/usr/include/trilinos/TbbTsqr_TbbMgs.hpp is in libtrilinos-tpetra-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 | //@HEADER
// ************************************************************************
//
// Kokkos: Node API and Parallel Node Kernels
// Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
#ifndef __TSQR_TBB_TbbMgs_hpp
#define __TSQR_TBB_TbbMgs_hpp
#include <algorithm>
#include <cassert>
#include <cmath>
#include <numeric>
#include <utility> // std::pair
#include <Tsqr_MessengerBase.hpp>
#include <Teuchos_ScalarTraits.hpp>
#include <Tsqr_Util.hpp>
#include <Teuchos_RCP.hpp>
#include <tbb/blocked_range.h>
#include <tbb/parallel_for.h>
#include <tbb/parallel_reduce.h>
#include <tbb/partitioner.h>
// #define TBB_MGS_DEBUG 1
#ifdef TBB_MGS_DEBUG
# include <iostream>
using std::cerr;
using std::endl;
#endif // TBB_MGS_DEBUG
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
namespace TSQR {
namespace TBB {
// Forward declaration
template< class LocalOrdinal, class Scalar >
class TbbMgs {
public:
typedef Scalar scalar_type;
typedef LocalOrdinal ordinal_type;
typedef typename Teuchos::ScalarTraits<Scalar>::magnitudeType magnitude_type;
typedef MessengerBase< Scalar > messenger_type;
typedef Teuchos::RCP< messenger_type > messenger_ptr;
TbbMgs (const messenger_ptr& messenger) :
messenger_ (messenger) {}
void
mgs (const LocalOrdinal nrows_local,
const LocalOrdinal ncols,
Scalar A_local[],
const LocalOrdinal lda_local,
Scalar R[],
const LocalOrdinal ldr);
private:
messenger_ptr messenger_;
};
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
namespace details {
/// Compute y'*x (where y' means conjugate transpose in the
/// complex case, and transpose in the real case).
template< class LocalOrdinal, class Scalar >
class TbbDot {
public:
void
operator() (const tbb::blocked_range< LocalOrdinal >& r)
{
typedef Teuchos::ScalarTraits<Scalar> STS;
// The TBB book likes this copying of pointers into the local routine.
// It probably helps the compiler do optimizations.
const Scalar* const x = x_;
const Scalar* const y = y_;
Scalar local_result = result_;
for (LocalOrdinal i = r.begin(); i != r.end(); ++i) {
local_result += x[i] * STS::conjugate (y[i]);
}
result_ = local_result;
}
/// Result of the reduction.
Scalar result() const { return result_; }
/// Ordinary constructor
TbbDot (const Scalar* const x, const Scalar* const y) :
result_ (Scalar(0)), x_ (x), y_ (y) {}
/// "Split constructor" for TBB reductions
TbbDot (TbbDot& d, tbb::split) :
result_ (Scalar(0)), x_ (d.x_), y_ (d.y_)
{}
/// "Join" operator for TBB reductions; it tells TBB how to
/// combine two subproblems.
void join (const TbbDot& d) { result_ += d.result(); }
private:
// Default constructor doesn't make sense.
TbbDot ();
Scalar result_;
const Scalar* const x_;
const Scalar* const y_;
};
template< class LocalOrdinal, class Scalar >
class TbbScale {
public:
TbbScale (Scalar* const x, const Scalar& denom) :
x_ (x), denom_ (denom) {}
// TBB demands that this be a "const" operator, in order for
// the parallel_for expression to compile. Strictly speaking,
// it is const, because it does not change the address of the
// pointer x_ (only the values stored there).
void
operator() (const tbb::blocked_range< LocalOrdinal >& r) const
{
// TBB likes arrays to have their pointers copied like this in
// the operator() method. I suspect it has something to do
// with compiler optimizations. If C++ supported the
// "restrict" keyword, here would be a good place to add it...
Scalar* const x = x_;
const Scalar denom = denom_;
for (LocalOrdinal i = r.begin(); i != r.end(); ++i)
x[i] = x[i] / denom;
}
private:
Scalar* const x_;
const Scalar denom_;
};
template< class LocalOrdinal, class Scalar >
class TbbAxpy {
public:
TbbAxpy (const Scalar& alpha, const Scalar* const x, Scalar* const y) :
alpha_ (alpha), x_ (x), y_ (y)
{}
// TBB demands that this be a "const" operator, in order for
// the parallel_for expression to compile. Strictly speaking,
// it is const, because it does change the address of the
// pointer y_ (only the values stored there).
void
operator() (const tbb::blocked_range< LocalOrdinal >& r) const
{
const Scalar alpha = alpha_;
const Scalar* const x = x_;
Scalar* const y = y_;
for (LocalOrdinal i = r.begin(); i != r.end(); ++i)
y[i] = y[i] + alpha * x[i];
}
private:
const Scalar alpha_;
const Scalar* const x_;
Scalar* const y_;
};
template< class LocalOrdinal, class Scalar >
class TbbNormSquared {
private:
typedef Teuchos::ScalarTraits<Scalar> STS;
public:
typedef typename STS::magnitudeType magnitude_type;
void
operator () (const tbb::blocked_range<LocalOrdinal>& r)
{
// Doing the right thing in the complex case requires taking
// an absolute value. We want to avoid this additional cost
// in the real case, which is why we check is_complex.
if (STS::isComplex) {
// The TBB book favors copying array pointers into the
// local routine. It probably helps the compiler do
// optimizations.
const Scalar* const x = x_;
for (LocalOrdinal i = r.begin(); i != r.end(); ++i) {
// One could implement this by computing
//
// result_ += STS::real (x[i] * STS::conjugate(x[i]));
//
// However, in terms of type theory, it's much more
// natural to start with a magnitude_type before
// doing the multiplication.
const magnitude_type xi = STS::magnitude (x[i]);
result_ += xi * xi;
}
}
else {
const Scalar* const x = x_;
for (LocalOrdinal i = r.begin(); i != r.end(); ++i) {
const Scalar xi = x[i];
result_ += xi * xi;
}
}
}
magnitude_type result () const { return result_; }
TbbNormSquared (const Scalar* const x) :
result_ (magnitude_type(0)), x_ (x) {}
TbbNormSquared (TbbNormSquared& d, tbb::split) :
result_ (magnitude_type(0)), x_ (d.x_) {}
void join (const TbbNormSquared& d) { result_ += d.result (); }
private:
// Default constructor doesn't make sense
TbbNormSquared ();
magnitude_type result_;
const Scalar* const x_;
};
template< class LocalOrdinal, class Scalar >
class TbbMgsOps {
private:
typedef tbb::blocked_range< LocalOrdinal > range_type;
typedef Teuchos::ScalarTraits<Scalar> STS;
public:
typedef MessengerBase<Scalar> messenger_type;
typedef Teuchos::RCP<messenger_type> messenger_ptr;
typedef typename STS::magnitudeType magnitude_type;
TbbMgsOps (const messenger_ptr& messenger) :
messenger_ (messenger) {}
void
axpy (const LocalOrdinal nrows_local,
const Scalar alpha,
const Scalar x_local[],
Scalar y_local[]) const
{
using tbb::auto_partitioner;
using tbb::parallel_for;
TbbAxpy< LocalOrdinal, Scalar > axpyer (alpha, x_local, y_local);
parallel_for (range_type (0, nrows_local), axpyer, auto_partitioner ());
}
void
scale (const LocalOrdinal nrows_local,
Scalar x_local[],
const Scalar denom) const
{
using tbb::auto_partitioner;
using tbb::parallel_for;
// "scaler" is spelled that way (and not as "scalar") on
// purpose. Think about it.
TbbScale<LocalOrdinal, Scalar> scaler (x_local, denom);
parallel_for (range_type (0, nrows_local), scaler, auto_partitioner ());
}
/// $y^* \cdot x$: conjugate transpose when Scalar is complex,
/// else regular transpose.
Scalar
dot (const LocalOrdinal nrows_local,
const Scalar x_local[],
const Scalar y_local[])
{
Scalar localResult (0);
if (true)
{
// FIXME (mfh 26 Aug 2010) I'm not sure why I did this
// (i.e., why I wrote "if (true)" here). Certainly the
// branch that is currently enabled should produce
// correct behavior. I suspect the nonenabled branch
// will not.
if (true) {
TbbDot<LocalOrdinal, Scalar> dotter (x_local, y_local);
dotter (range_type (0, nrows_local));
localResult = dotter.result ();
}
else {
using tbb::auto_partitioner;
using tbb::parallel_reduce;
TbbDot<LocalOrdinal, Scalar> dotter (x_local, y_local);
parallel_reduce (range_type (0, nrows_local),
dotter, auto_partitioner ());
localResult = dotter.result ();
}
}
else {
for (LocalOrdinal i = 0; i != nrows_local; ++i) {
localResult += x_local[i] * STS::conjugate (y_local[i]);
}
}
// FIXME (mfh 23 Apr 2010) Does MPI_SUM do the right thing for
// complex or otherwise general MPI data types? Perhaps an MPI_Op
// should belong in the MessengerBase...
return messenger_->globalSum (localResult);
}
magnitude_type
norm2 (const LocalOrdinal nrows_local,
const Scalar x_local[])
{
using tbb::auto_partitioner;
using tbb::parallel_reduce;
TbbNormSquared< LocalOrdinal, Scalar > normer (x_local);
parallel_reduce (range_type (0, nrows_local), normer,
auto_partitioner ());
const magnitude_type localResult = normer.result();
// FIXME (mfh 12 Oct 2010) This involves an implicit
// typecast from Scalar to magnitude_type.
const magnitude_type globalResult =
messenger_->globalSum (localResult);
// Make sure that sqrt's argument is a magnitude_type. Of
// course global_result should be nonnegative real, but we
// want the compiler to pick up the correct sqrt function.
typedef Teuchos::ScalarTraits<magnitude_type> STM;
return STM::squareroot (globalResult);
}
Scalar
project (const LocalOrdinal nrows_local,
const Scalar q_local[],
Scalar v_local[])
{
const Scalar coeff = this->dot (nrows_local, v_local, q_local);
this->axpy (nrows_local, -coeff, q_local, v_local);
return coeff;
}
private:
messenger_ptr messenger_;
};
} // namespace details
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
template<class LocalOrdinal, class Scalar>
void
TbbMgs<LocalOrdinal, Scalar>::mgs (const LocalOrdinal nrows_local,
const LocalOrdinal ncols,
Scalar A_local[],
const LocalOrdinal lda_local,
Scalar R[],
const LocalOrdinal ldr)
{
details::TbbMgsOps<LocalOrdinal, Scalar> ops (messenger_);
for (LocalOrdinal j = 0; j < ncols; ++j) {
Scalar* const v = &A_local[j*lda_local];
for (LocalOrdinal i = 0; i < j; ++i) {
const Scalar* const q = &A_local[i*lda_local];
R[i + j*ldr] = ops.project (nrows_local, q, v);
#ifdef TBB_MGS_DEBUG
if (my_rank == 0) {
cerr << "(i,j) = (" << i << "," << j << "): coeff = "
<< R[i + j*ldr] << endl;
}
#endif // TBB_MGS_DEBUG
}
const magnitude_type denom = ops.norm2 (nrows_local, v);
#ifdef TBB_MGS_DEBUG
if (my_rank == 0) {
cerr << "j = " << j << ": denom = " << denom << endl;
}
#endif // TBB_MGS_DEBUG
// FIXME (mfh 29 Apr 2010)
//
// NOTE IMPLICIT CAST. This should work for complex numbers.
// If it doesn't work for your Scalar data type, it means that
// you need a different data type for the diagonal elements of
// the R factor, than you need for the other elements. This
// is unlikely if we're comparing MGS against a Householder QR
// factorization; I don't really understand how the latter
// would work (not that it couldn't be given a sensible
// interpretation) in the case of Scalars that aren't plain
// old real or complex numbers.
R[j + j*ldr] = Scalar (denom);
ops.scale (nrows_local, v, denom);
}
}
} // namespace TBB
} // namespace TSQR
#endif // __TSQR_TBB_TbbMgs_hpp
|