This file is indexed.

/usr/include/trilinos/Tpetra_CrsMatrixMultiplyOp.hpp is in libtrilinos-tpetra-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
// @HEADER
// ***********************************************************************
//
//          Tpetra: Templated Linear Algebra Services Package
//                 Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef TPETRA_CRSMATRIXMULTIPLYOP_HPP
#define TPETRA_CRSMATRIXMULTIPLYOP_HPP

/// \file Tpetra_CrsMatrixMultiplyOp.hpp
///
/// Declaration and definition of Tpetra::CrsMatrixMultiplyOp and its
/// nonmember constructor Tpetra::createCrsMatrixMultiplyOp.

#include <Tpetra_CrsMatrix.hpp>
#include <Tpetra_Util.hpp>
#include <Teuchos_TimeMonitor.hpp>
#ifdef TPETRA_CRSMATRIX_MULTIPLY_DUMP
#  include "Teuchos_VerboseObject.hpp"
#endif

namespace Tpetra {

  /// \brief A class for wrapping a CrsMatrix multiply in a Operator.
  ///
  /// \note Most Tpetra users do not need to use this class.  It will
  ///   be useful to Tpetra users who want to do mixed-precision
  ///   sparse matrix-vector multiply, where the sparse matrix's
  ///   entries have a different precision than that of the input and
  ///   output vectors.  If your sparse matrix and vectors have the
  ///   same type of entries, then you don't need to use this class.
  ///
  /// This class makes a <tt>CrsMatrix<MatScalar, ...></tt> "look
  /// like" an <tt>Operator<Scalar, ...></tt>, where
  /// <tt>MatScalar</tt> and <tt>Scalar</tt> may be different types.
  /// It does so by working around a limitation of C++, namely that
  /// template methods of a class can't be virtual.
  ///
  /// Here is a detailed description of how the language issue relates
  /// to CrsMatrix.  If you call the <tt>apply</tt> method of
  /// CrsMatrix, you will always get the version that takes a
  /// <tt>MultiVector<Scalar, ...></tt> input and produces a
  /// <tt>MultiVector<Scalar, ...></tt> output.  CrsMatrix actually
  /// implements a a templated sparse matrix-vector multiply operation
  /// (its <tt>localMultiply</tt> method).  It is templated on the
  /// scalar types of its input and output multivectors
  /// (<tt>DomainScalar</tt> resp. <tt>RangeScalar</tt>).  However,
  /// Operator can't access this templated mat-vec method.  This is
  /// because Operator::apply is virtual, and therefore cannot have a
  /// template parameter for the <tt>Scalar</tt> type of the
  /// MultiVector input and output.
  ///
  /// Users who want to access the templated sparse mat-vec in
  /// CrsMatrix through the Operator interface may wrap the CrsMatrix
  /// in an instance of this class.  This class implements an Operator
  /// that takes <tt>MultiVector<Scalar, ...></tt> input and output,
  /// but the CrsMatrix may contain any desired type
  /// <tt>MatScalar</tt>.  The type <tt>MatScalar</tt> may differ from
  /// the <tt>Scalar</tt> type of the MultiVector input and output.
  /// That works around the "no virtual template methods" issue for
  /// input and output multivectors of the same type.
  ///
  /// Interestingly enough, CrsMatrix implements its <tt>apply</tt>
  /// method using an instance of this class with <tt>Scalar ==
  /// MatScalar</tt>.  CrsMatrix does not actually contain an
  /// implementation of "nonlocal" (distributed over multiple MPI
  /// processes) mat-vec; its <tt>apply</tt> defers the nonlocal part
  /// to this class' apply() method.  The same is true for the
  /// gaussSeidel() method.
  ///
  /// \tparam Scalar The type of the entries of the input and output
  ///   MultiVector of the apply() method.  Same as the first template
  ///   parameter of Operator.
  ///
  /// \tparam MatScalar The type of the entries of the CrsMatrix; the
  ///   first template parameter of CrsMatrix.
  ///
  /// \tparam LocalOrdinal The type of the local indices of the
  ///   CrsMatrix; the second template parameter of CrsMatrix and
  ///   Operator.
  ///
  /// \tparam GlobalOrdinal The type of the global indices of the
  ///   CrsMatrix; the third template parameter of CrsMatrix and
  ///   Operator.
  ///
  /// \tparam Node The fourth template parameter of CrsMatrix and
  ///   Operator.
  template <class Scalar,
            class MatScalar = Scalar,
            class LocalOrdinal = Details::DefaultTypes::local_ordinal_type,
            class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type,
            class Node = Details::DefaultTypes::node_type>
  class CrsMatrixMultiplyOp :
    public Operator<Scalar, LocalOrdinal, GlobalOrdinal, Node>
  {
  public:
    //! The specialization of CrsMatrix which this class wraps.
    typedef CrsMatrix<MatScalar, LocalOrdinal, GlobalOrdinal, Node> crs_matrix_type;
    //! The specialization of Map which this class uses.
    typedef Map<LocalOrdinal, GlobalOrdinal, Node> map_type;

    //! @name Constructor and destructor
    //@{

    /// \brief Constructor
    ///
    /// \param A [in] The CrsMatrix to wrap as an
    ///   <tt>Operator<Scalar, ...></tt>.
    CrsMatrixMultiplyOp (const Teuchos::RCP<const crs_matrix_type>& A) :
      matrix_ (A)
    {
      // we don't require that A is fill complete; we will query for the
      // importer/exporter at apply()-time
#ifdef HAVE_KOKKOSCLASSIC_CUDA_NODE_MEMORY_PROFILING
      importTimer_ = Teuchos::TimeMonitor::getNewCounter ("CrsMatrixMultiplyOp::import");
      exportTimer_ = Teuchos::TimeMonitor::getNewCounter ("CrsMatrixMultiplyOp::export");
#endif
    }

    //! Destructor (virtual for memory safety of derived classes).
    virtual ~CrsMatrixMultiplyOp () {}

    //@}
    //! @name Methods implementing Operator
    //@{

    /// \brief Compute <tt>Y = beta*Y + alpha*Op(A)*X</tt>, where
    ///   <tt>Op(A)</tt> is either A, \f$A^T\f$, or \f$A^H\f$.
    ///
    /// This method calls the underlying CrsMatrix object's
    /// localMultiply<Scalar,Scalar>() method.
    void
    apply (const MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>& X,
           MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>& Y,
           Teuchos::ETransp mode = Teuchos::NO_TRANS,
           Scalar alpha = Teuchos::ScalarTraits<Scalar>::one (),
           Scalar beta = Teuchos::ScalarTraits<Scalar>::zero ()) const
    {
      TEUCHOS_TEST_FOR_EXCEPTION
        (! matrix_->isFillComplete (), std::runtime_error,
         Teuchos::typeName (*this) << "::apply(): underlying matrix is not fill-complete.");
      TEUCHOS_TEST_FOR_EXCEPTION
        (X.getNumVectors () != Y.getNumVectors (), std::runtime_error,
         Teuchos::typeName (*this) << "::apply(X,Y): X and Y must have the same number of vectors.");
      TEUCHOS_TEST_FOR_EXCEPTION
        (Teuchos::ScalarTraits<Scalar>::isComplex && mode == Teuchos::TRANS, std::logic_error,
         Teuchos::typeName (*this) << "::apply() does not currently support transposed multiplications for complex scalar types.");
      if (mode == Teuchos::NO_TRANS) {
        applyNonTranspose (X, Y, alpha, beta);
      }
      else {
        applyTranspose (X, Y, mode, alpha, beta);
      }
    }

    /// \brief "Hybrid" Jacobi + (Gauss-Seidel or SOR) on \f$B = A X\f$.
    ///
    /// "Hybrid" means Jacobi for interprocess communication, but
    /// Successive Over-Relaxation (SOR) or Gauss-Seidel for
    /// intraprocess computation.  Gauss-Seidel is a special case of
    /// SOR, where the damping factor is one.
    ///
    /// The Forward or Backward sweep directions have their usual SOR
    /// meaning within the process.  Interprocess communication occurs
    /// once before the sweep, as it would in Jacobi.
    ///
    /// The Symmetric sweep direction means first Forward, then
    /// Backward.  Before each sweep is an interprocess communication,
    /// as in Jacobi.  Thus, Symmetric results in two interprocess
    /// communication steps.
    ///
    /// \param B [in] Right-hand side(s), in the range Map of the
    ///   matrix.
    /// \param X [in/out] On input: initial guess(es).  On output:
    ///   result multivector(s).  This must be a domain Map view of
    ///   a column Map multivector.
    /// \param D [in] Inverse of diagonal entries of the matrix A,
    ///   in the row Map of the matrix.
    /// \param dampingFactor [in] SOR damping factor.  A damping
    ///   factor of one results in Gauss-Seidel.
    /// \param direction [in] Sweep direction: Forward, Backward, or
    ///   Symmetric.
    /// \param numSweeps [in] Number of sweeps.  We count each
    ///   Symmetric sweep (including both its Forward and its Backward
    ///   sweep) as one.
    ///
    /// \pre Domain, range, and row Maps of the sparse matrix are all
    ///   the same.  (The domain and range Maps must be the same
    ///   because this kernel overwrites its input.  The row Map must
    ///   be the same because the kernel uses the same local indices
    ///   for the rows of the sparse matrix, and for the rows of the
    ///   input / output multivector.)
    ///
    /// \pre No other argument aliases X.
    void
    gaussSeidel (const MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> &B,
                 MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> &X,
                 const MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> &D,
                 const Scalar& dampingFactor,
                 const ESweepDirection direction,
                 const int numSweeps) const
    {
      using Teuchos::null;
      using Teuchos::RCP;
      using Teuchos::rcp;
      using Teuchos::rcpFromRef;
      using Teuchos::rcp_const_cast;
      typedef Scalar OS;
      typedef Map<LocalOrdinal, GlobalOrdinal, Node> map_type;
      typedef Export<LocalOrdinal, GlobalOrdinal, Node> export_type;
      typedef Import<LocalOrdinal, GlobalOrdinal, Node> import_type;
      typedef MultiVector<OS, LocalOrdinal, GlobalOrdinal, Node> OSMV;

      TEUCHOS_TEST_FOR_EXCEPTION
        (numSweeps < 0, std::invalid_argument,
         "gaussSeidel: The number of sweeps must be nonnegative, "
         "but you provided numSweeps = " << numSweeps << " < 0.");

      // Translate from global to local sweep direction.
      // While doing this, validate the input.
      KokkosClassic::ESweepDirection localDirection;
      if (direction == Forward) {
        localDirection = KokkosClassic::Forward;
      }
      else if (direction == Backward) {
        localDirection = KokkosClassic::Backward;
      }
      else if (direction == Symmetric) {
        // We'll control local sweep direction manually.
        localDirection = KokkosClassic::Forward;
      }
      else {
        TEUCHOS_TEST_FOR_EXCEPTION
          (true, std::invalid_argument,
           "gaussSeidel: The 'direction' enum does not have any of its valid "
           "values: Forward, Backward, or Symmetric.");
      }

      if (numSweeps == 0) {
        return; // Nothing to do.
      }

      // We don't need the Export object because this method assumes
      // that the row, domain, and range Maps are the same.  We do need
      // the Import object, if there is one, though.
      RCP<const import_type> importer = matrix_->getGraph()->getImporter();
      RCP<const export_type> exporter = matrix_->getGraph()->getExporter();
      TEUCHOS_TEST_FOR_EXCEPTION
        (! exporter.is_null (), std::runtime_error,
         "Tpetra's gaussSeidel implementation requires that the row, domain, "
         "and range Maps be the same.  This cannot be the case, because the "
         "matrix has a nontrivial Export object.");

      RCP<const map_type> domainMap = matrix_->getDomainMap ();
      RCP<const map_type> rangeMap = matrix_->getRangeMap ();
      RCP<const map_type> rowMap = matrix_->getGraph ()->getRowMap ();
      RCP<const map_type> colMap = matrix_->getGraph ()->getColMap ();

#ifdef HAVE_TEUCHOS_DEBUG
      {
        // The relation 'isSameAs' is transitive.  It's also a
        // collective, so we don't have to do a "shared" test for
        // exception (i.e., a global reduction on the test value).
        TEUCHOS_TEST_FOR_EXCEPTION
          (! X.getMap ()->isSameAs (*domainMap), std::runtime_error,
           "Tpetra::CrsMatrix::gaussSeidel requires that the input "
           "multivector X be in the domain Map of the matrix.");
        TEUCHOS_TEST_FOR_EXCEPTION
          (! B.getMap ()->isSameAs (*rangeMap), std::runtime_error,
           "Tpetra::CrsMatrix::gaussSeidel requires that the input "
           "B be in the range Map of the matrix.");
        TEUCHOS_TEST_FOR_EXCEPTION
          (! D.getMap ()->isSameAs (*rowMap), std::runtime_error,
           "Tpetra::CrsMatrix::gaussSeidel requires that the input "
           "D be in the row Map of the matrix.");
        TEUCHOS_TEST_FOR_EXCEPTION
          (! rowMap->isSameAs (*rangeMap), std::runtime_error,
           "Tpetra::CrsMatrix::gaussSeidel requires that the row Map and the "
           "range Map be the same (in the sense of Tpetra::Map::isSameAs).");
        TEUCHOS_TEST_FOR_EXCEPTION
          (! domainMap->isSameAs (*rangeMap), std::runtime_error,
           "Tpetra::CrsMatrix::gaussSeidel requires that the domain Map and "
           "the range Map of the matrix be the same.");
      }
#else
      // Forestall any compiler warnings for unused variables.
      (void) rangeMap;
      (void) rowMap;
#endif // HAVE_TEUCHOS_DEBUG

      // If B is not constant stride, copy it into a constant stride
      // multivector.  We'l handle the right-hand side B first and deal
      // with X right before the sweeps, to improve locality of the
      // first sweep.  (If the problem is small enough, then that will
      // hopefully keep more of the entries of X in cache.  This
      // optimizes for the typical case of a small number of sweeps.)
      RCP<const OSMV> B_in;
      if (B.isConstantStride()) {
        B_in = rcpFromRef (B);
      }
      else {
        // The range Map and row Map are the same in this case, so we
        // can use the (possibly cached) row Map multivector to store a
        // constant stride copy of B.  We don't have to copy back, since
        // Gauss-Seidel won't modify B.
        RCP<OSMV> B_in_nonconst = getRowMapMultiVector (B, true);
        deep_copy (*B_in_nonconst, B);
        B_in = rcp_const_cast<const OSMV> (B_in_nonconst);

        TPETRA_EFFICIENCY_WARNING
          (! B.isConstantStride (), std::runtime_error,
           "gaussSeidel: The current implementation of the Gauss-Seidel kernel "
           "requires that X and B both have constant stride.  Since B does not "
           "have constant stride, we had to make a copy.  This is a limitation of "
           "the current implementation and not your fault, but we still report it "
           "as an efficiency warning for your information.");
      }

      // If X is not constant stride, copy it into a constant stride
      // multivector.  Also, make the column Map multivector X_colMap,
      // and its domain Map view X_domainMap.  (X actually must be a
      // domain Map view of a column Map multivector; exploit this, if X
      // has constant stride.)

      RCP<OSMV> X_domainMap;
      RCP<OSMV> X_colMap;
      bool copiedInput = false;

      if (importer.is_null ()) { // Domain and column Maps are the same.
        if (X.isConstantStride ()) {
          X_domainMap = rcpFromRef (X);
          X_colMap = X_domainMap;
          copiedInput = false;
        }
        else {
          // Get a temporary column Map multivector, make a domain Map
          // view of it, and copy X into the domain Map view.  We have
          // to copy here because we won't be doing Import operations.
          X_colMap = getColumnMapMultiVector (X, true);
          X_domainMap = X_colMap; // Domain and column Maps are the same.
          deep_copy (*X_domainMap, X); // Copy X into the domain Map view.
          copiedInput = true;
          TPETRA_EFFICIENCY_WARNING
            (! X.isConstantStride (), std::runtime_error,
             "gaussSeidel: The current implementation of the Gauss-Seidel kernel "
             "requires that X and B both have constant stride.  Since X does not "
             "have constant stride, we had to make a copy.  This is a limitation of "
             "the current implementation and not your fault, but we still report it "
             "as an efficiency warning for your information.");
        }
      }
      else { // We will be doing Import operations in the sweeps.
        if (X.isConstantStride ()) {
          X_domainMap = rcpFromRef (X);
          // This kernel assumes that X is a domain Map view of a column
          // Map multivector.  We will only check if this is valid if
          // the CMake configure Teuchos_ENABLE_DEBUG is ON.
          X_colMap = X_domainMap->offsetViewNonConst (colMap, 0);

          // Do the first Import for the first sweep.  This simplifies
          // the logic in the sweeps.
          X_colMap->doImport (X, *importer, INSERT);
          copiedInput = false;
        }
        else {
          // Get a temporary column Map multivector X_colMap, and make a
          // domain Map view X_domainMap of it.  Instead of copying, we
          // do an Import from X into X_domainMap.  This saves us a
          // copy, since the Import has to copy the data anyway.
          X_colMap = getColumnMapMultiVector (X, true);
          X_domainMap = X_colMap->offsetViewNonConst (domainMap, 0);
          X_colMap->doImport (X, *importer, INSERT);
          copiedInput = true;
          TPETRA_EFFICIENCY_WARNING
            (! X.isConstantStride (), std::runtime_error,
             "gaussSeidel: The current implementation of the Gauss-Seidel kernel "
             "requires that X and B both have constant stride.  Since X does not "
             "have constant stride, we had to make a copy.  This is a limitation of "
             "the current implementation and not your fault, but we still report it "
             "as an efficiency warning for your information.");
        }
      }

      for (int sweep = 0; sweep < numSweeps; ++sweep) {
        if (! importer.is_null () && sweep > 0) {
          // We already did the first Import for the zeroth sweep.
          X_colMap->doImport (*X_domainMap, *importer, INSERT);
        }

        // Do local Gauss-Seidel.
        if (direction != Symmetric) {
          matrix_->template localGaussSeidel<OS,OS> (*B_in, *X_colMap, D,
                                                     dampingFactor,
                                                     localDirection);
        }
        else { // direction == Symmetric
          matrix_->template localGaussSeidel<OS,OS> (*B_in, *X_colMap, D,
                                                     dampingFactor,
                                                     KokkosClassic::Forward);
          // Communicate again before the Backward sweep.
          if (! importer.is_null ()) {
            X_colMap->doImport (*X_domainMap, *importer, INSERT);
          }
          matrix_->template localGaussSeidel<OS,OS> (*B_in, *X_colMap, D,
                                                     dampingFactor,
                                                     KokkosClassic::Backward);
        }
      }

      if (copiedInput) {
        deep_copy (X, *X_domainMap); // Copy back: X_domainMap -> X.
      }
    }

    /// \brief Version of gaussSeidel(), with fewer requirements on X.
    ///
    /// This method is just like gaussSeidel(), except that X need
    /// only be in the domain Map.  This method does not require that
    /// X be a domain Map view of a column Map multivector.  As a
    /// result, this method must copy X into a domain Map multivector
    /// before operating on it.
    ///
    /// \param X [in/out] On input: initial guess(es).  On output:
    ///   result multivector(s).
    /// \param B [in] Right-hand side(s), in the range Map.
    /// \param D [in] Inverse of diagonal entries of the matrix,
    ///   in the row Map.
    /// \param dampingFactor [in] SOR damping factor.  A damping
    ///   factor of one results in Gauss-Seidel.
    /// \param direction [in] Sweep direction: Forward, Backward, or
    ///   Symmetric.
    /// \param numSweeps [in] Number of sweeps.  We count each
    ///   Symmetric sweep (including both its Forward and its
    ///   Backward sweep) as one.
    ///
    /// \pre Domain, range, and row Maps of the sparse matrix are
    ///   all the same.
    /// \pre No other argument aliases X.
    void
    gaussSeidelCopy (MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> &X,
                     const MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> &B,
                     const MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> &D,
                     const Scalar& dampingFactor,
                     const ESweepDirection direction,
                     const int numSweeps) const
    {
      using Teuchos::null;
      using Teuchos::RCP;
      using Teuchos::rcp;
      using Teuchos::rcpFromRef;
      using Teuchos::rcp_const_cast;
      typedef Scalar OS;
      typedef Map<LocalOrdinal, GlobalOrdinal, Node> map_type;
      typedef Export<LocalOrdinal, GlobalOrdinal, Node> export_type;
      typedef Import<LocalOrdinal, GlobalOrdinal, Node> import_type;
      typedef MultiVector<OS, LocalOrdinal, GlobalOrdinal, Node> OSMV;

      TEUCHOS_TEST_FOR_EXCEPTION
        (numSweeps < 0, std::invalid_argument,
         "gaussSeidelCopy: The number of sweeps must be nonnegative, "
         "but you provided numSweeps = " << numSweeps << " < 0.");

      // Translate from global to local sweep direction.
      // While doing this, validate the input.
      KokkosClassic::ESweepDirection localDirection;
      if (direction == Forward) {
        localDirection = KokkosClassic::Forward;
      }
      else if (direction == Backward) {
        localDirection = KokkosClassic::Backward;
      }
      else if (direction == Symmetric) {
        // We'll control local sweep direction manually.
        localDirection = KokkosClassic::Forward;
      }
      else {
        TEUCHOS_TEST_FOR_EXCEPTION
          (true, std::invalid_argument,
           "gaussSeidelCopy: The 'direction' enum does not have any of its "
           "valid values: Forward, Backward, or Symmetric.");
      }

      if (numSweeps == 0) {
        return;
      }

      RCP<const import_type> importer = matrix_->getGraph()->getImporter();
      RCP<const export_type> exporter = matrix_->getGraph()->getExporter();
      TEUCHOS_TEST_FOR_EXCEPTION
        (! exporter.is_null (),
         std::runtime_error,
         "Tpetra's gaussSeidelCopy implementation requires that the row, domain, "
         "and range Maps be the same.  This cannot be the case, because the "
         "matrix has a nontrivial Export object.");

      RCP<const map_type> domainMap = matrix_->getDomainMap ();
      RCP<const map_type> rangeMap = matrix_->getRangeMap ();
      RCP<const map_type> rowMap = matrix_->getGraph ()->getRowMap ();
      RCP<const map_type> colMap = matrix_->getGraph ()->getColMap ();

#ifdef HAVE_TEUCHOS_DEBUG
      {
        // The relation 'isSameAs' is transitive.  It's also a
        // collective, so we don't have to do a "shared" test for
        // exception (i.e., a global reduction on the test value).
        TEUCHOS_TEST_FOR_EXCEPTION
          (! X.getMap ()->isSameAs (*domainMap), std::runtime_error,
           "Tpetra::CrsMatrix::gaussSeidelCopy requires that the input "
           "multivector X be in the domain Map of the matrix.");
        TEUCHOS_TEST_FOR_EXCEPTION
          (! B.getMap ()->isSameAs (*rangeMap), std::runtime_error,
           "Tpetra::CrsMatrix::gaussSeidelCopy requires that the input "
           "B be in the range Map of the matrix.");
        TEUCHOS_TEST_FOR_EXCEPTION
          (! D.getMap ()->isSameAs (*rowMap), std::runtime_error,
           "Tpetra::CrsMatrix::gaussSeidelCopy requires that the input "
           "D be in the row Map of the matrix.");
        TEUCHOS_TEST_FOR_EXCEPTION
          (! rowMap->isSameAs (*rangeMap), std::runtime_error,
           "Tpetra::CrsMatrix::gaussSeidelCopy requires that the row Map and the "
           "range Map be the same (in the sense of Tpetra::Map::isSameAs).");
        TEUCHOS_TEST_FOR_EXCEPTION
          (! domainMap->isSameAs (*rangeMap), std::runtime_error,
           "Tpetra::CrsMatrix::gaussSeidelCopy requires that the domain Map and "
           "the range Map of the matrix be the same.");
      }
#else
      // Forestall any compiler warnings for unused variables.
      (void) rangeMap;
      (void) rowMap;
#endif // HAVE_TEUCHOS_DEBUG

      // Fetch a (possibly cached) temporary column Map multivector
      // X_colMap, and a domain Map view X_domainMap of it.  Both have
      // constant stride by construction.  We know that the domain Map
      // must include the column Map, because our Gauss-Seidel kernel
      // requires that the row Map, domain Map, and range Map are all
      // the same, and that each process owns all of its own diagonal
      // entries of the matrix.

      RCP<OSMV> X_colMap;
      RCP<OSMV> X_domainMap;
      bool copyBackOutput = false;
      if (importer.is_null ()) {
        if (X.isConstantStride ()) {
          X_colMap = rcpFromRef (X);
          X_domainMap = rcpFromRef (X);
          // No need to copy back to X at end.
        }
        else { // We must copy X into a constant stride multivector.
          // Just use the cached column Map multivector for that.
          X_colMap = getColumnMapMultiVector (X, true);
          // X_domainMap is always a domain Map view of the column Map
          // multivector.  In this case, the domain and column Maps are
          // the same, so X_domainMap _is_ X_colMap.
          X_domainMap = X_colMap;
          deep_copy (*X_domainMap, X); // Copy X into constant stride multivector
          copyBackOutput = true; // Don't forget to copy back at end.
          TPETRA_EFFICIENCY_WARNING
            (! X.isConstantStride (), std::runtime_error,
             "gaussSeidelCopy: The current implementation of the Gauss-Seidel "
             "kernel requires that X and B both have constant stride.  Since X "
             "does not have constant stride, we had to make a copy.  This is a "
             "limitation of the current implementation and not your fault, but we "
             "still report it as an efficiency warning for your information.");
        }
      }
      else { // Column Map and domain Map are _not_ the same.
        X_colMap = getColumnMapMultiVector (X);
        X_domainMap = X_colMap->offsetViewNonConst (domainMap, 0);

        // We could just copy X into X_domainMap.  However, that wastes
        // a copy, because the Import also does a copy (plus
        // communication).  Since the typical use case for Gauss-Seidel
        // is a small number of sweeps (2 is typical), we don't want to
        // waste that copy.  Thus, we do the Import here, and skip the
        // first Import in the first sweep.  Importing directly from X
        // effects the copy into X_domainMap (which is a view of
        // X_colMap).
        X_colMap->doImport (X, *importer, INSERT);

        copyBackOutput = true; // Don't forget to copy back at end.
      }

      // The Gauss-Seidel / SOR kernel expects multivectors of constant
      // stride.  X_colMap is by construction, but B might not be.  If
      // it's not, we have to make a copy.
      RCP<const OSMV> B_in;
      if (B.isConstantStride ()) {
        B_in = rcpFromRef (B);
      }
      else {
        // Range Map and row Map are the same in this case, so we can
        // use the cached row Map multivector to store a constant stride
        // copy of B.
        RCP<OSMV> B_in_nonconst = getRowMapMultiVector (B, true);
        *B_in_nonconst = B;
        B_in = rcp_const_cast<const OSMV> (B_in_nonconst);

        TPETRA_EFFICIENCY_WARNING
          (! B.isConstantStride (), std::runtime_error,
           "gaussSeidelCopy: The current implementation requires that B have "
           "constant stride.  Since B does not have constant stride, we had to "
           "copy it into a separate constant-stride multivector.  This is a "
           "limitation of the current implementation and not your fault, but we "
           "still report it as an efficiency warning for your information.");
      }

      for (int sweep = 0; sweep < numSweeps; ++sweep) {
        if (! importer.is_null () && sweep > 0) {
          // We already did the first Import for the zeroth sweep above.
          X_colMap->doImport (*X_domainMap, *importer, INSERT);
        }

        // Do local Gauss-Seidel.
        if (direction != Symmetric) {
          matrix_->template localGaussSeidel<OS,OS> (*B_in, *X_colMap, D,
                                                     dampingFactor,
                                                     localDirection);
        }
        else { // direction == Symmetric
          matrix_->template localGaussSeidel<OS,OS> (*B_in, *X_colMap, D,
                                                     dampingFactor,
                                                     KokkosClassic::Forward);
          // Communicate again before the Backward sweep, if necessary.
          if (! importer.is_null ()) {
            X_colMap->doImport (*X_domainMap, *importer, INSERT);
          }
          matrix_->template localGaussSeidel<OS,OS> (*B_in, *X_colMap, D,
                                                     dampingFactor,
                                                     KokkosClassic::Backward);
        }
      }

      if (copyBackOutput) {
        deep_copy (X, *X_domainMap); // Copy result back into X.
      }
    }

    /// \brief Whether this Operator's apply() method can apply the
    ///   transpose or conjugate transpose.
    ///
    /// This is always true, since it is true for the CrsMatrix that
    /// this object wraps.
    bool hasTransposeApply() const {
      return true;
    }

    //! The domain Map of this Operator.
    Teuchos::RCP<const map_type> getDomainMap () const {
      return matrix_->getDomainMap ();
    }

    //! The range Map of this Operator.
    Teuchos::RCP<const map_type> getRangeMap () const {
      return matrix_->getRangeMap ();
    }

    //@}

  protected:
    typedef MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> MV;

    //! The underlying CrsMatrix object.
    const Teuchos::RCP<const crs_matrix_type> matrix_;

    /// \brief Column Map MultiVector used in apply().
    ///
    /// This is a column Map MultiVector.  It is used as the target of
    /// the forward mode Import operation (if necessary) in
    /// applyNonTranspose(), and the source of the reverse mode Export
    /// operation (if necessary) in applyTranspose().  Both of these
    /// methods create this MultiVector on demand if needed, and reuse
    /// it (if possible) for subsequent calls.
    ///
    /// This is declared <tt>mutable</tt> because the apply() method
    /// is const, yet the method needs to cache the MultiVector for
    /// later use.
    mutable Teuchos::RCP<MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> > importMV_;

    /// \brief Row Map MultiVector used in apply().
    ///
    /// This is a row Map MultiVector.  It is uses as the source of
    /// the forward mode Export operation (if necessary) in
    /// applyNonTranspose(), and the target of the reverse mode Import
    /// operation (if necessary) in applyTranspose().  Both of these
    /// methods create this MultiVector on demand if needed, and reuse
    /// it (if possible) for subsequent calls.
    ///
    /// This is declared <tt>mutable</tt> because the apply() method
    /// is const, yet the method needs to cache the MultiVector for
    /// later use.
    mutable Teuchos::RCP<MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> > exportMV_;

#ifdef HAVE_KOKKOSCLASSIC_CUDA_NODE_MEMORY_PROFILING
    Teuchos::RCP<Teuchos::Time> importTimer_, exportTimer_;
#endif

    /// \brief Apply the transpose or conjugate transpose of the
    ///   matrix to X_in, producing Y_in.
    void
    applyTranspose (const MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>& X_in,
                    MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> &Y_in,
                    Teuchos::ETransp mode,
                    Scalar alpha,
                    Scalar beta) const
    {
      typedef Teuchos::ScalarTraits<Scalar> ST;
      using Teuchos::null;

      int myImageID = Teuchos::rank(*matrix_->getComm());
#ifdef TPETRA_CRSMATRIX_MULTIPLY_DUMP
      Teuchos::RCP<Teuchos::FancyOStream> out = Teuchos::VerboseObjectBase::getDefaultOStream();
      if (myImageID == 0) {
        *out << "Entering CrsMatrixMultiplyOp::applyTranspose()" << std::endl
             << "Column Map: " << std::endl;
      }
      *out << matrix_->getColMap() << std::endl;
      if (myImageID == 0) {
        *out << "Initial input: " << std::endl;
      }
      X_in.describe(*out,Teuchos::VERB_EXTREME);
#endif

      const size_t numVectors = X_in.getNumVectors();
      // because of Views, it is difficult to determine if X and Y point to the same data.
      // however, if they reference the exact same object, we will do the user the favor of copying X into new storage (with a warning)
      // we ony need to do this if we have trivial importers; otherwise, we don't actually apply the operator from X into Y
      Teuchos::RCP<const Import<LocalOrdinal,GlobalOrdinal,Node> > importer = matrix_->getGraph()->getImporter();
      Teuchos::RCP<const Export<LocalOrdinal,GlobalOrdinal,Node> > exporter = matrix_->getGraph()->getExporter();
      // access X indirectly, in case we need to create temporary storage
      Teuchos::RCP<const MV> X;

      // some parameters for below
      const bool Y_is_replicated = !Y_in.isDistributed(),
        Y_is_overwritten = (beta == ST::zero());
      if (Y_is_replicated && myImageID > 0) {
        beta = ST::zero();
      }

      // currently, cannot multiply from multivector of non-constant stride
      if (X_in.isConstantStride() == false && importer==null) {
        // generate a strided copy of X_in
        X = Teuchos::rcp(new MV(X_in));
#ifdef TPETRA_CRSMATRIX_MULTIPLY_DUMP
        if (myImageID == 0) *out << "X is not constant stride, duplicating X results in a strided copy" << std::endl;
        X->describe(*out,Teuchos::VERB_EXTREME);
#endif
      }
      else {
        // just temporary, so this non-owning RCP is okay
        X = Teuchos::rcp(&X_in, false);
      }

      // set up import/export temporary multivectors
      if (importer != null) {
        if (importMV_ != null && importMV_->getNumVectors() != numVectors) importMV_ = null;
        if (importMV_ == null) {
          importMV_ = Teuchos::rcp( new MV(matrix_->getColMap(),numVectors) );
        }
      }
      if (exporter != null) {
        if (exportMV_ != null && exportMV_->getNumVectors() != numVectors) exportMV_ = null;
        if (exportMV_ == null) {
          exportMV_ = Teuchos::rcp( new MV(matrix_->getRowMap(),numVectors) );
        }
      }

      // If we have a non-trivial exporter, we must import elements that are permuted or are on other processors
      if (exporter != null) {
        {
#ifdef HAVE_KOKKOSCLASSIC_CUDA_NODE_MEMORY_PROFILING
          Teuchos::TimeMonitor lcltimer(*importTimer_);
#endif
          exportMV_->doImport(X_in,*exporter,INSERT);
        }
        // multiply out of exportMV_
        X = exportMV_;
#ifdef TPETRA_CRSMATRIX_MULTIPLY_DUMP
        if (myImageID == 0) {
          *out << "Performed import of X using exporter..." << std::endl;
        }
        X->describe(*out,Teuchos::VERB_EXTREME);
#endif
      }


      // If we have a non-trivial importer, we must export elements that are permuted or belong to other processors
      // We will compute solution into the to-be-exported MV; get a view
      if (importer != null) {
        // Do actual computation
        matrix_->template localMultiply<Scalar, Scalar>(*X, *importMV_, mode, alpha, ST::zero());
#ifdef TPETRA_CRSMATRIX_MULTIPLY_DUMP
        if (myImageID == 0) *out << "Import vector after localMultiply()..." << std::endl;
        importMV_->describe(*out,Teuchos::VERB_EXTREME);
#endif
        if (Y_is_overwritten) Y_in.putScalar(ST::zero());
        else                  Y_in.scale(beta);
        //
        {
#ifdef HAVE_KOKKOSCLASSIC_CUDA_NODE_MEMORY_PROFILING
          Teuchos::TimeMonitor lcltimer(*importTimer_);
#endif
          Y_in.doExport(*importMV_,*importer,ADD);
        }
      }
      // otherwise, multiply into Y
      else {
        // can't multiply in-situ; can't multiply into non-strided multivector
        if (Y_in.isConstantStride() == false || X.getRawPtr() == &Y_in) {
          // generate a strided copy of Y
          MV Y(Y_in);
          matrix_->template localMultiply<Scalar, Scalar>(*X, Y, mode, alpha, beta);
          deep_copy (Y_in, Y);
        }
        else {
          matrix_->template localMultiply<Scalar, Scalar>(*X, Y_in, mode, alpha, beta);
        }
      }
#ifdef TPETRA_CRSMATRIX_MULTIPLY_DUMP
      if (myImageID == 0) *out << "Y_in vector after local multiply/export..." << std::endl;
      Y_in.describe(*out,Teuchos::VERB_EXTREME);
#endif
      // Handle case of rangemap being a local replicated map: in this case, sum contributions from each processor
      if (Y_is_replicated) {
        Y_in.reduce();
#ifdef TPETRA_CRSMATRIX_MULTIPLY_DUMP
        if (myImageID == 0) *out << "Output vector is local; result after reduce()..." << std::endl;
        Y_in.describe(*out,Teuchos::VERB_EXTREME);
#endif
      }
    }

    //! Apply the matrix (not its transpose) to X_in, producing Y_in.
    void
    applyNonTranspose (const MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>& X_in,
                       MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>& Y_in,
                       Scalar alpha,
                       Scalar beta) const
    {
      using Teuchos::null;
      using Teuchos::RCP;
      using Teuchos::rcp;
      using Teuchos::rcp_const_cast;
      using Teuchos::rcpFromRef;
      typedef Export<LocalOrdinal,GlobalOrdinal,Node> export_type;
      typedef Import<LocalOrdinal,GlobalOrdinal,Node> import_type;
      typedef Teuchos::ScalarTraits<Scalar> STS;

      const int myImageID = matrix_->getComm ()->getRank ();

#ifdef TPETRA_CRSMATRIX_MULTIPLY_DUMP
      RCP<Teuchos::FancyOStream> out = Teuchos::VerboseObjectBase::getDefaultOStream();
      if (myImageID == 0) {
        *out << "Entering CrsMatrixMultiplyOp::applyNonTranspose()" << std::endl
             << "Column Map: " << std::endl;
      }
      *out << matrix_->getColMap() << std::endl;
      if (myImageID == 0) {
        *out << "Initial input: " << std::endl;
      }
      X_in.describe (*out, Teuchos::VERB_EXTREME);
#endif // TPETRA_CRSMATRIX_MULTIPLY_DUMP

      // because of Views, it is difficult to determine if X and Y point to the same data.
      // however, if they reference the exact same object, we will do the user the favor of copying X into new storage (with a warning)
      // we ony need to do this if we have trivial importers; otherwise, we don't actually apply the operator from X into Y
      RCP<const import_type> importer = matrix_->getGraph()->getImporter();
      RCP<const export_type> exporter = matrix_->getGraph()->getExporter();

      // If beta == 0, then the output MV will be overwritten; none of
      // its entries should be read.  (Sparse BLAS semantics say that we
      // must ignore any Inf or NaN entries in Y_in, if beta is zero.)
      // This matters if we need to do an Export operation; see below.
      const bool Y_is_overwritten = (beta == STS::zero());

      // We treat the case of a replicated MV output specially.
      const bool Y_is_replicated = ! Y_in.isDistributed ();

      // This is part of the "hack" for replicated MV output.  We'll let
      // each process do its thing, but do an all-reduce at the end to
      // sum up the results.  Setting beta=0 on all processes but Proc 0
      // makes the math work out for the all-reduce.  (This assumes that
      // the replicated data is correctly replicated, so that the data
      // are the same on all processes.)
      if (Y_is_replicated && myImageID > 0) {
        beta = STS::zero();
      }

      // Temporary MV for Import operation.  After the block of code
      // below, this will be an (Imported if necessary) column Map MV
      // ready to give to localMultiply().
      RCP<const MV> X_colMap;
      if (importer.is_null ()) {
        if (! X_in.isConstantStride ()) {
          // Not all sparse mat-vec kernels can handle an input MV with
          // nonconstant stride correctly, so we have to copy it in that
          // case into a constant stride MV.  To make a constant stride
          // copy of X_in, we force creation of the column (== domain)
          // Map MV (if it hasn't already been created, else fetch the
          // cached copy).  This avoids creating a new MV each time.

          RCP<MV> X_colMapNonConst = getColumnMapMultiVector (X_in, true);
          *X_colMapNonConst = X_in; // MV assignment just copies the data.
          X_colMap = rcp_const_cast<const MV> (X_colMapNonConst);
        }
        else {
          // The domain and column Maps are the same, so do the local
          // multiply using the domain Map input MV X_in.
          X_colMap = rcpFromRef (X_in);
        }
      }
      else {
        // We're doing an Import anyway, which will copy the relevant
        // elements of the domain Map MV X_in into a separate column Map
        // MV.  Thus, we don't have to worry whether X_in is constant
        // stride.
        RCP<MV> X_colMapNonConst = getColumnMapMultiVector (X_in);

        // Import from the domain Map MV to the column Map MV.
        {
#ifdef HAVE_KOKKOSCLASSIC_CUDA_NODE_MEMORY_PROFILING
          Teuchos::TimeMonitor lcltimer (*importTimer_);
#endif
          X_colMapNonConst->doImport (X_in, *importer, INSERT);
        }
        X_colMap = rcp_const_cast<const MV> (X_colMapNonConst);
      }

      // Temporary MV for Export operation, or for copying a nonconstant
      // stride output MV into a constant stride MV.
      RCP<MV> Y_rowMap = getRowMapMultiVector (Y_in);

      // If we have a nontrivial Export object, we must perform an
      // Export.  In that case, the local multiply result will go into
      // the row Map multivector.  We don't have to make a
      // constant-stride version of Y_in in this case, because we had to
      // make a constant stride Y_rowMap MV and do an Export anyway.
      if (! exporter.is_null ()) {
        matrix_->template localMultiply<Scalar, Scalar> (*X_colMap, *Y_rowMap,
                                                         Teuchos::NO_TRANS,
                                                         alpha, STS::zero());
        // If we're overwriting the output MV Y_in completely (beta ==
        // 0), then make sure that it is filled with zeros before we do
        // the Export.  Otherwise, the ADD combine mode will use data in
        // Y_in, which is supposed to be zero.
        if (Y_is_overwritten) {
          Y_in.putScalar (STS::zero());
        }
        else {
          // Scale the output MV by beta, so that the Export sums in the
          // mat-vec contribution: Y_in = beta*Y_in + alpha*A*X_in.
          Y_in.scale (beta);
        }
        // Do the Export operation.
        {
#ifdef HAVE_KOKKOSCLASSIC_CUDA_NODE_MEMORY_PROFILING
          Teuchos::TimeMonitor lcltimer (*exportTimer_);
#endif
          Y_in.doExport (*Y_rowMap, *exporter, ADD);
        }
      }
      else { // Don't do an Export: row Map and range Map are the same.
        //
        // If Y_in does not have constant stride, or if the column Map
        // MV aliases Y_in, then we can't let the kernel write directly
        // to Y_in.  Instead, we have to use the cached row (== range)
        // Map MV as temporary storage.
        if (! Y_in.isConstantStride () || X_colMap.getRawPtr () == &Y_in) {
          // Force creating the MV if it hasn't been created already.
          // This will reuse a previously created cached MV.
          Y_rowMap = getRowMapMultiVector (Y_in, true);

          // If beta == 0, we don't need to copy Y_in into Y_rowMap,
          // since we're overwriting it anyway.
          if (beta != STS::zero ()) {
            deep_copy (*Y_rowMap, Y_in);
          }
          matrix_->template localMultiply<Scalar, Scalar> (*X_colMap,
                                                           *Y_rowMap,
                                                           Teuchos::NO_TRANS,
                                                           alpha, beta);
          deep_copy (Y_in, *Y_rowMap);
        }
        else {
          matrix_->template localMultiply<Scalar, Scalar> (*X_colMap, Y_in,
                                                           Teuchos::NO_TRANS,
                                                           alpha, beta);
        }
      }
#ifdef TPETRA_CRSMATRIX_MULTIPLY_DUMP
      if (myImageID == 0) {
        *out << "Result Y_in after localMultiply and Export:" << std::endl;
      }
      Y_in.describe (*out, Teuchos::VERB_EXTREME);
#endif // TPETRA_CRSMATRIX_MULTIPLY_DUMP

      // If the range Map is a locally replicated Map, sum up
      // contributions from each process.  We set beta = 0 on all
      // processes but Proc 0 initially, so this will handle the scaling
      // factor beta correctly.
      if (Y_is_replicated) {
        Y_in.reduce ();
#ifdef TPETRA_CRSMATRIX_MULTIPLY_DUMP
        if (myImageID == 0) {
          *out << "Result Y_in after reduce:" << std::endl;
        }
        Y_in.describe (*out, Teuchos::VERB_EXTREME);
#endif // TPETRA_CRSMATRIX_MULTIPLY_DUMP
      }

    }

  private:
    /// \brief Create a (or fetch a cached) column Map MultiVector.
    ///
    /// \param X_domainMap [in] A domain Map Multivector.  The
    ///   returned MultiVector, if nonnull, will have the same number
    ///   of columns as Y_domainMap.
    ///
    /// \param force [in] Force creating the MultiVector if it hasn't
    ///   been created already.
    ///
    /// The \c force parameter is helpful when the domain Map and the
    /// column Map are the same (so that normally we wouldn't need the
    /// column Map MultiVector), but the following (for example)
    /// holds:
    ///
    /// 1. The kernel needs a constant stride input MultiVector, but
    ///    the given input MultiVector is not constant stride.
    ///
    /// We don't test for the above in this method, because it depends
    /// on the specific kernel.
    Teuchos::RCP<MV>
    getColumnMapMultiVector (const MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>& X_domainMap,
                             const bool force = false) const
    {
      using Teuchos::null;
      using Teuchos::RCP;
      using Teuchos::rcp;
      typedef Import<LocalOrdinal,GlobalOrdinal,Node> import_type;
      typedef Map<LocalOrdinal,GlobalOrdinal,Node> map_type;

      const size_t numVecs = X_domainMap.getNumVectors ();
      RCP<const import_type> importer = matrix_->getGraph ()->getImporter ();
      RCP<const map_type> colMap = matrix_->getColMap ();

      RCP<MV> X_colMap; // null by default

      // If the Import object is trivial (null), then we don't need a
      // separate column Map multivector.  Just return null in that
      // case.  The caller is responsible for knowing not to use the
      // returned null pointer.
      //
      // If the Import is nontrivial, then we do need a separate
      // column Map multivector for the Import operation.  Check in
      // that case if we have to (re)create the column Map
      // multivector.
      if (! importer.is_null () || force) {
        if (importMV_.is_null () || importMV_->getNumVectors () != numVecs) {
          X_colMap = rcp (new MV (colMap, numVecs));

          // Cache the newly created multivector for later reuse.
          importMV_ = X_colMap;
        }
        else { // Yay, we can reuse the cached multivector!
          X_colMap = importMV_;
          // mfh 09 Jan 2013: We don't have to fill with zeros first,
          // because the Import uses INSERT combine mode, which overwrites
          // existing entries.
          //
          //X_colMap->putScalar (STS::zero ());
        }
      }
      return X_colMap;
    }

    /// \brief Create a (or fetch a cached) row Map MultiVector.
    ///
    /// \param Y_rangeMap [in] A range Map Multivector.  The returned
    ///   MultiVector, if nonnull, will have the same number of
    ///   columns as Y_rangeMap.
    ///
    /// \param force [in] Force creating the MultiVector if it hasn't
    ///   been created already.
    ///
    /// The \c force parameter is helpful when the range Map and the
    /// row Map are the same (so that normally we wouldn't need the
    /// row Map MultiVector), but one of the following holds:
    ///
    /// 1. The kernel needs a constant stride output MultiVector,
    ///    but the given output MultiVector is not constant stride.
    ///
    /// 2. The kernel does not permit aliasing of its input and output
    ///    MultiVector arguments, but they do alias each other.
    ///
    /// We don't test for the above in this method, because it depends
    /// on the specific kernel.
    Teuchos::RCP<MV>
    getRowMapMultiVector (const MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>& Y_rangeMap,
                          const bool force = false) const
    {
      using Teuchos::null;
      using Teuchos::RCP;
      using Teuchos::rcp;
      typedef Export<LocalOrdinal,GlobalOrdinal,Node> export_type;
      typedef Map<LocalOrdinal,GlobalOrdinal,Node> map_type;

      const size_t numVecs = Y_rangeMap.getNumVectors ();
      RCP<const export_type> exporter = matrix_->getGraph ()->getExporter ();
      RCP<const map_type> rowMap = matrix_->getRowMap ();

      RCP<MV> Y_rowMap; // null by default

      // If the Export object is trivial (null), then we don't need a
      // separate row Map multivector.  Just return null in that case.
      // The caller is responsible for knowing not to use the returned
      // null pointer.
      //
      // If the Export is nontrivial, then we do need a separate row
      // Map multivector for the Export operation.  Check in that case
      // if we have to (re)create the row Map multivector.
      if (! exporter.is_null () || force) {
        if (exportMV_.is_null () || exportMV_->getNumVectors () != numVecs) {
          Y_rowMap = rcp (new MV (rowMap, numVecs));

          // Cache the newly created multivector for later reuse.
          exportMV_ = Y_rowMap;
        }
        else { // Yay, we can reuse the cached multivector!
          Y_rowMap = exportMV_;
        }
      }
      return Y_rowMap;
    }
  };

  /// \brief Non-member function to create a CrsMatrixMultiplyOp.
  /// \relatesalso CrsMatrixMultiplyOp
  ///
  /// The function has the same template parameters of CrsMatrixMultiplyOp.
  ///
  /// \param A [in] The CrsMatrix instance to wrap in an CrsMatrixMultiplyOp.
  /// \return The CrsMatrixMultiplyOp wrapper for the given CrsMatrix.
  template <class OpScalar,
            class MatScalar,
            class LocalOrdinal,
            class GlobalOrdinal,
            class Node>
  Teuchos::RCP<
    CrsMatrixMultiplyOp<OpScalar, MatScalar, LocalOrdinal, GlobalOrdinal, Node> >
  createCrsMatrixMultiplyOp (const Teuchos::RCP<
    const CrsMatrix<MatScalar, LocalOrdinal, GlobalOrdinal, Node> >& A)
  {
    typedef CrsMatrixMultiplyOp<OpScalar, MatScalar, LocalOrdinal,
      GlobalOrdinal, Node> op_type;
    return Teuchos::rcp (new op_type (A));
  }

} // end of namespace Tpetra

#endif // TPETRA_CRSMATRIXMULTIPLYOP_HPP