTimer; it times the divide-and-conquer base cases
    ///   (the operations on each CPU core within the thread-parallel
    ///   implementation).
    template< class LocalOrdinal, class Scalar, class TimerType = Teuchos::Time >
    class TbbTsqr : public Teuchos::Describable {
    private:
      /// \brief Implementation of TBB TSQR.
      ///
      /// If you don't have TBB available, you can test this class by
      /// substituting in a TbbRecursiveTsqr<LocalOrdinal, Scalar>
      /// object.  That is a nonparallel implementation that emulates
      /// the control flow of TbbParallelTsqr.  If you do this, you
      /// should also change the FactorOutput public typedef.
      ///
      /// \note This is NOT a use of the pImpl idiom, because the
      ///   point of the pImpl idiom is to avoid including the
      ///   implementation details of the header file of the
      ///   implementation class.  Here, the implementation class is
      ///   templated, so we have to include the implementation class'
      ///   implementation details.
      TbbParallelTsqr<LocalOrdinal, Scalar, TimerType> impl_;

      // Collected running statistcs on various computations
      mutable TimeStats factorStats_;
      mutable TimeStats applyStats_;
      mutable TimeStats explicitQStats_;
      mutable TimeStats cacheBlockStats_;
      mutable TimeStats unCacheBlockStats_;

      // Timers for various computations
      mutable TimerType factorTimer_;
      mutable TimerType applyTimer_;
      mutable TimerType explicitQTimer_;
      mutable TimerType cacheBlockTimer_;
      mutable TimerType unCacheBlockTimer_;

    public:
      typedef Scalar scalar_type;
      typedef typename Teuchos::ScalarTraits<Scalar>::magnitudeType magnitude_type;
      typedef LocalOrdinal ordinal_type;

      /// \typedef FactorOutput
      /// \brief Type of partial output of TBB TSQR.
      ///
      /// If you don't have TBB available, you can test this class by
      /// substituting in "typename TbbRecursiveTsqr<LocalOrdinal,
      /// Scalar>::FactorOutput" for the typedef's definition.  If you
      /// do this, you should also change the type of \c impl_ above.
      typedef typename TbbParallelTsqr<LocalOrdinal, Scalar, TimerType>::FactorOutput FactorOutput;

      /// \brief Constructor.
      ///
      /// \param numCores [in] Maximum number of processing cores to use
      ///   when factoring the matrix.  Fewer cores may be used if the
      ///   matrix is not big enough to justify their use.
      ///
      /// \param cacheSizeHint [in] Cache block size hint (in bytes)
      ///   to use in the sequential part of TSQR.  If zero or not
      ///   specified, a reasonable default is used.  If each CPU core
      ///   has a private cache, that cache's size (minus a little
      ///   wiggle room) would be the appropriate value for this
      ///   parameter.  Set to zero for the implementation to choose a
      ///   reasonable default.
      TbbTsqr (const size_t numCores,
               const size_t cacheSizeHint = 0) :
        impl_ (numCores, cacheSizeHint),
        factorTimer_ ("TbbTsqr::factor"),
        applyTimer_ ("TbbTsqr::apply"),
        explicitQTimer_ ("TbbTsqr::explicit_Q"),
        cacheBlockTimer_ ("TbbTsqr::cache_block"),
        unCacheBlockTimer_ ("TbbTsqr::un_cache_block")
      {}

      /// \brief Constructor (that takes a parameter list).
      ///
      /// \param plist [in/out] On input: list of TbbTsqr parameters.
      ///   On output: missing parameters are filled in with default
      ///   values.
      ///
      /// For a list of accepted parameters and thei documentation,
      /// see the parameter list returned by \c getValidParameters().
      TbbTsqr (const Teuchos::RCP<Teuchos::ParameterList>& plist) :
        impl_ (plist),
        factorTimer_ ("TbbTsqr::factor"),
        applyTimer_ ("TbbTsqr::apply"),
        explicitQTimer_ ("TbbTsqr::explicit_Q"),
        cacheBlockTimer_ ("TbbTsqr::cache_block"),
        unCacheBlockTimer_ ("TbbTsqr::un_cache_block")
      {}

      /// \brief Constructor (that uses default parameters).
      ///
      /// \param plist [in/out] On input: list of TbbTsqr parameters.
      ///   On output: missing parameters are filled in with default
      ///   values.
      ///
      /// For a list of accepted parameters and thei documentation,
      /// see the parameter list returned by \c getValidParameters().
      TbbTsqr () :
        impl_ (Teuchos::null),
        factorTimer_ ("TbbTsqr::factor"),
        applyTimer_ ("TbbTsqr::apply"),
        explicitQTimer_ ("TbbTsqr::explicit_Q"),
        cacheBlockTimer_ ("TbbTsqr::cache_block"),
        unCacheBlockTimer_ ("TbbTsqr::un_cache_block")
      {}

      Teuchos::RCP<const Teuchos::ParameterList>
      getValidParameters () const
      {
        return impl_.getValidParameters ();
      }

      void
      setParameterList (const Teuchos::RCP<Teuchos::ParameterList>& plist)
      {
        impl_.setParameterList (plist);
      }

      /// \brief Number of tasks that TSQR will use to solve the problem.
      ///
      /// This is the number of subproblems into which to divide the
      /// main problem, in order to solve it in parallel.
      size_t ntasks() const { return impl_.ntasks(); }

      //! Cache size hint (in bytes) used for the factorization.
      size_t cache_size_hint() const { return impl_.cache_size_hint(); }

      /// Whether or not this QR factorization produces an R factor
      /// with all nonnegative diagonal entries.
      static bool QR_produces_R_factor_with_nonnegative_diagonal() {
        typedef TbbParallelTsqr< LocalOrdinal, Scalar, TimerType > impl_type;
        return impl_type::QR_produces_R_factor_with_nonnegative_diagonal();
      }

      //! Whether this object is ready to perform computations.
      bool ready() const {
        return true;
      }

      /// \brief One-line description of this object.
      ///
      /// This implements Teuchos::Describable::description().  For now,
      /// SequentialTsqr uses the default implementation of
      /// Teuchos::Describable::describe().
      std::string description () const {
        using std::endl;

        // SequentialTsqr also implements Describable, so if you
        // decide to implement describe(), you could call
        // SequentialTsqr's describe() and get a nice hierarchy of
        // descriptions.
        std::ostringstream os;
        os << "Intranode Tall Skinny QR (TSQR): "
           << "Intel Threading Building Blocks (TBB) implementation"
           << ", max " << ntasks() << "-way parallelism"
           << ", cache size hint of " << cache_size_hint() << " bytes.";
        return os.str();
      }

      void
      cache_block (const LocalOrdinal nrows,
                   const LocalOrdinal ncols,
                   Scalar A_out[],
                   const Scalar A_in[],
                   const LocalOrdinal lda_in) const
      {
        cacheBlockTimer_.start(true);
        impl_.cache_block (nrows, ncols, A_out, A_in, lda_in);
        cacheBlockStats_.update (cacheBlockTimer_.stop());
      }

      void
      un_cache_block (const LocalOrdinal nrows,
                      const LocalOrdinal ncols,
                      Scalar A_out[],
                      const LocalOrdinal lda_out,
                      const Scalar A_in[]) const
      {
        unCacheBlockTimer_.start(true);
        impl_.un_cache_block (nrows, ncols, A_out, lda_out, A_in);
        unCacheBlockStats_.update (unCacheBlockTimer_.stop());
      }

      void
      fill_with_zeros (const LocalOrdinal nrows,
                       const LocalOrdinal ncols,
                       Scalar C[],
                       const LocalOrdinal ldc,
                       const bool contiguous_cache_blocks) const
      {
        impl_.fill_with_zeros (nrows, ncols, C, ldc, contiguous_cache_blocks);
      }

      template< class MatrixViewType >
      MatrixViewType
      top_block (const MatrixViewType& C,
                 const bool contiguous_cache_blocks) const
      {
        return impl_.top_block (C, contiguous_cache_blocks);
      }

      /// \brief Compute QR factorization of the dense matrix A
      ///
      /// Compute the QR factorization of the dense matrix A.
      ///
      /// \param nrows [in] Number of rows of A.
      ///   Precondition: nrows >= ncols.
      ///
      /// \param ncols [in] Number of columns of A.
      ///   Precondition: nrows >= ncols.
      ///
      /// \param A [in,out] On input, the matrix to factor, stored as a
      ///   general dense matrix in column-major order.  On output,
      ///   overwritten with an implicit representation of the Q factor.
      ///
      /// \param lda [in] Leading dimension of A.
      ///   Precondition: lda >= nrows.
      ///
      /// \param R [out] The final R factor of the QR factorization of
      ///   the matrix A.  An ncols by ncols upper triangular matrix
      ///   stored in column-major order, with leading dimension ldr.
      ///
      /// \param ldr [in] Leading dimension of the matrix R.
      ///
      /// \param b_contiguous_cache_blocks [in] Whether cache blocks are
      ///   stored contiguously in the input matrix A and the output
      ///   matrix Q (of explicit_Q()).  If not and you want them to be,
      ///   you should use the cache_block() method to copy them into
      ///   that format.  You may use the un_cache_block() method to
      ///   copy them out of that format into the usual column-oriented
      ///   format.
      ///
      /// \return FactorOutput struct, which together with the data in A
      ///   form an implicit representation of the Q factor.  They
      ///   should be passed into the apply() and explicit_Q() functions
      ///   as the "factor_output" parameter.
      FactorOutput
      factor (const LocalOrdinal nrows,
              const LocalOrdinal ncols,
              Scalar A[],
              const LocalOrdinal lda,
              Scalar R[],
              const LocalOrdinal ldr,
              const bool contiguous_cache_blocks) const
      {
        factorTimer_.start(true);
        return impl_.factor (nrows, ncols, A, lda, R, ldr, contiguous_cache_blocks);
        factorStats_.update (factorTimer_.stop());
      }

      /// \brief Apply Q factor to the global dense matrix C
      ///
      /// Apply the Q factor (computed by factor() and represented
      /// implicitly) to the dense matrix C.
      ///
      /// \param apply_type [in] Whether to compute Q*C, Q^T * C, or
      ///   Q^H * C.
      ///
      /// \param nrows [in] Number of rows of the matrix C and the
      ///   matrix Q.  Precondition: nrows >= ncols_Q, ncols_C.
      ///
      /// \param ncols_Q [in] Number of columns of Q
      ///
      /// \param Q [in] Same as the "A" output of factor()
      ///
      /// \param ldq [in] Same as the "lda" input of factor()
      ///
      /// \param factor_output [in] Return value of factor()
      ///
      /// \param ncols_C [in] Number of columns in C.
      ///   Precondition: nrows_local >= ncols_C.
      ///
      /// \param C [in,out] On input, the matrix C, stored as a general
      ///   dense matrix in column-major order.  On output, overwritten
      ///   with op(Q)*C, where op(Q) = Q or Q^T.
      ///
      /// \param ldc [in] Leading dimension of C.
      ///   Precondition: ldc_local >= nrows_local.
      ///   Not applicable if C is cache-blocked in place.
      ///
      /// \param contiguous_cache_blocks [in] Whether or not cache
      ///   blocks of Q and C are stored contiguously (default:
      ///   false).
      void
      apply (const ApplyType& apply_type,
             const LocalOrdinal nrows,
             const LocalOrdinal ncols_Q,
             const Scalar Q[],
             const LocalOrdinal ldq,
             const FactorOutput& factor_output,
             const LocalOrdinal ncols_C,
             Scalar C[],
             const LocalOrdinal ldc,
             const bool contiguous_cache_blocks) const
      {
        applyTimer_.start(true);
        impl_.apply (apply_type, nrows, ncols_Q, Q, ldq, factor_output,
                     ncols_C, C, ldc, contiguous_cache_blocks);
        applyStats_.update (applyTimer_.stop());
      }

      /// \brief Compute the explicit Q factor from factor()
      ///
      /// Compute the explicit version of the Q factor computed by
      /// factor() and represented implicitly (via Q_in and
      /// factor_output).
      ///
      /// \param nrows [in] Number of rows of the matrix Q_in.  Also,
      ///   the number of rows of the output matrix Q_out.
      ///   Precondition: nrows >= ncols_Q_in.
      ///
      /// \param ncols_Q_in [in] Number of columns in the original matrix
      ///   A, whose explicit Q factor we are computing.
      ///   Precondition: nrows >= ncols_Q_in.
      ///
      /// \param Q_local_in [in] Same as A output of factor().
      ///
      /// \param ldq_local_in [in] Same as lda input of factor()
      ///
      /// \param ncols_Q_out [in] Number of columns of the explicit Q
      ///   factor to compute.
      ///
      /// \param Q_out [out] The explicit representation of the Q factor.
      ///
      /// \param ldq_out [in] Leading dimension of Q_out.
      ///
      /// \param factor_output [in] Return value of factor().
      void
      explicit_Q (const LocalOrdinal nrows,
                  const LocalOrdinal ncols_Q_in,
                  const Scalar Q_in[],
                  const LocalOrdinal ldq_in,
                  const FactorOutput& factor_output,
                  const LocalOrdinal ncols_Q_out,
                  Scalar Q_out[],
                  const LocalOrdinal ldq_out,
                  const bool contiguous_cache_blocks) const
      {
        explicitQTimer_.start(true);
        impl_.explicit_Q (nrows, ncols_Q_in, Q_in, ldq_in, factor_output,
                          ncols_Q_out, Q_out, ldq_out, contiguous_cache_blocks);
        explicitQStats_.update (explicitQTimer_.stop());
      }

      /// \brief Compute Q*B
      ///
      /// Compute matrix-matrix product Q*B, where Q is nrows by ncols
      /// and B is ncols by ncols.  Respect cache blocks of Q.
      void
      Q_times_B (const LocalOrdinal nrows,
                 const LocalOrdinal ncols,
                 Scalar Q[],
                 const LocalOrdinal ldq,
                 const Scalar B[],
                 const LocalOrdinal ldb,
                 const bool contiguous_cache_blocks) const
      {
        impl_.Q_times_B (nrows, ncols, Q, ldq, B, ldb, contiguous_cache_blocks);
      }

      /// Compute SVD \f$R = U \Sigma V^*\f$, not in place.  Use the
      /// resulting singular values to compute the numerical rank of R,
      /// with respect to the relative tolerance tol.  If R is full
      /// rank, return without modifying R.  If R is not full rank,
      /// overwrite R with \f$\Sigma \cdot V^*\f$.
      ///
      /// \return Numerical rank of R: 0 <= rank <= ncols.
      LocalOrdinal
      reveal_R_rank (const LocalOrdinal ncols,
                     Scalar R[],
                     const LocalOrdinal ldr,
                     Scalar U[],
                     const LocalOrdinal ldu,
                     const magnitude_type tol) const
      {
        return impl_.reveal_R_rank (ncols, R, ldr, U, ldu, tol);
      }

      /// \brief Rank-revealing decomposition
      ///
      /// Using the R factor from factor() and the explicit Q factor
      /// from explicit_Q(), compute the SVD of R (\f$R = U \Sigma
      /// V^*\f$).  R.  If R is full rank (with respect to the given
      /// relative tolerance tol), don't change Q or R.  Otherwise,
      /// compute \f$Q := Q \cdot U\f$ and \f$R := \Sigma V^*\f$ in
      /// place (the latter may be no longer upper triangular).
      ///
      /// \return Rank \f$r\f$ of R: \f$ 0 \leq r \leq ncols\f$.
      ///
      LocalOrdinal
      reveal_rank (const LocalOrdinal nrows,
                   const LocalOrdinal ncols,
                   Scalar Q[],
                   const LocalOrdinal ldq,
                   Scalar R[],
                   const LocalOrdinal ldr,
                   const magnitude_type tol,
                   const bool contiguous_cache_blocks) const
      {
        return impl_.reveal_rank (nrows, ncols, Q, ldq, R, ldr, tol,
                                  contiguous_cache_blocks);
      }

      double
      min_seq_factor_timing () const { return impl_.min_seq_factor_timing(); }
      double
      max_seq_factor_timing () const { return impl_.max_seq_factor_timing(); }
      double
      min_seq_apply_timing () const { return impl_.min_seq_apply_timing(); }
      double
      max_seq_apply_timing () const { return impl_.max_seq_apply_timing(); }

      void getStats (std::vector< TimeStats >& stats) {
        const int numStats = 5;
        stats.resize (numStats);
        stats[0] = factorStats_;
        stats[1] = applyStats_;
        stats[2] = explicitQStats_;
        stats[3] = cacheBlockStats_;
        stats[4] = unCacheBlockStats_;
      }

      void getStatsLabels (std::vector< std::string >& labels) {
        const int numStats = 5;
        labels.resize (numStats);
        labels[0] = factorTimer_.name();
        labels[1] = applyTimer_.name();
        labels[2] = explicitQTimer_.name();
        labels[3] = cacheBlockTimer_.name();
        labels[4] = unCacheBlockTimer_.name();
      }
    }; // class TbbTsqr
  } // namespace TBB
} // namespace TSQR

#endif // __TSQR_TbbTsqr_hpp