/usr/include/trilinos/TpetraExt_MatrixMatrix_decl.hpp is in libtrilinos-tpetra-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 | // @HEADER
// ***********************************************************************
//
// Tpetra: Templated Linear Algebra Services Package
// Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
// @HEADER
#ifndef TPETRA_MATRIXMATRIX_DECL_HPP
#define TPETRA_MATRIXMATRIX_DECL_HPP
#include <string>
#include <Teuchos_RCP.hpp>
#include <Teuchos_Array.hpp>
#include "Tpetra_ConfigDefs.hpp"
#include "Tpetra_CrsMatrix.hpp"
#include "Tpetra_Vector.hpp"
#include "TpetraExt_MMHelpers.hpp"
/*! \file TpetraExt_MatrixMatrix_decl.hpp
The declarations for the class Tpetra::MMMultiMultiply and related non-member constructors.
*/
namespace Tpetra {
namespace MatrixMatrix {
/// \brief Sparse matrix-matrix multiply
///
/// Given CrsMatrix instances A and B, compute the product C = A*B,
/// overwriting an existing CrsMatrix instance C with the result.
///
/// \pre All three matrices A, B, and C must have uniquely owned row
/// Maps.
/// \pre On input, C must have the same row Map as A.
/// \pre A and B must be fill complete.
/// \pre If C has a range Map on input, then A and C must have the
/// same range Maps.
/// \pre If C has a domain Map on input, then B and C must have the
/// same domain Maps.
///
/// For the latter two preconditions, recall that a matrix does not
/// have a domain or range Map unless fillComplete has been called on
/// it at least once.
///
/// \param A [in] fill-complete sparse matrix.
/// \param transposeA [in] Whether to use transpose of matrix A.
/// \param B [in] fill-complete sparse matrix.
/// \param transposeB [in] Whether to use transpose of matrix B.
/// \param C [in/out] On entry to this method, if C is fill complete,
/// then C's graph must have the correct structure, that is, its
/// structure must equal the structure of A*B. On exit, C will be
/// fill complete, unless the last argument to this function is
/// false.
/// \param call_FillComplete_on_result [in] Optional argument;
/// defaults to true. If false, C will <i>not</i> be fill complete
/// on output.
template <class Scalar,
class LocalOrdinal,
class GlobalOrdinal,
class Node>
void Multiply(
const CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& A,
bool transposeA,
const CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& B,
bool transposeB,
CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& C,
bool call_FillComplete_on_result=true,
const std::string & label = std::string());
/** Given CrsMatrix objects A and B, form the sum B = a*A + b*B
* Currently not functional.
@param A Input, must already have had 'FillComplete()' called.
@param transposeA Input, whether to use transpose of matrix A.
@param scalarA Input, scalar multiplier for matrix A.
@param B Result. On entry to this method, it doesn't matter whether
FillComplete() has already been called on B or not. If it has,
then B's graph must already contain all nonzero locations that
will be produced when forming the sum.
@param scalarB Input, scalar multiplier for matrix B.
*/
template <class Scalar,
class LocalOrdinal,
class GlobalOrdinal,
class Node>
void Add(
const CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& A,
bool transposeA,
Scalar scalarA,
CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& B,
Scalar scalarB );
/// \brief Compute the sparse matrix sum <tt>C = scalarA * Op(A) +
/// scalarB * Op(B)</tt>, where Op(X) is either X or its transpose.
///
/// This version of sparse matrix-matrix add returns a new CrsMatrix
/// instance, rather than using an existing instance for the result.
/// The returned matrix is fill complete, with the given domain and
/// range Maps. It is correct (though less efficient) for A and B to
/// have different row Maps; the returned matrix will have the same
/// row Map as the row Map of B.
///
/// \pre If A and B are both fill complete, then they must have the
/// same domain and range Maps.
///
/// \param scalarA [in] Scalar multiplier for A in the sum.
/// \param transposeA [in] If true, use the transpose of A.
/// \param A [in] The first input matrix.
///
/// \param scalarB [in] Scalar multiplier for B in the sum.
/// \param transposeB [in] If true, use the transpose of B.
/// \param B [in] The second input matrix.
///
/// \param domainMap [in] Domain Map of C (on output). If null or not
/// provided, this defaults to the row Map of B.
/// \param rangeMap [in] Range Map of C (on output). If null or not
/// provided, this defaults to the row Map of B.
/// \param params [in/out] Same as the parameters of RowMatrix::add.
///
/// See the documentation of RowMatrix::add for a more detailed
/// discussion of the optional parameters.
template <class Scalar,
class LocalOrdinal,
class GlobalOrdinal,
class Node>
Teuchos::RCP<CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node> >
add (const Scalar& alpha,
const bool transposeA,
const CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& A,
const Scalar& beta,
const bool transposeB,
const CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& B,
const Teuchos::RCP<const Map<LocalOrdinal, GlobalOrdinal, Node> >& domainMap=Teuchos::null,
const Teuchos::RCP<const Map<LocalOrdinal, GlobalOrdinal, Node> >& rangeMap=Teuchos::null,
const Teuchos::RCP<Teuchos::ParameterList>& params=Teuchos::null);
/// \brief Compute the sparse matrix sum <tt>C = scalarA * Op(A) +
/// scalarB * Op(B)</tt>, where Op(X) is either X or its transpose.
///
/// \pre Both input matrices A and B must be fill complete. That is,
/// their fillComplete() method must have been called at least once,
/// without an intervening call to resumeFill().
///
/// \param A [in] The first input matrix.
/// \param transposeA [in] If true, use the transpose of A.
/// \param scalarA [in] Scalar multiplier for A in the sum.
///
/// \param B [in] The second input matrix.
/// \param transposeB [in] If true, use the transpose of B.
/// \param scalarB [in] Scalar multiplier for B in the sum.
///
/// \param C [in/out] On entry, C may be either null or a valid
/// matrix. If C is null on input, this function will allocate a
/// new CrsMatrix to contain the sum. If C is not null and is fill
/// complete, then this function assumes that the sparsity pattern
/// of the sum is fixed and compatible with the sparsity pattern of
/// A + B. If C is not null and is not fill complete, then this
/// function returns without calling fillComplete on C.
///
/// \warning The case where C == null on input does not actually work.
/// In order for it to work, we would need to change the interface
/// of this function (for example, to pass in C as a (pointer or
/// nonconst reference) to a Teuchos::RCP). Please use add() (which
/// see) if you want matrix-matrix add to return a new instance of
/// CrsMatrix.
template <class Scalar,
class LocalOrdinal,
class GlobalOrdinal,
class Node>
void Add(
const CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& A,
bool transposeA,
Scalar scalarA,
const CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& B,
bool transposeB,
Scalar scalarB,
RCP<CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node> > C);
/** Given CrsMatrix objects A, B and C, and Vector Dinv, form the product C = (I-omega * Dinv A)*B
In a parallel setting, A and B need not have matching distributions,
but C needs to have the same row-map as A.
@param omega Input, scalar multiplier for Dinverse A
@param Dinv Input, Vector representing a diagonal matrix, must match A->getRowMap()
@param A Input, must already have had 'fillComplete()' called.
@param B Input, must already have had 'fillComplete()' called.
@param C Result. On entry to this method, it doesn't matter whether
fillComplete() has already been called on C or not. If it has,
then C's graph must already contain all nonzero locations that
will be produced when forming the product A*B. On exit,
C.FillComplete() will have been called, unless the last argument
to this function is specified to be false.
@param call_fillComplete_on_result Optional argument, defaults to true.
Power users may specify this argument to be false if they *DON'T*
want this function to call C.fillComplete. (It is often useful
to allow this function to call C.fillComplete, in cases where
one or both of the input matrices are rectangular and it is not
trivial to know which maps to use for the domain- and range-maps.)
*/
template <class Scalar,
class LocalOrdinal,
class GlobalOrdinal,
class Node>
void Jacobi(Scalar omega,
const Vector<Scalar, LocalOrdinal, GlobalOrdinal, Node> & Dinv,
const CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& A,
const CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& B,
CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& C,
bool call_FillComplete_on_result=true,
const std::string & label = std::string());
} // namespace MatrixMatrix
namespace MMdetails{
template<class Scalar,
class LocalOrdinal,
class GlobalOrdinal,
class Node>
void mult_AT_B_newmatrix(
const CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& A,
const CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& B,
CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& C,
const std::string & label = std::string());
template<class Scalar,
class LocalOrdinal,
class GlobalOrdinal,
class Node>
void mult_A_B(
CrsMatrixStruct<Scalar, LocalOrdinal, GlobalOrdinal, Node>& Aview,
CrsMatrixStruct<Scalar, LocalOrdinal, GlobalOrdinal, Node>& Bview,
CrsWrapper<Scalar, LocalOrdinal, GlobalOrdinal, Node>& C,
const std::string & label = std::string());
template<class Scalar,
class LocalOrdinal,
class GlobalOrdinal,
class Node>
void mult_A_B_newmatrix(
CrsMatrixStruct<Scalar, LocalOrdinal, GlobalOrdinal, Node>& Aview,
CrsMatrixStruct<Scalar, LocalOrdinal, GlobalOrdinal, Node>& Bview,
CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& C,
const std::string & label = std::string());
template<class Scalar,
class LocalOrdinal,
class GlobalOrdinal,
class Node>
void jacobi_A_B_newmatrix(
Scalar omega,
const Vector<Scalar, LocalOrdinal, GlobalOrdinal, Node> & Dinv,
CrsMatrixStruct<Scalar, LocalOrdinal, GlobalOrdinal, Node>& Aview,
CrsMatrixStruct<Scalar, LocalOrdinal, GlobalOrdinal, Node>& Bview,
CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& C,
const std::string & label = std::string());
template<class Scalar,
class LocalOrdinal,
class GlobalOrdinal,
class Node>
void import_and_extract_views(
const CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& M,
RCP<const Map<LocalOrdinal, GlobalOrdinal, Node> > targetMap,
CrsMatrixStruct<Scalar, LocalOrdinal, GlobalOrdinal, Node>& Mview,
RCP<const Import<LocalOrdinal,GlobalOrdinal, Node> > prototypeImporter = Teuchos::null,
bool userAssertsThereAreNoRemotes=false,
const std::string & label = std::string());
template<class Scalar,
class LocalOrdinal,
class GlobalOrdinal,
class Node>
void setMaxNumEntriesPerRow(
CrsMatrixStruct<Scalar, LocalOrdinal, GlobalOrdinal, Node>& Mview);
}//end namespace MMdetails
} // end of Tpetra namespace
#endif // TPETRA_MATRIXMATRIX_DECL_HPP
|