This file is indexed.

/usr/include/trilinos/TpetraExt_MatrixMatrix_decl.hpp is in libtrilinos-tpetra-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
// @HEADER
// ***********************************************************************
//
//          Tpetra: Templated Linear Algebra Services Package
//                 Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef TPETRA_MATRIXMATRIX_DECL_HPP
#define TPETRA_MATRIXMATRIX_DECL_HPP

#include <string>
#include <Teuchos_RCP.hpp>
#include <Teuchos_Array.hpp>
#include "Tpetra_ConfigDefs.hpp"
#include "Tpetra_CrsMatrix.hpp"
#include "Tpetra_Vector.hpp"
#include "TpetraExt_MMHelpers.hpp"


/*! \file TpetraExt_MatrixMatrix_decl.hpp

    The declarations for the class Tpetra::MMMultiMultiply and related non-member constructors.
 */

namespace Tpetra {

namespace MatrixMatrix {

/// \brief Sparse matrix-matrix multiply
///
/// Given CrsMatrix instances A and B, compute the product C = A*B,
/// overwriting an existing CrsMatrix instance C with the result.
///
/// \pre All three matrices A, B, and C must have uniquely owned row
///   Maps.
/// \pre On input, C must have the same row Map as A.
/// \pre A and B must be fill complete.
/// \pre If C has a range Map on input, then A and C must have the
///   same range Maps.
/// \pre If C has a domain Map on input, then B and C must have the
///   same domain Maps.
///
/// For the latter two preconditions, recall that a matrix does not
/// have a domain or range Map unless fillComplete has been called on
/// it at least once.
///
/// \param A [in] fill-complete sparse matrix.
/// \param transposeA [in] Whether to use transpose of matrix A.
/// \param B [in] fill-complete sparse matrix.
/// \param transposeB [in] Whether to use transpose of matrix B.
/// \param C [in/out] On entry to this method, if C is fill complete,
///   then C's graph must have the correct structure, that is, its
///   structure must equal the structure of A*B.  On exit, C will be
///   fill complete, unless the last argument to this function is
///   false.
/// \param call_FillComplete_on_result [in] Optional argument;
///   defaults to true.  If false, C will <i>not</i> be fill complete
///   on output.
template <class Scalar,
          class LocalOrdinal,
          class GlobalOrdinal,
          class Node>
void Multiply(
  const CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& A,
  bool transposeA,
  const CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& B,
  bool transposeB,
  CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& C,
  bool call_FillComplete_on_result=true,
  const std::string & label = std::string());

    /** Given CrsMatrix objects A and B, form the sum B = a*A + b*B
     * Currently not functional.

    @param A Input, must already have had 'FillComplete()' called.
    @param transposeA Input, whether to use transpose of matrix A.
    @param scalarA Input, scalar multiplier for matrix A.
    @param B Result. On entry to this method, it doesn't matter whether
             FillComplete() has already been called on B or not. If it has,
       then B's graph must already contain all nonzero locations that
       will be produced when forming the sum.
    @param scalarB Input, scalar multiplier for matrix B.

     */
template <class Scalar,
          class LocalOrdinal,
          class GlobalOrdinal,
          class Node>
void Add(
  const CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& A,
  bool transposeA,
  Scalar scalarA,
  CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& B,
  Scalar scalarB );


/// \brief Compute the sparse matrix sum <tt>C = scalarA * Op(A) +
///   scalarB * Op(B)</tt>, where Op(X) is either X or its transpose.
///
/// This version of sparse matrix-matrix add returns a new CrsMatrix
/// instance, rather than using an existing instance for the result.
/// The returned matrix is fill complete, with the given domain and
/// range Maps.  It is correct (though less efficient) for A and B to
/// have different row Maps; the returned matrix will have the same
/// row Map as the row Map of B.
///
/// \pre If A and B are both fill complete, then they must have the
///   same domain and range Maps.
///
/// \param scalarA [in] Scalar multiplier for A in the sum.
/// \param transposeA [in] If true, use the transpose of A.
/// \param A [in] The first input matrix.
///
/// \param scalarB [in] Scalar multiplier for B in the sum.
/// \param transposeB [in] If true, use the transpose of B.
/// \param B [in] The second input matrix.
///
/// \param domainMap [in] Domain Map of C (on output).  If null or not
///   provided, this defaults to the row Map of B.
/// \param rangeMap [in] Range Map of C (on output).  If null or not
///   provided, this defaults to the row Map of B.
/// \param params [in/out] Same as the parameters of RowMatrix::add.
///
/// See the documentation of RowMatrix::add for a more detailed
/// discussion of the optional parameters.
template <class Scalar,
          class LocalOrdinal,
          class GlobalOrdinal,
          class Node>
Teuchos::RCP<CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node> >
add (const Scalar& alpha,
     const bool transposeA,
     const CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& A,
     const Scalar& beta,
     const bool transposeB,
     const CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& B,
     const Teuchos::RCP<const Map<LocalOrdinal, GlobalOrdinal, Node> >& domainMap=Teuchos::null,
     const Teuchos::RCP<const Map<LocalOrdinal, GlobalOrdinal, Node> >& rangeMap=Teuchos::null,
     const Teuchos::RCP<Teuchos::ParameterList>& params=Teuchos::null);

/// \brief Compute the sparse matrix sum <tt>C = scalarA * Op(A) +
///   scalarB * Op(B)</tt>, where Op(X) is either X or its transpose.
///
/// \pre Both input matrices A and B must be fill complete.  That is,
///   their fillComplete() method must have been called at least once,
///   without an intervening call to resumeFill().
///
/// \param A [in] The first input matrix.
/// \param transposeA [in] If true, use the transpose of A.
/// \param scalarA [in] Scalar multiplier for A in the sum.
///
/// \param B [in] The second input matrix.
/// \param transposeB [in] If true, use the transpose of B.
/// \param scalarB [in] Scalar multiplier for B in the sum.
///
/// \param C [in/out] On entry, C may be either null or a valid
///   matrix.  If C is null on input, this function will allocate a
///   new CrsMatrix to contain the sum.  If C is not null and is fill
///   complete, then this function assumes that the sparsity pattern
///   of the sum is fixed and compatible with the sparsity pattern of
///   A + B.  If C is not null and is not fill complete, then this
///   function returns without calling fillComplete on C.
///
/// \warning The case where C == null on input does not actually work.
///   In order for it to work, we would need to change the interface
///   of this function (for example, to pass in C as a (pointer or
///   nonconst reference) to a Teuchos::RCP).  Please use add() (which
///   see) if you want matrix-matrix add to return a new instance of
///   CrsMatrix.
template <class Scalar,
          class LocalOrdinal,
          class GlobalOrdinal,
          class Node>
void Add(
  const CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& A,
  bool transposeA,
  Scalar scalarA,
  const CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& B,
  bool transposeB,
  Scalar scalarB,
  RCP<CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node> > C);


  /** Given CrsMatrix objects A, B and C, and Vector Dinv, form the product C = (I-omega * Dinv A)*B
      In a parallel setting, A and B need not have matching distributions,
      but C needs to have the same row-map as A.

    @param omega Input, scalar multiplier for Dinverse A
    @param Dinv Input, Vector representing a diagonal matrix, must match A->getRowMap()
    @param A Input, must already have had 'fillComplete()' called.
    @param B Input, must already have had 'fillComplete()' called.
    @param C Result. On entry to this method, it doesn't matter whether
             fillComplete() has already been called on C or not. If it has,
             then C's graph must already contain all nonzero locations that
             will be produced when forming the product A*B. On exit,
             C.FillComplete() will have been called, unless the last argument
             to this function is specified to be false.
    @param call_fillComplete_on_result Optional argument, defaults to true.
           Power users may specify this argument to be false if they *DON'T*
           want this function to call C.fillComplete. (It is often useful
           to allow this function to call C.fillComplete, in cases where
           one or both of the input matrices are rectangular and it is not
           trivial to know which maps to use for the domain- and range-maps.)
  */
  template <class Scalar,
            class LocalOrdinal,
            class GlobalOrdinal,
            class Node>
  void Jacobi(Scalar omega,
              const Vector<Scalar, LocalOrdinal, GlobalOrdinal, Node> & Dinv,
              const CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& A,
              const CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& B,
              CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& C,
              bool call_FillComplete_on_result=true,
	      const std::string & label = std::string());

} // namespace MatrixMatrix

namespace MMdetails{

template<class Scalar,
         class LocalOrdinal,
         class GlobalOrdinal,
         class Node>
void mult_AT_B_newmatrix(
  const CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& A,
  const CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& B,
  CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& C,
  const std::string & label = std::string());


template<class Scalar,
         class LocalOrdinal,
         class GlobalOrdinal,
         class Node>
void mult_A_B(
  CrsMatrixStruct<Scalar, LocalOrdinal, GlobalOrdinal, Node>& Aview,
  CrsMatrixStruct<Scalar, LocalOrdinal, GlobalOrdinal, Node>& Bview,
  CrsWrapper<Scalar, LocalOrdinal, GlobalOrdinal, Node>& C,
  const std::string & label = std::string());

template<class Scalar,
         class LocalOrdinal,
         class GlobalOrdinal,
         class Node>
void mult_A_B_newmatrix(
  CrsMatrixStruct<Scalar, LocalOrdinal, GlobalOrdinal, Node>& Aview,
  CrsMatrixStruct<Scalar, LocalOrdinal, GlobalOrdinal, Node>& Bview,
  CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& C,
  const std::string & label = std::string());


template<class Scalar,
         class LocalOrdinal,
         class GlobalOrdinal,
         class Node>
void jacobi_A_B_newmatrix(
  Scalar omega,
  const Vector<Scalar, LocalOrdinal, GlobalOrdinal, Node> & Dinv,
  CrsMatrixStruct<Scalar, LocalOrdinal, GlobalOrdinal, Node>& Aview,
  CrsMatrixStruct<Scalar, LocalOrdinal, GlobalOrdinal, Node>& Bview,
  CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& C,
  const std::string & label = std::string());


template<class Scalar,
         class LocalOrdinal,
         class GlobalOrdinal,
         class Node>
void import_and_extract_views(
  const CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& M,
  RCP<const Map<LocalOrdinal, GlobalOrdinal, Node> > targetMap,
  CrsMatrixStruct<Scalar, LocalOrdinal, GlobalOrdinal, Node>& Mview,
  RCP<const Import<LocalOrdinal,GlobalOrdinal, Node> > prototypeImporter = Teuchos::null,
  bool userAssertsThereAreNoRemotes=false,
  const std::string & label = std::string());

template<class Scalar,
         class LocalOrdinal,
         class GlobalOrdinal,
         class Node>
void setMaxNumEntriesPerRow(
  CrsMatrixStruct<Scalar, LocalOrdinal, GlobalOrdinal, Node>& Mview);

}//end namespace MMdetails

} // end of Tpetra namespace

#endif // TPETRA_MATRIXMATRIX_DECL_HPP