This file is indexed.

/usr/include/trilinos/TbbTsqr_TbbMgs.hpp is in libtrilinos-tpetra-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
//@HEADER
// ************************************************************************
//
//          Kokkos: Node API and Parallel Node Kernels
//              Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER

#ifndef __TSQR_TBB_TbbMgs_hpp
#define __TSQR_TBB_TbbMgs_hpp

#include <algorithm>
#include <cassert>
#include <cmath>
#include <numeric>
#include <utility> // std::pair

#include <Tsqr_MessengerBase.hpp>
#include <Teuchos_ScalarTraits.hpp>
#include <Tsqr_Util.hpp>

#include <Teuchos_RCP.hpp>

#include <tbb/blocked_range.h>
#include <tbb/parallel_for.h>
#include <tbb/parallel_reduce.h>
#include <tbb/partitioner.h>

// #define TBB_MGS_DEBUG 1
#ifdef TBB_MGS_DEBUG
#  include <iostream>
using std::cerr;
using std::endl;
#endif // TBB_MGS_DEBUG

////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////

namespace TSQR {
  namespace TBB {

    // Forward declaration
    template< class LocalOrdinal, class Scalar >
    class TbbMgs {
    public:
      typedef Scalar scalar_type;
      typedef LocalOrdinal ordinal_type;
      typedef typename Teuchos::ScalarTraits<Scalar>::magnitudeType magnitude_type;
      typedef MessengerBase< Scalar > messenger_type;
      typedef Teuchos::RCP< messenger_type > messenger_ptr;

      TbbMgs (const messenger_ptr& messenger) :
        messenger_ (messenger) {}

      void
      mgs (const LocalOrdinal nrows_local,
           const LocalOrdinal ncols,
           Scalar A_local[],
           const LocalOrdinal lda_local,
           Scalar R[],
           const LocalOrdinal ldr);

    private:
      messenger_ptr messenger_;
    };

////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////

    namespace details {

      /// Compute y'*x (where y' means conjugate transpose in the
      /// complex case, and transpose in the real case).
      template< class LocalOrdinal, class Scalar >
      class TbbDot {
      public:
        void
        operator() (const tbb::blocked_range< LocalOrdinal >& r)
        {
          typedef Teuchos::ScalarTraits<Scalar> STS;

          // The TBB book likes this copying of pointers into the local routine.
          // It probably helps the compiler do optimizations.
          const Scalar* const x = x_;
          const Scalar* const y = y_;
          Scalar local_result = result_;

          for (LocalOrdinal i = r.begin(); i != r.end(); ++i) {
            local_result += x[i] * STS::conjugate (y[i]);
          }
          result_ = local_result;
        }
        /// Result of the reduction.
        Scalar result() const { return result_; }

        /// Ordinary constructor
        TbbDot (const Scalar* const x, const Scalar* const y) :
          result_ (Scalar(0)), x_ (x), y_ (y) {}

        /// "Split constructor" for TBB reductions
        TbbDot (TbbDot& d, tbb::split) :
          result_ (Scalar(0)), x_ (d.x_), y_ (d.y_)
        {}
        /// "Join" operator for TBB reductions; it tells TBB how to
        /// combine two subproblems.
        void join (const TbbDot& d) { result_ += d.result(); }

      private:
        // Default constructor doesn't make sense.
        TbbDot ();

        Scalar result_;
        const Scalar* const x_;
        const Scalar* const y_;
      };

      template< class LocalOrdinal, class Scalar >
      class TbbScale {
      public:
        TbbScale (Scalar* const x, const Scalar& denom) :
          x_ (x), denom_ (denom) {}

        // TBB demands that this be a "const" operator, in order for
        // the parallel_for expression to compile.  Strictly speaking,
        // it is const, because it does not change the address of the
        // pointer x_ (only the values stored there).
        void
        operator() (const tbb::blocked_range< LocalOrdinal >& r) const
        {
          // TBB likes arrays to have their pointers copied like this in
          // the operator() method.  I suspect it has something to do
          // with compiler optimizations.  If C++ supported the
          // "restrict" keyword, here would be a good place to add it...
          Scalar* const x = x_;
          const Scalar denom = denom_;
          for (LocalOrdinal i = r.begin(); i != r.end(); ++i)
            x[i] = x[i] / denom;
        }
      private:
        Scalar* const x_;
        const Scalar denom_;
      };

      template< class LocalOrdinal, class Scalar >
      class TbbAxpy {
      public:
        TbbAxpy (const Scalar& alpha, const Scalar* const x, Scalar* const y) :
          alpha_ (alpha), x_ (x), y_ (y)
        {}
        // TBB demands that this be a "const" operator, in order for
        // the parallel_for expression to compile.  Strictly speaking,
        // it is const, because it does change the address of the
        // pointer y_ (only the values stored there).
        void
        operator() (const tbb::blocked_range< LocalOrdinal >& r) const
        {
          const Scalar alpha = alpha_;
          const Scalar* const x = x_;
          Scalar* const y = y_;
          for (LocalOrdinal i = r.begin(); i != r.end(); ++i)
            y[i] = y[i] + alpha * x[i];
        }
      private:
        const Scalar alpha_;
        const Scalar* const x_;
        Scalar* const y_;
      };

      template< class LocalOrdinal, class Scalar >
      class TbbNormSquared {
      private:
        typedef Teuchos::ScalarTraits<Scalar> STS;

      public:
        typedef typename STS::magnitudeType magnitude_type;

        void
        operator () (const tbb::blocked_range<LocalOrdinal>& r)
        {
          // Doing the right thing in the complex case requires taking
          // an absolute value.  We want to avoid this additional cost
          // in the real case, which is why we check is_complex.
          if (STS::isComplex) {
            // The TBB book favors copying array pointers into the
            // local routine.  It probably helps the compiler do
            // optimizations.
            const Scalar* const x = x_;
            for (LocalOrdinal i = r.begin(); i != r.end(); ++i) {
              // One could implement this by computing
              //
              // result_ += STS::real (x[i] * STS::conjugate(x[i]));
              //
              // However, in terms of type theory, it's much more
              // natural to start with a magnitude_type before
              // doing the multiplication.
              const magnitude_type xi = STS::magnitude (x[i]);
              result_ += xi * xi;
            }
          }
          else {
            const Scalar* const x = x_;
            for (LocalOrdinal i = r.begin(); i != r.end(); ++i) {
              const Scalar xi = x[i];
              result_ += xi * xi;
            }
          }
        }

        magnitude_type result () const { return result_; }

        TbbNormSquared (const Scalar* const x) :
          result_ (magnitude_type(0)), x_ (x) {}

        TbbNormSquared (TbbNormSquared& d, tbb::split) :
          result_ (magnitude_type(0)), x_ (d.x_) {}

        void join (const TbbNormSquared& d) { result_ += d.result (); }

      private:
        // Default constructor doesn't make sense
        TbbNormSquared ();

        magnitude_type result_;
        const Scalar* const x_;
      };


      template< class LocalOrdinal, class Scalar >
      class TbbMgsOps {
      private:
        typedef tbb::blocked_range< LocalOrdinal > range_type;
        typedef Teuchos::ScalarTraits<Scalar> STS;

      public:
        typedef MessengerBase<Scalar> messenger_type;
        typedef Teuchos::RCP<messenger_type> messenger_ptr;
        typedef typename STS::magnitudeType magnitude_type;

        TbbMgsOps (const messenger_ptr& messenger) :
          messenger_ (messenger) {}

        void
        axpy (const LocalOrdinal nrows_local,
              const Scalar alpha,
              const Scalar x_local[],
              Scalar y_local[]) const
        {
          using tbb::auto_partitioner;
          using tbb::parallel_for;

          TbbAxpy< LocalOrdinal, Scalar > axpyer (alpha, x_local, y_local);
          parallel_for (range_type (0, nrows_local), axpyer, auto_partitioner ());
        }

        void
        scale (const LocalOrdinal nrows_local,
               Scalar x_local[],
               const Scalar denom) const
        {
          using tbb::auto_partitioner;
          using tbb::parallel_for;

          // "scaler" is spelled that way (and not as "scalar") on
          // purpose.  Think about it.
          TbbScale<LocalOrdinal, Scalar> scaler (x_local, denom);
          parallel_for (range_type (0, nrows_local), scaler, auto_partitioner ());
        }

        /// $y^* \cdot x$: conjugate transpose when Scalar is complex,
        /// else regular transpose.
        Scalar
        dot (const LocalOrdinal nrows_local,
             const Scalar x_local[],
             const Scalar y_local[])
        {
          Scalar localResult (0);
          if (true)
            {
              // FIXME (mfh 26 Aug 2010) I'm not sure why I did this
              // (i.e., why I wrote "if (true)" here).  Certainly the
              // branch that is currently enabled should produce
              // correct behavior.  I suspect the nonenabled branch
              // will not.
              if (true) {
                TbbDot<LocalOrdinal, Scalar> dotter (x_local, y_local);
                dotter (range_type (0, nrows_local));
                localResult = dotter.result ();
              }
              else {
                using tbb::auto_partitioner;
                using tbb::parallel_reduce;

                TbbDot<LocalOrdinal, Scalar> dotter (x_local, y_local);
                parallel_reduce (range_type (0, nrows_local),
                                 dotter, auto_partitioner ());
                localResult = dotter.result ();
              }
            }
          else {
            for (LocalOrdinal i = 0; i != nrows_local; ++i) {
              localResult += x_local[i] * STS::conjugate (y_local[i]);
            }
          }

          // FIXME (mfh 23 Apr 2010) Does MPI_SUM do the right thing for
          // complex or otherwise general MPI data types?  Perhaps an MPI_Op
          // should belong in the MessengerBase...
          return messenger_->globalSum (localResult);
        }

        magnitude_type
        norm2 (const LocalOrdinal nrows_local,
               const Scalar x_local[])
        {
          using tbb::auto_partitioner;
          using tbb::parallel_reduce;

          TbbNormSquared< LocalOrdinal, Scalar > normer (x_local);
          parallel_reduce (range_type (0, nrows_local), normer,
                           auto_partitioner ());
          const magnitude_type localResult = normer.result();
          // FIXME (mfh 12 Oct 2010) This involves an implicit
          // typecast from Scalar to magnitude_type.
          const magnitude_type globalResult =
            messenger_->globalSum (localResult);
          // Make sure that sqrt's argument is a magnitude_type.  Of
          // course global_result should be nonnegative real, but we
          // want the compiler to pick up the correct sqrt function.
          typedef Teuchos::ScalarTraits<magnitude_type> STM;
          return STM::squareroot (globalResult);
        }

        Scalar
        project (const LocalOrdinal nrows_local,
                 const Scalar q_local[],
                 Scalar v_local[])
        {
          const Scalar coeff = this->dot (nrows_local, v_local, q_local);
          this->axpy (nrows_local, -coeff, q_local, v_local);
          return coeff;
        }

      private:
        messenger_ptr messenger_;
      };
    } // namespace details

////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////

    template<class LocalOrdinal, class Scalar>
    void
    TbbMgs<LocalOrdinal, Scalar>::mgs (const LocalOrdinal nrows_local,
                                       const LocalOrdinal ncols,
                                       Scalar A_local[],
                                       const LocalOrdinal lda_local,
                                       Scalar R[],
                                       const LocalOrdinal ldr)
    {
      details::TbbMgsOps<LocalOrdinal, Scalar> ops (messenger_);

      for (LocalOrdinal j = 0; j < ncols; ++j) {
        Scalar* const v = &A_local[j*lda_local];
        for (LocalOrdinal i = 0; i < j; ++i) {
          const Scalar* const q = &A_local[i*lda_local];
          R[i + j*ldr] = ops.project (nrows_local, q, v);
#ifdef TBB_MGS_DEBUG
          if (my_rank == 0) {
            cerr << "(i,j) = (" << i << "," << j << "): coeff = "
                 << R[i + j*ldr] << endl;
          }
#endif // TBB_MGS_DEBUG
        }
        const magnitude_type denom = ops.norm2 (nrows_local, v);
#ifdef TBB_MGS_DEBUG
        if (my_rank == 0) {
          cerr << "j = " << j << ": denom = " << denom << endl;
        }
#endif // TBB_MGS_DEBUG

        // FIXME (mfh 29 Apr 2010)
        //
        // NOTE IMPLICIT CAST.  This should work for complex numbers.
        // If it doesn't work for your Scalar data type, it means that
        // you need a different data type for the diagonal elements of
        // the R factor, than you need for the other elements.  This
        // is unlikely if we're comparing MGS against a Householder QR
        // factorization; I don't really understand how the latter
        // would work (not that it couldn't be given a sensible
        // interpretation) in the case of Scalars that aren't plain
        // old real or complex numbers.
        R[j + j*ldr] = Scalar (denom);
        ops.scale (nrows_local, v, denom);
      }
    }
  } // namespace TBB
} // namespace TSQR

#endif // __TSQR_TBB_TbbMgs_hpp