This file is indexed.

/usr/include/trilinos/Tpetra_CrsMatrix_decl.hpp is in libtrilinos-tpetra-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
// @HEADER
// ***********************************************************************
//
//          Tpetra: Templated Linear Algebra Services Package
//                 Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef TPETRA_CRSMATRIX_DECL_HPP
#define TPETRA_CRSMATRIX_DECL_HPP

/// \file Tpetra_CrsMatrix_decl.hpp
/// \brief Declaration of the Tpetra::CrsMatrix class
///
/// If you want to use Tpetra::CrsMatrix, include
/// "Tpetra_CrsMatrix.hpp" (a file which CMake generates and installs
/// for you).  If you only want the declaration of Tpetra::CrsMatrix,
/// include this file (Tpetra_CrsMatrix_decl.hpp).

#include "Tpetra_ConfigDefs.hpp"
#include "Tpetra_RowMatrix_decl.hpp"
#include "Tpetra_Exceptions.hpp"
#include "Tpetra_DistObject.hpp"
#include "Tpetra_CrsGraph.hpp"
#include "Tpetra_Vector.hpp"

#include "KokkosCompat_ClassicNodeAPI_Wrapper.hpp"
// localMultiply is templated on DomainScalar and RangeScalar, so we
// have to include this header file here, rather than in the _def
// header file, so that we can get KokkosSparse::spmv.
#include "Kokkos_Sparse.hpp"
// localGaussSeidel and reorderedLocalGaussSeidel are templated on
// DomainScalar and RangeScalar, so we have to include this header
// file here, rather than in the _def header file, so that we can get
// the interfaces to the corresponding local computational kernels.
#include "Kokkos_Sparse_impl_sor.hpp"

namespace Tpetra {
  /// \class CrsMatrix
  /// \brief Sparse matrix that presents a row-oriented interface that
  ///   lets users read or modify entries.
  ///
  /// \tparam Scalar The type of the numerical entries of the matrix.
  ///   (You can use real-valued or complex-valued types here, unlike
  ///   in Epetra, where the scalar type is always \c double.)
  /// \tparam LocalOrdinal The type of local indices.  See the
  ///   documentation of Map for requirements.
  /// \tparam GlobalOrdinal The type of global indices.  See the
  ///   documentation of Map for requirements.
  /// \tparam Node The Kokkos Node type.  See the documentation of Map
  ///   for requirements.
  ///
  /// This class implements a distributed-memory parallel sparse matrix,
  /// and provides sparse matrix-vector multiply (including transpose)
  /// and sparse triangular solve operations.  It provides access by rows
  /// to the elements of the matrix, as if the local data were stored in
  /// compressed sparse row format.  (Implementations are <i>not</i>
  /// required to store the data in this way internally.)  This class has
  /// an interface like that of Epetra_CrsMatrix, but also allows
  /// insertion of data into nonowned rows, much like Epetra_FECrsMatrix.
  ///
  /// \section Tpetra_CrsMatrix_prereq Prerequisites
  ///
  /// Before reading the rest of this documentation, it helps to know
  /// something about the Teuchos memory management classes, in
  /// particular Teuchos::RCP, Teuchos::ArrayRCP, and Teuchos::ArrayView.
  /// You should also know a little bit about MPI (the Message Passing
  /// Interface for distributed-memory programming).  You won't have to
  /// use MPI directly to use CrsMatrix, but it helps to be familiar with
  /// the general idea of distributed storage of data over a
  /// communicator.  Finally, you should read the documentation of Map
  /// and MultiVector.
  ///
  /// \section Tpetra_CrsMatrix_local_vs_global Local and global indices
  ///
  /// The distinction between local and global indices might confuse new
  /// Tpetra users.  Please refer to the documentation of Map for a
  /// detailed explanation.  This is important because many of
  /// CrsMatrix's methods for adding, modifying, or accessing entries
  /// come in versions that take either local or global indices.  The
  /// matrix itself may store indices either as local or global, and the
  /// same matrix may use global indices or local indices at different
  /// points in its life.  You should only use the method version
  /// corresponding to the current state of the matrix.  For example,
  /// getGlobalRowView() returns a view to the indices represented as
  /// global; it is incorrect to call this method if the matrix is
  /// storing indices as local.  Call isGloballyIndexed() or
  /// isLocallyIndexed() to find out whether the matrix currently stores
  /// indices as local or global.
  ///
  /// It may also help to read CrsGraph's documentation.
  ///
  /// \section Tpetra_CrsMatrix_insertion_into_nonowned_rows Insertion into nonowned rows
  ///
  /// All methods (except for insertGlobalValues() and
  /// sumIntoGlobalValues(); see below) that work with global indices
  /// only allow operations on indices owned by the calling process.  For
  /// example, methods that take a global row index expect that row to be
  /// owned by the calling process.  Access to <i>nonowned rows</i>, that
  /// is, rows <i>not</i> owned by the calling process, requires
  /// performing an explicit communication via the Import / Export
  /// capabilities of the CrsMatrix object.  See the documentation of
  /// DistObject for more details.
  ///
  /// The methods insertGlobalValues() and sumIntoGlobalValues() are
  /// exceptions to this rule.  They both allows you to add data to
  /// nonowned rows.  These data are stored locally and communicated to
  /// the appropriate process on the next call to globalAssemble() or
  /// fillComplete().  This means that CrsMatrix provides the same
  /// nonowned insertion functionality that Epetra provides via
  /// Epetra_FECrsMatrix.
  ///
  /// \section Tpetra_DistObject_MultDist Note for developers on DistObject
  ///
  /// DistObject only takes a single Map as input to its constructor.
  /// MultiVector is an example of a subclass for which a single Map
  /// suffices to describe its data distribution.  In that case,
  /// DistObject's getMap() method obviously must return that Map.
  /// CrsMatrix is an example of a subclass that requires two Map
  /// objects: a row Map and a column Map.  For CrsMatrix, getMap()
  /// returns the row Map.  This means that doTransfer() (which
  /// CrsMatrix does not override) uses the row Map objects of the
  /// source and target CrsMatrix objects.  CrsMatrix in turn uses its
  /// column Map (if it has one) to "filter" incoming sparse matrix
  /// entries whose column indices are not in that process' column
  /// Map.  This means that CrsMatrix may perform extra communication,
  /// though the Import and Export operations are still correct.
  ///
  /// This is necessary if the CrsMatrix does not yet have a column
  /// Map.  Other processes might have added new entries to the
  /// matrix; the calling process has to see them in order to accept
  /// them.  However, the CrsMatrix may already have a column Map, for
  /// example, if it was created with the constructor that takes both
  /// a row and a column Map, or if it is fill complete (which creates
  /// the column Map if the matrix does not yet have one).  In this
  /// case, it could be possible to "filter" on the sender (instead of
  /// on the receiver, as CrsMatrix currently does) and avoid sending
  /// data corresponding to columns that the receiver does not own.
  /// Doing this would require revising the Import or Export object
  /// (instead of the incoming data) using the column Map, to remove
  /// global indices and their target process ranks from the send
  /// lists if the target process does not own those columns, and to
  /// remove global indices and their source process ranks from the
  /// receive lists if the calling process does not own those columns.
  /// (Abstractly, this is a kind of set difference between an Import
  /// or Export object for the row Maps, and the Import resp. Export
  /// object for the column Maps.)  This could be done separate from
  /// DistObject, by creating a new "filtered" Import or Export
  /// object, that keeps the same source and target Map objects but
  /// has a different communication plan.  We have not yet implemented
  /// this optimization.
  template <class Scalar = Details::DefaultTypes::scalar_type,
            class LocalOrdinal = Details::DefaultTypes::local_ordinal_type,
            class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type,
            class Node = Details::DefaultTypes::node_type,
            const bool classic = Node::classic>
  class CrsMatrix :
    public RowMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>,
    public DistObject<char, LocalOrdinal, GlobalOrdinal, Node, classic>
  {
  public:
    //! @name Typedefs
    //@{

    /// \brief This class' first template parameter; the type of each
    ///   entry in the matrix.
    typedef Scalar scalar_type;
    /// \brief The type used internally in place of \c Scalar.
    ///
    /// Some \c Scalar types might not work with Kokkos on all
    /// execution spaces, due to missing CUDA device macros or
    /// volatile overloads.  The C++ standard type std::complex<T> has
    /// this problem.  To fix this, we replace std::complex<T> values
    /// internally with the (usually) bitwise identical type
    /// Kokkos::complex<T>.  The latter is the \c impl_scalar_type
    /// corresponding to \c Scalar = std::complex.
    typedef typename Kokkos::Details::ArithTraits<Scalar>::val_type impl_scalar_type;
    //! This class' second template parameter; the type of local indices.
    typedef LocalOrdinal local_ordinal_type;
    //! This class' third template parameter; the type of global indices.
    typedef GlobalOrdinal global_ordinal_type;
    //! This class' fourth template parameter; the Kokkos device type.
    typedef Node node_type;

    //! The Kokkos device type.
    typedef typename Node::device_type device_type;
    //! The Kokkos execution space.
    typedef typename device_type::execution_space execution_space;

    /// \brief Type of a norm result.
    ///
    /// This is usually the same as the type of the magnitude
    /// (absolute value) of <tt>Scalar</tt>, but may differ for
    /// certain <tt>Scalar</tt> types.
    typedef typename Kokkos::Details::ArithTraits<impl_scalar_type>::mag_type mag_type;

    //! The Map specialization suitable for this CrsMatrix specialization.
    typedef Map<LocalOrdinal, GlobalOrdinal, Node> map_type;

    //! The Import specialization suitable for this CrsMatrix specialization.
    typedef Import<LocalOrdinal, GlobalOrdinal, Node> import_type;

    //! The Export specialization suitable for this CrsMatrix specialization.
    typedef Export<LocalOrdinal, GlobalOrdinal, Node> export_type;

    //! The CrsGraph specialization suitable for this CrsMatrix specialization.
    typedef CrsGraph<LocalOrdinal, GlobalOrdinal, Node, classic> crs_graph_type;

    //! The part of the sparse matrix's graph on each MPI process.
    typedef typename crs_graph_type::local_graph_type local_graph_type;

    /// \brief The specialization of Kokkos::CrsMatrix that represents
    ///   the part of the sparse matrix on each MPI process.
    typedef Kokkos::CrsMatrix<impl_scalar_type, LocalOrdinal, execution_space, void,
                              typename local_graph_type::size_type> local_matrix_type;

    //! DEPRECATED; use <tt>local_matrix_type::row_map_type</tt> instead.
    typedef typename local_matrix_type::row_map_type t_RowPtrs TPETRA_DEPRECATED;
    //! DEPRECATED; use <tt>local_matrix_type::row_map_type::non_const_type</tt> instead.
    typedef typename local_matrix_type::row_map_type::non_const_type t_RowPtrsNC TPETRA_DEPRECATED;
    //! DEPRECATED; use <tt>local_graph_type::entries_type::non_const_type</tt> instead.
    typedef typename local_graph_type::entries_type::non_const_type t_LocalOrdinal_1D TPETRA_DEPRECATED;
    //! DEPRECATED; use <tt>local_matrix_type::values_type</tt> instead.
    typedef typename local_matrix_type::values_type t_ValuesType TPETRA_DEPRECATED;

    //! DEPRECATED; use local_matrix_type instead.
    typedef local_matrix_type k_local_matrix_type TPETRA_DEPRECATED;

    //@}
    //! @name Constructors and destructor
    //@{

    /// \brief Constructor specifying fixed number of entries for each row.
    ///
    /// \param rowMap [in] Distribution of rows of the matrix.
    ///
    /// \param maxNumEntriesPerRow [in] Maximum number of matrix
    ///   entries per row.  If pftype==DynamicProfile, this is only a
    ///   hint, and you can set this to zero without affecting
    ///   correctness.  If pftype==StaticProfile, this sets the amount
    ///   of storage allocated, and you cannot exceed this number of
    ///   entries in any row.
    ///
    /// \param pftype [in] Whether to allocate storage dynamically
    ///   (DynamicProfile) or statically (StaticProfile).
    ///
    /// \param params [in/out] Optional list of parameters.  If not
    ///   null, any missing parameters will be filled in with their
    ///   default values.
    CrsMatrix (const Teuchos::RCP<const map_type>& rowMap,
               size_t maxNumEntriesPerRow,
               ProfileType pftype = DynamicProfile,
               const Teuchos::RCP<Teuchos::ParameterList>& params = Teuchos::null);

    /// \brief Constructor specifying (possibly different) number of entries in each row.
    ///
    /// \param rowMap [in] Distribution of rows of the matrix.
    ///
    /// \param NumEntriesPerRowToAlloc [in] Maximum number of matrix
    ///   entries to allocate for each row.  If
    ///   pftype==DynamicProfile, this is only a hint.  If
    ///   pftype==StaticProfile, this sets the amount of storage
    ///   allocated, and you cannot exceed the allocated number of
    ///   entries for any row.
    ///
    /// \param pftype [in] Whether to allocate storage dynamically
    ///   (DynamicProfile) or statically (StaticProfile).
    ///
    /// \param params [in/out] Optional list of parameters.  If not
    ///   null, any missing parameters will be filled in with their
    ///   default values.
    CrsMatrix (const Teuchos::RCP<const map_type>& rowMap,
               const Teuchos::ArrayRCP<const size_t>& NumEntriesPerRowToAlloc,
               ProfileType pftype = DynamicProfile,
               const Teuchos::RCP<Teuchos::ParameterList>& params = Teuchos::null);

    /// \brief Constructor specifying column Map and fixed number of entries for each row.
    ///
    /// The column Map will be used to filter any matrix entries
    /// inserted using insertLocalValues() or insertGlobalValues().
    ///
    /// \param rowMap [in] Distribution of rows of the matrix.
    ///
    /// \param colMap [in] Distribution of columns of the matrix.
    ///
    /// \param maxNumEntriesPerRow [in] Maximum number of matrix
    ///   entries per row.  If pftype==DynamicProfile, this is only a
    ///   hint, and you can set this to zero without affecting
    ///   correctness.  If pftype==StaticProfile, this sets the amount
    ///   of storage allocated, and you cannot exceed this number of
    ///   entries in any row.
    ///
    /// \param pftype [in] Whether to allocate storage dynamically
    ///   (DynamicProfile) or statically (StaticProfile).
    ///
    /// \param params [in/out] Optional list of parameters.  If not
    ///   null, any missing parameters will be filled in with their
    ///   default values.
    CrsMatrix (const Teuchos::RCP<const map_type>& rowMap,
               const Teuchos::RCP<const map_type>& colMap,
               size_t maxNumEntriesPerRow,
               ProfileType pftype = DynamicProfile,
               const Teuchos::RCP<Teuchos::ParameterList>& params = Teuchos::null);

    /// \brief Constructor specifying column Map and number of entries in each row.
    ///
    /// The column Map will be used to filter any matrix indices
    /// inserted using insertLocalValues() or insertGlobalValues().
    ///
    /// \param rowMap [in] Distribution of rows of the matrix.
    ///
    /// \param colMap [in] Distribution of columns of the matrix.
    ///
    /// \param NumEntriesPerRowToAlloc [in] Maximum number of matrix
    ///   entries to allocate for each row.  If
    ///   pftype==DynamicProfile, this is only a hint.  If
    ///   pftype==StaticProfile, this sets the amount of storage
    ///   allocated, and you cannot exceed the allocated number of
    ///   entries for any row.
    ///
    /// \param pftype [in] Whether to allocate storage dynamically
    ///   (DynamicProfile) or statically (StaticProfile).
    ///
    /// \param params [in/out] Optional list of parameters.  If not
    ///   null, any missing parameters will be filled in with their
    ///   default values.
    CrsMatrix (const Teuchos::RCP<const map_type>& rowMap,
               const Teuchos::RCP<const map_type>& colMap,
               const Teuchos::ArrayRCP<const size_t>& NumEntriesPerRowToAlloc,
               ProfileType pftype = DynamicProfile,
               const Teuchos::RCP<Teuchos::ParameterList>& params = Teuchos::null);

    /// \brief Constructor specifying a previously constructed graph.
    ///
    /// Calling this constructor fixes the graph structure of the
    /// sparse matrix.  We say in this case that the matrix has a
    /// "static graph."  If you create a CrsMatrix with this
    /// constructor, you are not allowed to insert new entries into
    /// the matrix, but you are allowed to change values in the
    /// matrix.
    ///
    /// The given graph must be fill complete.  Note that calling
    /// resumeFill() on the graph makes it not fill complete, even if
    /// you had previously called fillComplete() on the graph.  In
    /// that case, you must call fillComplete() on the graph again
    /// before invoking this CrsMatrix constructor.
    ///
    /// This constructor is marked \c explicit so that you can't
    /// create a CrsMatrix by accident when passing a CrsGraph into a
    /// function that takes a CrsMatrix.
    ///
    /// \param graph [in] The graph structure of the sparse matrix.
    ///   The graph <i>must</i> be fill complete.
    /// \param params [in/out] Optional list of parameters.  If not
    ///   null, any missing parameters will be filled in with their
    ///   default values.
    explicit CrsMatrix (const Teuchos::RCP<const crs_graph_type>& graph,
                        const Teuchos::RCP<Teuchos::ParameterList>& params = Teuchos::null);

    /// \brief Constructor specifying column Map and arrays containing
    ///   the matrix in sorted local indices.
    ///
    /// \param rowMap [in] Distribution of rows of the matrix.
    ///
    /// \param colMap [in] Distribution of columns of the matrix.
    ///
    /// \param rowPointers [in] The beginning of each row in the matrix,
    ///   as in a CSR "rowptr" array.  The length of this vector should be
    ///   equal to the number of rows in the graph, plus one.  This last
    ///   entry should store the nunber of nonzeros in the matrix.
    ///
    /// \param columnIndices [in] The local indices of the columns,
    ///   as in a CSR "colind" array.  The length of this vector
    ///   should be equal to the number of unknowns in the matrix.
    ///
    /// \param values [in] The local entries in the matrix,
    ///   as in a CSR "vals" array.  The length of this vector
    ///   should be equal to the number of unknowns in the matrix.
    ///
    /// \param params [in/out] Optional list of parameters.  If not
    ///   null, any missing parameters will be filled in with their
    ///   default values.
    CrsMatrix (const Teuchos::RCP<const map_type>& rowMap,
               const Teuchos::RCP<const map_type>& colMap,
               const typename local_matrix_type::row_map_type& rowPointers,
               const typename local_graph_type::entries_type::non_const_type& columnIndices,
               const typename local_matrix_type::values_type& values,
               const Teuchos::RCP<Teuchos::ParameterList>& params = null);

    /// \brief Constructor specifying column Map and arrays containing
    ///   the matrix in sorted, local ids.
    ///
    /// \param rowMap [in] Distribution of rows of the matrix.
    ///
    /// \param colMap [in] Distribution of columns of the matrix.
    ///
    /// \param rowPointers [in] The beginning of each row in the matrix,
    ///   as in a CSR "rowptr" array.  The length of this vector should be
    ///   equal to the number of rows in the graph, plus one.  This last
    ///   entry should store the nunber of nonzeros in the matrix.
    ///
    /// \param columnIndices [in] The local indices of the columns,
    ///   as in a CSR "colind" array.  The length of this vector
    ///   should be equal to the number of unknowns in the matrix.
    ///
    /// \param values [in] The local entries in the matrix,
    ///   as in a CSR "vals" array.  The length of this vector
    ///   should be equal to the number of unknowns in the matrix.
    ///
    /// \param params [in/out] Optional list of parameters.  If not
    ///   null, any missing parameters will be filled in with their
    ///   default values.
    CrsMatrix (const Teuchos::RCP<const map_type>& rowMap,
               const Teuchos::RCP<const map_type>& colMap,
               const Teuchos::ArrayRCP<size_t>& rowPointers,
               const Teuchos::ArrayRCP<LocalOrdinal>& columnIndices,
               const Teuchos::ArrayRCP<Scalar>& values,
               const Teuchos::RCP<ParameterList>& params = null);

    /// \brief Constructor specifying column Map and a local matrix,
    ///   which the resulting CrsMatrix views.
    ///
    /// Unlike most other CrsMatrix constructors, successful
    /// completion of this constructor will result in a fill-complete
    /// matrix.
    ///
    /// \param rowMap [in] Distribution of rows of the matrix.
    ///
    /// \param colMap [in] Distribution of columns of the matrix.
    ///
    /// \param lclMatrix [in] A local CrsMatrix containing all local
    ///    matrix values as well as a local graph.  The graph's local
    ///    row indices must come from the specified row Map, and its
    ///    local column indices must come from the specified column
    ///    Map.
    ///
    /// \param params [in/out] Optional list of parameters.  If not
    ///   null, any missing parameters will be filled in with their
    ///   default values.
    CrsMatrix (const Teuchos::RCP<const map_type>& rowMap,
               const Teuchos::RCP<const map_type>& colMap,
               const local_matrix_type& lclMatrix,
               const Teuchos::RCP<Teuchos::ParameterList>& params = null);

    // This friend declaration makes the clone() method work.
    template <class S2, class LO2, class GO2, class N2, const bool isClassic>
    friend class CrsMatrix;

    /// \brief Create a deep copy of this CrsMatrix, where the copy
    ///   may have a different Node type.
    ///
    /// \param node2 [in] Kokkos Node instance for the returned copy.
    /// \param params [in/out] Optional list of parameters. If not
    ///   null, any missing parameters will be filled in with their
    ///   default values.
    ///
    /// Parameters to \c params:
    /// - "Static profile clone" [boolean, default: true] If \c true,
    ///   create the copy with a static allocation profile. If false,
    ///   use a dynamic allocation profile.
    /// - "Locally indexed clone" [boolean] If \c true, fill clone
    ///   using this matrix's column Map and local indices.  This
    ///   matrix must have a column Map in order for this to work.  If
    ///   false, fill clone using global indices.  By default, this
    ///   will use local indices only if this matrix is using local
    ///   indices.
    /// - "fillComplete clone" [boolean, default: true] If \c true,
    ///   call fillComplete() on the cloned CrsMatrix object, with
    ///   parameters from the input parameters' "CrsMatrix" sublist
    ///   The domain Map and range Map passed to fillComplete() are
    ///   those of the map being cloned, if they exist. Otherwise, the
    ///   row Map is used.
    template <class Node2>
    Teuchos::RCP<CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node2, Node2::classic> >
    clone (const Teuchos::RCP<Node2>& node2,
           const Teuchos::RCP<Teuchos::ParameterList>& params = null) const
    {
      using Teuchos::ArrayRCP;
      using Teuchos::null;
      using Teuchos::ParameterList;
      using Teuchos::RCP;
      using Teuchos::rcp;
      using Teuchos::sublist;
      typedef CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node2, Node2::classic> CrsMatrix2;
      typedef Map<LocalOrdinal, GlobalOrdinal, Node2> Map2;
      const char tfecfFuncName[] = "clone";

      // Get parameter values.  Set them initially to their default values.
      bool fillCompleteClone = true;
      bool useLocalIndices = this->hasColMap ();
      ProfileType pftype = StaticProfile;
      if (! params.is_null ()) {
        fillCompleteClone = params->get ("fillComplete clone", fillCompleteClone);
        useLocalIndices = params->get ("Locally indexed clone", useLocalIndices);

        bool staticProfileClone = true;
        staticProfileClone = params->get ("Static profile clone", staticProfileClone);
        pftype = staticProfileClone ? StaticProfile : DynamicProfile;
      }

      TEUCHOS_TEST_FOR_EXCEPTION_CLASS_FUNC(
        ! this->hasColMap () && useLocalIndices, std::runtime_error,
        ": You requested that the returned clone have local indices, but the "
        "the source matrix does not have a column Map yet.");

      RCP<const Map2> clonedRowMap = this->getRowMap ()->template clone<Node2> (node2);

      // Get an upper bound on the number of entries per row.
      RCP<CrsMatrix2> clonedMatrix;
      ArrayRCP<const size_t> numEntriesPerRow;
      size_t numEntriesForAll = 0;
      bool boundSameForAllLocalRows = false;
      staticGraph_->getNumEntriesPerLocalRowUpperBound (numEntriesPerRow,
                                                        numEntriesForAll,
                                                        boundSameForAllLocalRows);
      TEUCHOS_TEST_FOR_EXCEPTION_CLASS_FUNC(
        numEntriesForAll != 0 &&
        static_cast<size_t> (numEntriesPerRow.size ()) != 0,
        std::logic_error, ": getNumEntriesPerLocalRowUpperBound returned a "
        "nonzero numEntriesForAll = " << numEntriesForAll << " , as well as a "
        "numEntriesPerRow array of nonzero length " << numEntriesPerRow.size ()
        << ".  This should never happen.  Please report this bug to the Tpetra "
        "developers.");
      TEUCHOS_TEST_FOR_EXCEPTION_CLASS_FUNC(
        numEntriesForAll != 0 && ! boundSameForAllLocalRows,
        std::logic_error, ": getNumEntriesPerLocalRowUpperBound returned a "
        "nonzero numEntriesForAll = " << numEntriesForAll << " , but claims "
        "(via its third output value) that the upper bound is not the same for "
        "all rows.  This should never happen.  Please report this bug to the "
        "Tpetra developers.");
      TEUCHOS_TEST_FOR_EXCEPTION_CLASS_FUNC(
        numEntriesPerRow.size () != 0 && boundSameForAllLocalRows,
        std::logic_error, ": getNumEntriesPerLocalRowUpperBound returned a "
        "numEntriesPerRow array of nonzero length " << numEntriesPerRow.size ()
        << ", but claims (via its third output value) that the upper bound is "
        "not the same for all rows.  This should never happen.  Please report "
        "this bug to the Tpetra developers.");

      RCP<ParameterList> matParams =
        params.is_null () ? null : sublist (params,"CrsMatrix");
      if (useLocalIndices) {
        RCP<const Map2> clonedColMap =
          this->getColMap ()->template clone<Node2> (node2);
        if (numEntriesPerRow.is_null ()) {
          clonedMatrix = rcp (new CrsMatrix2 (clonedRowMap, clonedColMap,
                                              numEntriesForAll, pftype,
                                              matParams));
        }
        else {
          clonedMatrix = rcp (new CrsMatrix2 (clonedRowMap, clonedColMap,
                                              numEntriesPerRow, pftype,
                                              matParams));
        }
      }
      else {
        if (numEntriesPerRow.is_null ()) {
          clonedMatrix = rcp (new CrsMatrix2 (clonedRowMap, numEntriesForAll,
                                              pftype, matParams));
        }
        else {
          clonedMatrix = rcp (new CrsMatrix2 (clonedRowMap, numEntriesPerRow,
                                              pftype, matParams));
        }
      }
      // done with these
      numEntriesPerRow = Teuchos::null;
      numEntriesForAll = 0;

      if (useLocalIndices) {
        clonedMatrix->allocateValues (LocalIndices,
                                      CrsMatrix2::GraphNotYetAllocated);
        if (this->isLocallyIndexed ()) {
          ArrayView<const LocalOrdinal> linds;
          ArrayView<const Scalar> vals;
          for (LocalOrdinal lrow = clonedRowMap->getMinLocalIndex ();
               lrow <= clonedRowMap->getMaxLocalIndex ();
               ++lrow) {
            this->getLocalRowView (lrow, linds, vals);
            if (linds.size ()) {
              clonedMatrix->insertLocalValues (lrow, linds, vals);
            }
          }
        }
        else { // this->isGloballyIndexed()
          Array<LocalOrdinal> linds;
          Array<Scalar> vals;
          for (LocalOrdinal lrow = clonedRowMap->getMinLocalIndex ();
               lrow <= clonedRowMap->getMaxLocalIndex ();
               ++lrow) {
            size_t theNumEntries = this->getNumEntriesInLocalRow (lrow);
            if (theNumEntries > static_cast<size_t> (linds.size ())) {
              linds.resize (theNumEntries);
            }
            if (theNumEntries > static_cast<size_t> (vals.size ())) {
              vals.resize (theNumEntries);
            }
            this->getLocalRowCopy (clonedRowMap->getGlobalElement (lrow),
                                   linds (), vals (), theNumEntries);
            if (theNumEntries != 0) {
              clonedMatrix->insertLocalValues (lrow, linds (0, theNumEntries),
                                               vals (0, theNumEntries));
            }
          }
        }
      }
      else { // useGlobalIndices
        clonedMatrix->allocateValues (GlobalIndices,
                                      CrsMatrix2::GraphNotYetAllocated);
        if (this->isGloballyIndexed ()) {
          ArrayView<const GlobalOrdinal> ginds;
          ArrayView<const Scalar> vals;
          for (GlobalOrdinal grow = clonedRowMap->getMinGlobalIndex ();
               grow <= clonedRowMap->getMaxGlobalIndex ();
               ++grow) {
            this->getGlobalRowView (grow, ginds, vals);
            if (ginds.size () > 0) {
              clonedMatrix->insertGlobalValues (grow, ginds, vals);
            }
          }
        }
        else { // this->isLocallyIndexed()
          Array<GlobalOrdinal> ginds;
          Array<Scalar> vals;
          for (GlobalOrdinal grow = clonedRowMap->getMinGlobalIndex ();
               grow <= clonedRowMap->getMaxGlobalIndex ();
               ++grow) {
            size_t theNumEntries = this->getNumEntriesInGlobalRow (grow);
            if (theNumEntries > static_cast<size_t> (ginds.size ())) {
              ginds.resize (theNumEntries);
            }
            if (theNumEntries > static_cast<size_t> (vals.size ())) {
              vals.resize (theNumEntries);
            }
            this->getGlobalRowCopy (grow, ginds (), vals (), theNumEntries);
            if (theNumEntries != 0) {
              clonedMatrix->insertGlobalValues (grow, ginds (0, theNumEntries),
                                                vals (0, theNumEntries));
            }
          }
        }
      }

      if (fillCompleteClone) {
        RCP<const Map2> clonedRangeMap;
        RCP<const Map2> clonedDomainMap;
        try {
          if (! this->getRangeMap ().is_null () &&
              this->getRangeMap () != clonedRowMap) {
            clonedRangeMap  = this->getRangeMap ()->template clone<Node2> (node2);
          }
          else {
            clonedRangeMap = clonedRowMap;
          }
          if (! this->getDomainMap ().is_null () &&
              this->getDomainMap () != clonedRowMap) {
            clonedDomainMap = this->getDomainMap ()->template clone<Node2> (node2);
          }
          else {
            clonedDomainMap = clonedRowMap;
          }
        }
        catch (std::exception &e) {
          const bool caughtExceptionOnClone = true;
          TEUCHOS_TEST_FOR_EXCEPTION
            (caughtExceptionOnClone, std::runtime_error,
             Teuchos::typeName (*this) << "::clone: Caught the following "
             "exception while cloning range and domain Maps on a clone of "
             "type " << Teuchos::typeName (*clonedMatrix) << ": " << e.what ());
        }

        RCP<ParameterList> fillparams =
          params.is_null () ? Teuchos::null : sublist (params, "fillComplete");
        try {
          clonedMatrix->fillComplete (clonedDomainMap, clonedRangeMap,
                                      fillparams);
        }
        catch (std::exception &e) {
          const bool caughtExceptionOnClone = true;
          TEUCHOS_TEST_FOR_EXCEPTION(
            caughtExceptionOnClone, std::runtime_error,
            Teuchos::typeName (*this) << "::clone: Caught the following "
            "exception while calling fillComplete() on a clone of type "
            << Teuchos::typeName (*clonedMatrix) << ": " << e.what ());
        }
      }
      return clonedMatrix;
    }

    //! Destructor.
    virtual ~CrsMatrix ();

    //@}
    //! @name Methods for inserting, modifying, or removing entries
    //@{

    /// \brief Insert one or more entries into the matrix, using global indices.
    ///
    /// \param globalRow [in] Global index of the row into which to
    ///   insert the entries.
    /// \param cols [in] Global indices of the columns into which
    ///   to insert the entries.
    /// \param values [in] Values to insert into the above columns.
    ///
    /// For all k in 0, ..., <tt>col.size()-1</tt>, insert the value
    /// <tt>values[k]</tt> into entry <tt>(globalRow, cols[k])</tt> of
    /// the matrix.  If that entry already exists, add the new value
    /// to the old value.
    ///
    /// This is a local operation.  It does not communicate (using
    /// MPI).  If row \c globalRow is owned by the calling process,
    /// the entries will be inserted immediately.  Otherwise, if that
    /// row is <i>not</i> owned by the calling process, then the
    /// entries will be stored locally for now, and only communicated
    /// to the process that owns the row when either fillComplete() or
    /// globalAssemble() is called.  If that process already has an
    /// entry, the incoming value will be added to the old value, just
    /// as if it were inserted on the owning process.
    //
    /// If the matrix has a column Map (<tt>hasColMap() == true</tt>),
    /// and if globalRow is owned by process p, then it is forbidden
    /// to insert column indices that are not in the column Map on
    /// process p.  Tpetra will test the input column indices to
    /// ensure this is the case, but if \c globalRow is not owned by
    /// the calling process, the test will be deferred until the next
    /// call to globalAssemble() or fillComplete().
    ///
    /// \warning The behavior described in the above paragraph differs
    ///   from that of Epetra.  If the matrix has a column Map,
    ///   Epetra_CrsMatrix "filters" column indices not in the column
    ///   Map.  Many users found this confusing, so we changed it so
    ///   that nonowned column indices are forbidden.
    ///
    /// It is legal to call this method whether the matrix's column
    /// indices are globally or locally indexed.  If the matrix's
    /// column indices are locally indexed (<tt>isLocallyIndexed() ==
    /// true</tt>), then this method will convert the input global
    /// column indices to local column indices.
    ///
    /// For better performance when filling entries into a sparse
    /// matrix, consider the following tips:
    /// <ol>
    /// <li>Use local indices (e.g., insertLocalValues()) if you know
    ///   the column Map in advance.  Converting global indices to
    ///   local indices is expensive.  Of course, if you don't know
    ///   the column Map in advance, you must use global indices.</li>
    /// <li>When invoking the CrsMatrix constructor, give the best
    ///   possible upper bounds on the number of entries in each row
    ///   of the matrix.  This will avoid expensive reallocation if
    ///   your bound was not large enough.</li>
    /// <li>If your upper bound on the number of entries in each row
    ///   will always be correct, create the matrix with
    ///   StaticProfile.  This uses a faster and more compact data
    ///   structure to store the matrix.</li>
    /// <li>If you plan to reuse a matrix's graph structure, but
    ///   change its values, in repeated fillComplete() / resumeFill()
    ///   cycles, you can get the best performance by creating the
    ///   matrix with a const CrsGraph.  Do this by using the
    ///   CrsMatrix constructor that accepts an RCP of a const
    ///   CrsGraph.  If you do this, you must use the "replace" or
    ///   "sumInto" methods to change the values of the matrix; you
    ///   may not use insertGlobalValues() or
    ///   insertLocalValues().</li>
    /// </ol>
    void
    insertGlobalValues (const GlobalOrdinal globalRow,
                        const Teuchos::ArrayView<const GlobalOrdinal>& cols,
                        const Teuchos::ArrayView<const Scalar>& vals);

    /// \brief Insert one or more entries into the matrix, using local indices.
    ///
    /// \param LocalRow [in] Local index of the row into which to
    ///   insert the entries.  It must be owned by the row Map on the
    ///   calling process.
    /// \param cols [in] Local indices of the columns into which to
    ///   insert the entries.  All of the column indices must be owned
    ///   by the column Map on the calling process.
    /// \param values [in] Values to insert into the above columns.
    ///
    /// For all k in 0, ..., <tt>cols.size()-1</tt>, insert the value
    /// <tt>values[k]</tt> into entry <tt>(globalRow, cols[k])</tt> of
    /// the matrix.  If that entry already exists, add the new value
    /// to the old value.
    ///
    /// In order to call this method, the matrix must be locally
    /// indexed, and it must have a column Map.
    ///
    /// For better performance when filling entries into a sparse
    /// matrix, consider the following tips:
    /// <ol>
    /// <li>When invoking the CrsMatrix constructor, give the best
    ///   possible upper bounds on the number of entries in each row
    ///   of the matrix.  This will avoid expensive reallocation if
    ///   your bound was not large enough.</li>
    /// <li>If your upper bound on the number of entries in each row
    ///   will always be correct, create the matrix with
    ///   StaticProfile.  This uses a faster and more compact data
    ///   structure to store the matrix.</li>
    /// <li>If you plan to reuse a matrix's graph structure, but
    ///   change its values, in repeated fillComplete() / resumeFill()
    ///   cycles, you can get the best performance by creating the
    ///   matrix with a const CrsGraph.  Do this by using the
    ///   CrsMatrix constructor that accepts an RCP of a const
    ///   CrsGraph.  If you do this, you must use the "replace" or
    ///   "sumInto" methods to change the values of the matrix; you
    ///   may not use insertGlobalValues() or
    ///   insertLocalValues().</li>
    /// </ol>
    void
    insertLocalValues (const LocalOrdinal localRow,
                       const ArrayView<const LocalOrdinal> &cols,
                       const ArrayView<const Scalar> &vals);

    /// \brief Replace one or more entries' values, using global indices.
    ///
    /// \param globalRow [in] Global index of the row in which to
    ///   replace the entries.  This row <i>must</i> be owned by the
    ///   calling process.
    /// \param cols [in] Global indices of the columns in which to
    ///   replace the entries.
    /// \param vals [in] Values to use for replacing the entries.
    ///
    /// For all k in 0, ..., <tt>cols.size()-1</tt>, replace the value
    /// at entry <tt>(globalRow, cols[k])</tt> of the matrix with
    /// <tt>vals[k]</tt>.  That entry must exist in the matrix
    /// already.
    ///
    /// If <tt>(globalRow, cols[k])</tt> corresponds to an entry that
    /// is duplicated in this matrix row (likely because it was
    /// inserted more than once and fillComplete() has not been called
    /// in the interim), the behavior of this method is not defined.
    ///
    /// \return The number of indices for which values were actually
    ///   replaced; the number of "correct" indices.
    ///
    /// If the returned value N satisfies
    ///
    /// <tt>0 <= N < cols.size()</tt>,
    ///
    /// then <tt>cols.size() - N</tt> of the entries of <tt>cols</tt>
    /// are not valid global column indices.  If the returned value is
    /// Teuchos::OrdinalTraits<LocalOrdinal>::invalid(), then at least
    /// one of the following is true:
    ///   <ul>
    ///   <li> <tt>! isFillActive ()</tt> </li>
    ///   <li> <tt> cols.size () != vals.size ()</tt> </li>
    ///   </ul>
    LocalOrdinal
    replaceGlobalValues (GlobalOrdinal globalRow,
                         const ArrayView<const GlobalOrdinal>& cols,
                         const ArrayView<const Scalar>& vals);

    /// \brief Replace one or more entries' values, using local indices.
    ///
    /// \param localRow [in] local index of the row in which to
    ///   replace the entries.  This row <i>must</i> be owned by the
    ///   calling process.
    /// \param cols [in] Local indices of the columns in which to
    ///   replace the entries.
    /// \param vals [in] Values to use for replacing the entries.
    ///
    /// For all k in 0, ..., <tt>cols.size()-1</tt>, replace the value
    /// at entry <tt>(localRow, cols[k])</tt> of the matrix with
    /// <tt>vals[k]</tt>.  That entry must exist in the matrix
    /// already.
    ///
    /// \return The number of indices for which values were actually
    ///   replaced; the number of "correct" indices.
    ///
    /// If the returned value N satisfies
    ///
    /// <tt>0 <= N < cols.size()</tt>,
    ///
    /// then <tt>cols.size() - N</tt> of the entries of <tt>cols</tt>
    /// are not valid local column indices.  If the returned value is
    /// Teuchos::OrdinalTraits<LocalOrdinal>::invalid(), then at least
    /// one of the following is true:
    ///   <ul>
    ///   <li> <tt>! isFillActive ()</tt> </li>
    ///   <li> <tt>! hasColMap ()</tt> </li>
    ///   <li> <tt> cols.size () != vals.size ()</tt> </li>
    ///   </ul>
    LocalOrdinal
    replaceLocalValues (const LocalOrdinal localRow,
                        const ArrayView<const LocalOrdinal>& cols,
                        const ArrayView<const Scalar>& vals);

    /// \brief Sum into one or more sparse matrix entries, using global indices.
    ///
    /// This is a local operation; it does not involve communication.
    /// However, if you sum into rows not owned by the calling
    /// process, it may result in future communication in
    /// globalAssemble() (which is called by fillComplete()).
    ///
    /// If \c globalRow is owned by the calling process, then this
    /// method performs the sum-into operation right away.  Otherwise,
    /// if the row is <i>not</i> owned by the calling process, this
    /// method defers the sum-into operation until globalAssemble().
    /// That method communicates data for nonowned rows to the
    /// processes that own those rows.  Then, globalAssemble() does
    /// one of the following:
    /// - It calls insertGlobalValues() for that data if the matrix
    ///   has a dynamic graph.
    /// - It calls sumIntoGlobalValues() for that data if the matrix
    ///   has a static graph.  The matrix silently ignores
    ///   (row,column) pairs that do not exist in the graph.
    ///
    /// \param globalRow [in] The global index of the row in which to
    ///   sum into the matrix entries.
    /// \param cols [in] One or more column indices.
    /// \param vals [in] One or more values corresponding to those
    ///   column indices.  <tt>vals[k]</tt> corresponds to
    ///   <tt>cols[k]</tt>.
    ///
    /// \return The number of indices for which values were actually
    ///   modified; the number of "correct" indices.
    ///
    /// This method has the same preconditions and return value
    /// meaning as replaceGlobalValues() (which see).
    LocalOrdinal
    sumIntoGlobalValues (const GlobalOrdinal globalRow,
                         const ArrayView<const GlobalOrdinal> &cols,
                         const ArrayView<const Scalar>        &vals);

    /// \brief Sum into one or more sparse matrix entries, using local indices.
    ///
    /// \param localRow [in] Local index of a row.  This row
    ///   <i>must</i> be owned by the calling process.
    /// \param cols [in] Local indices of the columns whose entries we
    ///   want to modify.
    /// \param vals [in] Values corresponding to the above column
    ///   indices.  <tt>vals[k]</tt> corresponds to <tt>cols[k]</tt>.
    ///
    /// \return The number of indices for which values were actually
    ///   modified; the number of "correct" indices.
    ///
    /// This method has the same preconditions and return value
    /// meaning as replaceLocalValues() (which see).
    LocalOrdinal
    sumIntoLocalValues (const LocalOrdinal localRow,
                        const ArrayView<const LocalOrdinal>& cols,
                        const ArrayView<const Scalar>& vals);

    //! Set all matrix entries equal to \c alpha.
    void setAllToScalar (const Scalar &alpha);

    //! Scale the matrix's values: <tt>this := alpha*this</tt>.
    void scale (const Scalar &alpha);

    //! Sets the 1D pointer arrays of the graph.
    /**
       \pre <tt>hasColMap() == true</tt>
       \pre <tt>getGraph() != Teuchos::null</tt>
       \pre No insert/sum routines have been called

       \warning This method is intended for expert developer use only, and should never be called by user code.
    */
    void
    setAllValues (const typename local_matrix_type::row_map_type& rowPointers,
                  const typename local_graph_type::entries_type::non_const_type& columnIndices,
                  const typename local_matrix_type::values_type& values);

    //! Sets the 1D pointer arrays of the graph.
    /**
       \pre <tt>hasColMap() == true</tt>
       \pre <tt>getGraph() != Teuchos::null</tt>
       \pre No insert/sum routines have been called

       FIXME (mfh 24 Feb 2014) Why is the third prerequisites above
       different than the third prerequisite from the original class?
       The original is that fillComplete() must have been called.

       \warning This method is intended for expert developer use only, and should never be called by user code.
    */
    void
    setAllValues (const Teuchos::ArrayRCP<size_t>& rowPointers,
                  const Teuchos::ArrayRCP<LocalOrdinal>& columnIndices,
                  const Teuchos::ArrayRCP<Scalar>& values);

    void
    getAllValues (Teuchos::ArrayRCP<const size_t>& rowPointers,
                  Teuchos::ArrayRCP<const LocalOrdinal>& columnIndices,
                  Teuchos::ArrayRCP<const Scalar>& values) const;

    //@}
    //! @name Transformational methods
    //@{

    /// \brief Communicate nonlocal contributions to other processes.
    ///
    /// Users do not normally need to call this method.  fillComplete
    /// always calls this method, unless you specifically tell
    /// fillComplete to do otherwise by setting its "No Nonlocal
    /// Changes" parameter to \c true.  Thus, it suffices to call
    /// fillComplete.
    ///
    /// Methods like insertGlobalValues and sumIntoGlobalValues let
    /// you add or modify entries in rows that are not owned by the
    /// calling process.  These entries are called "nonlocal
    /// contributions."  The methods that allow nonlocal contributions
    /// store the entries on the calling process, until globalAssemble
    /// is called.  globalAssemble sends these nonlocal contributions
    /// to the process(es) that own them, where they then become part
    /// of the matrix.
    ///
    /// This method only does global assembly if there are nonlocal
    /// entries on at least one process.  It does an all-reduce to
    /// find that out.  If not, it returns early, without doing any
    /// more communication or work.
    ///
    /// If you previously inserted into a row which is not owned by
    /// <i>any</i> process in the row Map, the behavior of this method
    /// is undefined.  It may detect the invalid row indices and throw
    /// an exception, or it may silently drop the entries inserted
    /// into invalid rows.  Behavior may vary, depending on whether
    /// Tpetra was built with debug checking enabled.
    void globalAssemble();

    /// \brief Resume operations that may change the values or
    ///   structure of the matrix.
    ///
    /// This method must be called as a collective operation.
    ///
    /// Calling fillComplete "freezes" both the values and the
    /// structure of the matrix.  If you want to modify the matrix
    /// again, you must first call resumeFill.  You then may not call
    /// resumeFill again on that matrix until you first call
    /// fillComplete.  You may make sequences of fillComplete,
    /// resumeFill calls as many times as you wish.
    ///
    /// \post <tt>isFillActive() && ! isFillComplete()</tt>
    void resumeFill (const RCP<ParameterList>& params = null);

    /*! \brief Signal that data entry is complete, specifying domain and range maps.

      Off-node indices are distributed (via globalAssemble()), indices are sorted, redundant indices are eliminated, and global indices are transformed to local indices.

      \pre  <tt>isFillActive() == true<tt>
      \pre <tt>isFillComplete()() == false<tt>

      \post <tt>isFillActive() == false<tt>
      \post <tt>isFillComplete() == true<tt>

      Parameters:

      - "No Nonlocal Changes" (\c bool): Default is false.  If true,
        the caller promises that no modifications to nonowned rows
        have happened on any process since the last call to
        fillComplete.  This saves a global all-reduce to check whether
        any process did a nonlocal insert.  Nonlocal changes include
        any sumIntoGlobalValues or insertGlobalValues call with a row
        index that is not in the row Map of the calling process.

      - "Sort column Map ghost GIDs" (\c bool): Default is true.
        makeColMap() (which fillComplete may call) always groups
        remote GIDs by process rank, so that all remote GIDs with the
        same owning rank occur contiguously.  By default, it always
        sorts remote GIDs in increasing order within those groups.
        This behavior differs from Epetra, which does not sort remote
        GIDs with the same owning process.  If you don't want to sort
        (for compatibility with Epetra), set this parameter to \c
        false.  This parameter only takes effect if the matrix owns
        the graph.  This is an expert mode parameter ONLY.  We make no
        promises about backwards compatibility of this parameter.  It
        may change or disappear at any time.
    */
    void
    fillComplete (const RCP<const map_type>& domainMap,
                  const RCP<const map_type>& rangeMap,
                  const RCP<ParameterList>& params = null);

    /*! \brief Signal that data entry is complete.

      Off-node entries are distributed (via globalAssemble()), repeated entries are summed, and global indices are transformed to local indices.

      \note This method calls fillComplete( getRowMap(), getRowMap(), os ).

      \pre  <tt>isFillActive() == true<tt>
      \pre <tt>isFillComplete()() == false<tt>

      \post <tt>isFillActive() == false<tt>
      \post <tt>isFillComplete() == true<tt>
    */
    void fillComplete (const RCP<ParameterList>& params = null);

    /// \brief Perform a fillComplete on a matrix that already has data.
    ///
    /// The matrix must already have filled local 1-D storage
    /// (k_clInds1D_ and k_rowPtrs_ for the graph, and k_values1D_ in
    /// the matrix).  If the matrix has been constructed in any other
    /// way, this method will throw an exception.  This routine is
    /// needed to support other Trilinos packages and should not be
    /// called by ordinary users.
    ///
    /// \warning This method is intended for expert developer use
    ///   only, and should never be called by user code.
    void
    expertStaticFillComplete (const RCP<const map_type>& domainMap,
                              const RCP<const map_type>& rangeMap,
                              const RCP<const import_type>& importer = Teuchos::null,
                              const RCP<const export_type>& exporter = Teuchos::null,
                              const RCP<ParameterList>& params = Teuchos::null);

    /// \brief Replace the matrix's column Map with the given Map.
    ///
    /// \param newColMap [in] New column Map.  Must be nonnull.
    ///
    /// \pre The matrix must have no entries inserted yet, on any
    ///   process in the row Map's communicator.
    ///
    /// \pre The matrix must not have been created with a constant
    ///   (a.k.a. "static") CrsGraph.
    void
    replaceColMap (const Teuchos::RCP<const map_type>& newColMap);

    /// \brief Reindex the column indices in place, and replace the
    ///   column Map.  Optionally, replace the Import object as well.
    ///
    /// \pre The matrix is <i>not</i> fill complete:
    ///   <tt>! this->isFillComplete() </tt>.
    /// \pre Either the input graph is \c NULL, or it is <i>not</i>
    ///   fill complete:
    ///   <tt>graph == NULL || ! graph->isFillComplete()</tt>.
    /// \pre On every calling process, every index owned by the
    ///   current column Map must also be owned by the new column Map.
    /// \pre If the new Import object is provided, the new Import
    ///   object's source Map must be the same as the current domain
    ///   Map, and the new Import's target Map must be the same as the
    ///   new column Map.
    ///
    /// \param graph [in] The matrix's graph.  If you don't provide
    ///   this (i.e., if <tt>graph == NULL</tt>), then the matrix must
    ///   own its graph, which will be modified in place.  (That is,
    ///   you must <i>not</i> have created the matrix with a constant
    ///   graph.)  If you <i>do</i> provide this, then the method will
    ///   assume that it is the same graph as the matrix's graph, and
    ///   the provided graph will be modified in place.
    /// \param newColMap [in] New column Map.  Must be nonnull.
    /// \param newImport [in] New Import object.  Optional; computed
    ///   if not provided or if null.  Computing an Import is
    ///   expensive, so it is worth providing this if you can.
    /// \param sortEachRow [in] If true, sort the indices (and their
    ///   corresponding values) in each row after reindexing.
    ///
    /// Why would you want to use this method?  Well, for example, you
    /// might need to use an Ifpack2 preconditioner that only accepts
    /// a matrix with a certain kind of column Map.  Your matrix has
    /// the wrong kind of column Map, but you know how to compute the
    /// right kind of column Map.  You might also know an efficient
    /// way to compute an Import object from the current domain Map to
    /// the new column Map.  (For an instance of the latter, see the
    /// Details::makeOptimizedColMapAndImport function in
    /// Tpetra_Details_makeOptimizedColMap.hpp.)
    ///
    /// Suppose that you created this CrsMatrix with a constant graph;
    /// that is, that you called the CrsMatrix constructor that takes
    /// a CrsGraph as input:
    ///
    /// \code
    /// RCP<CrsGraph<> > G (new CrsGraph<> (rowMap, origColMap, ...));
    /// // ... fill G ...
    /// G->fillComplete (domMap, ranMap);
    /// CrsMatrix<> A (G);
    /// // ... fill A ...
    /// \endcode
    ///
    /// Now suppose that you want to give A to a preconditioner that
    /// can't handle a matrix with an arbitrary column Map (in the
    /// example above, <tt>origColMap</tt>).  You first must create a
    /// new suitable column Map <tt>newColMap</tt>, and optionally a
    /// new Import object <tt>newImport</tt> from the matrix's current
    /// domain Map to the new column Map.  Then, call this method,
    /// passing in G (which must <i>not</i> be fill complete) while
    /// the matrix is <i>not</i> fill complete.  Be sure to save the
    /// graph's <i>original</i> Import object; you'll need that later.
    ///
    /// \code
    /// RCP<const CrsGraph<>::import_type> origImport = G->getImporter ();
    /// G->resumeFill ();
    /// A.reindexColumns (G.getRawPtr (), newColMap, newImport);
    /// G.fillComplete (domMap, ranMap);
    /// A.fillComplete (domMap, ranMap);
    /// \endcode
    ///
    /// Now you may give the matrix A to the preconditioner in
    /// question.  After doing so, and after you solve the linear
    /// system using the preconditioner, you might want to put the
    /// matrix back like it originally was.  You can do that, too!
    ///
    /// \code
    /// A.resumeFill ();
    /// G->resumeFill ();
    /// A.reindexColumns (G.getRawPtr (), origColMap, origImport);
    /// G->fillComplete (domMap, ranMap);
    /// A->fillComplete (domMap, ranMap);
    /// \endcode
    void
    reindexColumns (crs_graph_type* const graph,
                    const Teuchos::RCP<const map_type>& newColMap,
                    const Teuchos::RCP<const import_type>& newImport = Teuchos::null,
                    const bool sortEachRow = true);

    /// \brief Replace the current domain Map and Import with the given objects.
    ///
    /// \param newDomainMap [in] New domain Map.  Must be nonnull.
    /// \param newImporter [in] Optional Import object.  If null, we
    ///   will compute it.
    ///
    /// \pre The matrix must be fill complete:
    ///   <tt>isFillComplete() == true</tt>.
    /// \pre If the Import is provided, its target Map must be the
    ///   same as the column Map of the matrix.
    /// \pre If the Import is provided, its source Map must be the
    ///   same as the provided new domain Map.
    void
    replaceDomainMapAndImporter (const Teuchos::RCP<const map_type>& newDomainMap,
                                 Teuchos::RCP<const import_type>& newImporter);

    /// \brief Remove processes owning zero rows from the Maps and their communicator.
    ///
    /// \warning This method is ONLY for use by experts.  We highly
    ///   recommend using the nonmember function of the same name
    ///   defined in Tpetra_DistObject_decl.hpp.
    ///
    /// \warning We make NO promises of backwards compatibility.
    ///   This method may change or disappear at any time.
    ///
    /// \param newMap [in] This <i>must</i> be the result of calling
    ///   the removeEmptyProcesses() method on the row Map.  If it
    ///   is not, this method's behavior is undefined.  This pointer
    ///   will be null on excluded processes.
    virtual void
    removeEmptyProcessesInPlace (const Teuchos::RCP<const map_type>& newMap);

    //@}
    //! @name Methods implementing RowMatrix
    //@{

    //! The communicator over which the matrix is distributed.
    Teuchos::RCP<const Teuchos::Comm<int> > getComm() const;

    //! The Kokkos Node instance.
    Teuchos::RCP<node_type> getNode () const;

    //! The Map that describes the row distribution in this matrix.
    Teuchos::RCP<const map_type> getRowMap () const;

    //! The Map that describes the column distribution in this matrix.
    Teuchos::RCP<const map_type> getColMap () const;

    //! This matrix's graph, as a RowGraph.
    Teuchos::RCP<const RowGraph<LocalOrdinal, GlobalOrdinal, Node> > getGraph () const;

    //! This matrix's graph, as a CrsGraph.
    Teuchos::RCP<const crs_graph_type> getCrsGraph () const;

    //! The local sparse matrix.
    local_matrix_type getLocalMatrix () const {return lclMatrix_; }

    /// \brief Number of global elements in the row map of this matrix.
    ///
    /// This is <it>not</it> the number of rows in the matrix as a
    /// mathematical object.  This method returns the global sum of
    /// the number of local elements in the row map on each processor,
    /// which is the row map's getGlobalNumElements().  Since the row
    /// map is not one-to-one in general, that global sum could be
    /// different than the number of rows in the matrix.  If you want
    /// the number of rows in the matrix, ask the range map for its
    /// global number of elements, using the following code:
    /// <code>
    /// global_size_t globalNumRows = getRangeMap()->getGlobalNumElements();
    /// </code>
    /// This method retains the behavior of Epetra, which also asks
    /// the row map for the global number of rows, rather than asking
    /// the range map.
    ///
    /// \warning Undefined if isFillActive().
    ///
    global_size_t getGlobalNumRows() const;

    /// \brief The number of global columns in the matrix.
    ///
    /// This equals the number of entries in the matrix's domain Map.
    ///
    /// \warning Undefined if isFillActive().
    global_size_t getGlobalNumCols() const;

    /// \brief The number of matrix rows owned by the calling process.
    ///
    /// Note that the sum of all the return values over all processes
    /// in the row Map's communicator does not necessarily equal the
    /// global number of rows in the matrix, if the row Map is
    /// overlapping.
    size_t getNodeNumRows() const;

    /// \brief The number of columns connected to the locally owned rows of this matrix.
    ///
    /// Throws std::runtime_error if <tt>! hasColMap ()</tt>.
    size_t getNodeNumCols() const;

    //! The index base for global indices for this matrix.
    GlobalOrdinal getIndexBase() const;

    //! The global number of entries in this matrix.
    global_size_t getGlobalNumEntries() const;

    //! The local number of entries in this matrix.
    size_t getNodeNumEntries() const;

    //! \brief Returns the current number of entries on this node in the specified global row.
    /*! Returns OrdinalTraits<size_t>::invalid() if the specified global row does not belong to this matrix. */
    size_t getNumEntriesInGlobalRow (GlobalOrdinal globalRow) const;

    //! Returns the current number of entries on this node in the specified local row.
    /*! Returns OrdinalTraits<size_t>::invalid() if the specified local row is not valid for this matrix. */
    size_t getNumEntriesInLocalRow (LocalOrdinal localRow) const;

    //! \brief Returns the number of global diagonal entries, based on global row/column index comparisons.
    /** Undefined if isFillActive().
     */
    global_size_t getGlobalNumDiags() const;

    //! \brief Returns the number of local diagonal entries, based on global row/column index comparisons.
    /** Undefined if isFillActive().
     */
    size_t getNodeNumDiags() const;

    //! \brief Returns the maximum number of entries across all rows/columns on all nodes.
    /** Undefined if isFillActive().
     */
    size_t getGlobalMaxNumRowEntries() const;

    //! \brief Returns the maximum number of entries across all rows/columns on this node.
    /** Undefined if isFillActive().
     */
    size_t getNodeMaxNumRowEntries() const;

    //! \brief Indicates whether the matrix has a well-defined column map.
    bool hasColMap() const;

    //! \brief Indicates whether the matrix is lower triangular.
    /** Undefined if isFillActive().
     */
    bool isLowerTriangular() const;

    //! \brief Indicates whether the matrix is upper triangular.
    /** Undefined if isFillActive().
     */
    bool isUpperTriangular() const;

    /// \brief Whether the matrix is locally indexed on the calling process.
    ///
    /// The matrix is locally indexed on the calling process if and
    /// only if all of the following hold:
    /// <ol>
    /// <li> The matrix is not empty on the calling process </li>
    /// <li> The matrix has a column Map </li>
    /// </ol>
    ///
    /// The following is always true:
    /// \code
    /// (! locallyIndexed() && ! globallyIndexed()) || (locallyIndexed() || globallyIndexed());
    /// \endcode
    /// That is, a matrix may be neither locally nor globally indexed,
    /// but it can never be both.  Furthermore a matrix that is not
    /// fill complete, might have some processes that are neither
    /// locally nor globally indexed, and some processes that are
    /// globally indexed.  The processes that are neither do not have
    /// any entries.
    bool isLocallyIndexed() const;

    /// \brief Whether the matrix is globally indexed on the calling process.
    ///
    /// The matrix is globally indexed on the calling process if and
    /// only if all of the following hold:
    /// <ol>
    /// <li> The matrix is not empty on the calling process </li>
    /// <li> The matrix does not yet have a column Map </li>
    /// </ol>
    ///
    /// The following is always true:
    /// \code
    /// (! locallyIndexed() && ! globallyIndexed()) || (locallyIndexed() || globallyIndexed());
    /// \endcode
    /// That is, a matrix may be neither locally nor globally indexed,
    /// but it can never be both.  Furthermore a matrix that is not
    /// fill complete, might have some processes that are neither
    /// locally nor globally indexed, and some processes that are
    /// globally indexed.  The processes that are neither do not have
    /// any entries.
    bool isGloballyIndexed() const;

    /// \brief Whether the matrix is fill complete.
    ///
    /// A matrix is <i>fill complete</i> (or "in compute mode") when
    /// fillComplete() has been called without an intervening call to
    /// resumeFill().  A matrix must be fill complete in order to call
    /// computational kernels like sparse matrix-vector multiply and
    /// sparse triangular solve.  A matrix must be <i>not</i> fill
    /// complete ("in edit mode") in order to call methods that
    /// insert, modify, or remove entries.
    ///
    /// The following are always true:
    /// <ul>
    /// <li> <tt> isFillActive() == ! isFillComplete() </tt>
    /// <li> <tt> isFillActive() || isFillComplete() </tt>
    /// </ul>
    ///
    /// A matrix starts out (after its constructor returns) as not
    /// fill complete.  It becomes fill complete after fillComplete()
    /// returns, and becomes not fill complete again if resumeFill()
    /// is called.  Some methods like clone() and some of the
    /// "nonmember constructors" (like importAndFillComplete() and
    /// exportAndFillComplete()) may return a fill-complete matrix.
    bool isFillComplete() const;

    /// \brief Whether the matrix is not fill complete.
    ///
    /// A matrix is <i>fill complete</i> (or "in compute mode") when
    /// fillComplete() has been called without an intervening call to
    /// resumeFill().  A matrix must be fill complete in order to call
    /// computational kernels like sparse matrix-vector multiply and
    /// sparse triangular solve.  A matrix must be <i>not</i> fill
    /// complete ("in edit mode") in order to call methods that
    /// insert, modify, or remove entries.
    ///
    /// The following are always true:
    /// <ul>
    /// <li> <tt> isFillActive() == ! isFillComplete() </tt>
    /// <li> <tt> isFillActive() || isFillComplete() </tt>
    /// </ul>
    ///
    /// A matrix starts out (after its constructor returns) as not
    /// fill complete.  It becomes fill complete after fillComplete()
    /// returns, and becomes not fill complete again if resumeFill()
    /// is called.  Some methods like clone() and some of the
    /// "nonmember constructors" (like importAndFillComplete() and
    /// exportAndFillComplete()) may return a fill-complete matrix.
    bool isFillActive() const;

    //! \brief Returns \c true if storage has been optimized.
    /**
       Optimized storage means that the allocation of each row is equal to the
       number of entries. The effect is that a pass through the matrix, i.e.,
       during a mat-vec, requires minimal memory traffic. One limitation of
       optimized storage is that no new indices can be added to the matrix.
    */
    bool isStorageOptimized () const;

    //! Returns \c true if the matrix was allocated with static data structures.
    ProfileType getProfileType () const;

    //! Indicates that the graph is static, so that new entries cannot be added to this matrix.
    bool isStaticGraph () const;

    /// \brief Compute and return the Frobenius norm of the matrix.
    ///
    /// The Frobenius norm of the matrix is defined as
    /// \f\[
    ///   \|A\|_F = \sqrt{\sum_{i,j} \|A(i,j)\|^2}.
    /// \f\].
    ///
    /// If the matrix is fill complete, then the computed value is
    /// cached; the cache is cleared whenever resumeFill() is called.
    /// Otherwise, the value is computed every time the method is
    /// called.
    mag_type getFrobeniusNorm () const;

    /// \brief Return \c true if getLocalRowView() and
    ///   getGlobalRowView() are valid for this object.
    virtual bool supportsRowViews () const;

    /// \brief Fill given arrays with a deep copy of the locally owned
    ///   entries of the matrix in a given row, using global column
    ///   indices.
    ///
    /// \param GlobalRow [in] Global index of the row for which to
    ///   return entries.
    /// \param Indices [out] Global column indices corresponding to
    ///   values.
    /// \param Values [out] Matrix values.
    /// \param NumEntries [out] Number of entries.
    ///
    /// \note To Tpetra developers: Discussion of whether to use
    ///   <tt>Scalar</tt> or <tt>impl_scalar_type</tt> for output
    ///   array of matrix values.
    ///
    /// If \c Scalar differs from <tt>impl_scalar_type</tt>, as for
    /// example with std::complex<T> and Kokkos::complex<T>, we must
    /// choose which type to use.  We must make the same choice as
    /// RowMatrix does, else CrsMatrix won't compile, because it won't
    /// implement a pure virtual method.  We choose <tt>Scalar</tt>,
    /// for the following reasons.  First, <tt>Scalar</tt> is the
    /// user's preferred type, and <tt>impl_scalar_type</tt> an
    /// implementation detail that makes Tpetra work with Kokkos.
    /// Second, Tpetra's public interface provides a host-only
    /// interface, which eliminates some reasons for requiring
    /// implementation-specific types like Kokkos::complex.
    ///
    /// We do eventually want to put Tpetra methods in Kokkos kernels,
    /// but we only <i>need</i> to put them in host kernels, since
    /// Tpetra is a host-only interface.  Users can still manually
    /// handle conversion from <tt>Scalar</tt> to
    /// <tt>impl_scalar_type</tt> for reductions.
    ///
    /// The right thing to do would be to rewrite RowMatrix so that
    /// getGlobalRowCopy is NOT inherited, but is implemented by a
    /// pure virtual "hook" getGlobalRowCopyImpl.  The latter takes
    /// raw pointers.  That would give us the freedom to overload
    /// getGlobalRowCopy, which one normally can't do with virtual
    /// methods.  It would make sense for one getGlobalRowCopyImpl
    /// method to implement both Teuchos::ArrayView and Kokos::View
    /// versions of getGlobalRowCopy.
    ///
    /// Note: A std::runtime_error exception is thrown if either
    /// <tt>Indices</tt> or <tt>Values</tt> is not large enough to
    /// hold the data associated with row \c GlobalRow. If row
    /// <tt>GlobalRow</tt> is not owned by the calling process, then
    /// \c Indices and \c Values are unchanged and \c NumIndices is
    /// returned as Teuchos::OrdinalTraits<size_t>::invalid().
    void
    getGlobalRowCopy (GlobalOrdinal GlobalRow,
                      const Teuchos::ArrayView<GlobalOrdinal>& Indices,
                      const Teuchos::ArrayView<Scalar>& Values,
                      size_t& NumEntries) const;

    /// \brief Fill given arrays with a deep copy of the locally owned
    ///   entries of the matrix in a given row, using local column
    ///   indices.
    ///
    /// \param localRow [in] Local index of the row for which to
    ///   return entries.
    /// \param colInds [out] Local column indices corresponding to
    ///   values.
    /// \param vals [out] Matrix values.
    /// \param numEntries [out] Number of entries returned.
    ///
    /// Note: A std::runtime_error exception is thrown if either
    /// <tt>colInds</tt> or \c vals is not large enough to hold the
    /// data associated with row \c localRow. If row \c localRow is
    /// not owned by the calling process, then <tt>colInds</tt> and
    /// <tt>vals</tt> are unchanged and <tt>numEntries</tt> is
    /// returned as Teuchos::OrdinalTraits<size_t>::invalid().
    void
    getLocalRowCopy (LocalOrdinal localRow,
                     const Teuchos::ArrayView<LocalOrdinal>& colInds,
                     const Teuchos::ArrayView<Scalar>& vals,
                     size_t& numEntries) const;

    /// \brief Get a constant, nonpersisting view of a row of this
    ///   matrix, using global row and column indices.
    ///
    /// \param GlobalRow [in] Global index of the row to view.
    /// \param indices [out] On output: view of the global column
    ///   indices in the row.
    /// \param values [out] On output: view of the values in the row.
    ///
    /// \pre <tt>isLocallyIndexed () == false</tt>
    /// \post <tt>indices.size () == this->getNumEntriesInGlobalRow (GlobalRow)</tt>
    ///
    /// If \c GlobalRow is not a valid global row index on the calling
    /// process, then \c indices is set to null.
    void
    getGlobalRowView (GlobalOrdinal GlobalRow,
                      Teuchos::ArrayView<const GlobalOrdinal>& indices,
                      Teuchos::ArrayView<const Scalar>& values) const;

    /// \brief Get a constant, nonpersisting view of a row of this
    ///   matrix, using local row and column indices.
    ///
    /// \param LocalRow [in] Local index of the row to view.
    /// \param indices [out] On output: view of the local column
    ///   indices in the row.
    /// \param values [out] On output: view of the values in the row.
    ///
    /// \pre <tt>isGloballyIndexed () == false</tt>
    /// \post <tt>indices.size () == this->getNumEntriesInLocalRow (LocalRow)</tt>
    ///
    /// If \c LocalRow is not a valid local row index on the calling
    /// process, then \c indices is set to null.
    void
    getLocalRowView (LocalOrdinal LocalRow,
                     Teuchos::ArrayView<const LocalOrdinal>& indices,
                     Teuchos::ArrayView<const Scalar>& values) const;

    /// \brief Get a copy of the diagonal entries of the matrix.
    ///
    /// This method returns a Vector with the same Map as this
    /// matrix's row Map.  On each process, it contains the diagonal
    /// entries owned by the calling process.
    void getLocalDiagCopy (Vector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic>& diag) const;

    /// \brief Get offsets of the diagonal entries in the matrix.
    ///
    /// \warning This method is only for expert users.
    /// \warning We make no promises about backwards compatibility
    ///   for this method.  It may disappear or change at any time.
    /// \warning This method must be called collectively.  We reserve
    ///   the right to do extra checking in a debug build that will
    ///   require collectives.
    ///
    /// \pre The matrix must be locally indexed (which means that it
    ///   has a column Map).
    /// \pre All diagonal entries of the matrix's graph must be
    ///   populated on this process.  Results are undefined otherwise.
    /// \post <tt>offsets.size() == getNodeNumRows()</tt>
    ///
    /// This method creates an array of offsets of the local diagonal
    /// entries in the matrix.  This array is suitable for use in the
    /// two-argument version of getLocalDiagCopy().  However, its
    /// contents are not defined in any other context.  For example,
    /// you should not rely on offsets[i] being the index of the
    /// diagonal entry in the views returned by getLocalRowView().
    /// This may be the case, but it need not be.  (For example, we
    /// may choose to optimize the lookups down to the optimized
    /// storage level, in which case the offsets will be computed with
    /// respect to the underlying storage format, rather than with
    /// respect to the views.)
    ///
    /// Calling any of the following invalidates the output array:
    /// - insertGlobalValues()
    /// - insertLocalValues()
    /// - fillComplete() (with a dynamic graph)
    /// - resumeFill() (with a dynamic graph)
    ///
    /// If the matrix has a const ("static") graph, and if that graph
    /// is fill complete, then the offsets array remains valid through
    /// calls to fillComplete() and resumeFill().  "Invalidates" means
    /// that you must call this method again to recompute the offsets.
    void getLocalDiagOffsets (Teuchos::ArrayRCP<size_t>& offsets) const;

    /// \brief Variant of getLocalDiagCopy() that uses precomputed offsets.
    ///
    /// \warning This method is only for expert users.
    /// \warning We make no promises about backwards compatibility
    ///   for this method.  It may disappear or change at any time.
    ///
    /// This method uses the offsets of the diagonal entries, as
    /// precomputed by getLocalDiagOffsets(), to speed up copying the
    /// diagonal of the matrix.  The offsets must be recomputed if any
    /// of the following methods are called:
    /// - insertGlobalValues()
    /// - insertLocalValues()
    /// - fillComplete() (with a dynamic graph)
    /// - resumeFill() (with a dynamic graph)
    ///
    /// If the matrix has a const ("static") graph, and if that graph
    /// is fill complete, then the offsets array remains valid through
    /// calls to fillComplete() and resumeFill().
    void
    getLocalDiagCopy (Vector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic>& diag,
                      const Teuchos::ArrayView<const size_t>& offsets) const;



    /** \brief . */
    void
    leftScale (const Vector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic>& x);

    /** \brief . */
    void
    rightScale (const Vector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic>& x);

    //@}
    //! @name Advanced templated methods
    //@{

    /// \brief Compute a sparse matrix-MultiVector product local to each process.
    ///
    /// This method computes the <i>local</i> part of <tt>Y := beta*Y
    /// + alpha*Op(A)*X</tt>, where <tt>Op(A)</tt> is either \f$A\f$,
    /// \f$A^T\f$ (the transpose), or \f$A^H\f$ (the conjugate
    /// transpose).  "The local part" means that this method does no
    /// communication between processes, even if this is necessary for
    /// correctness of the matrix-vector multiply.  Use the apply()
    /// method if you want to compute the mathematical sparse
    /// matrix-vector multiply.
    ///
    /// This method is mainly of use to Tpetra developers, though some
    /// users may find it helpful if they plan to reuse the result of
    /// doing an Import on the input MultiVector for several sparse
    /// matrix-vector multiplies with matrices that have the same
    /// column Map.
    ///
    /// When <tt>Op(A)</tt> is \f$A\f$ (<tt>trans ==
    /// Teuchos::NO_TRANS</tt>), then X's Map must be the same as the
    /// column Map of this matrix, and Y's Map must be the same as the
    /// row Map of this matrix.  We say in this case that X is
    /// "post-Imported," and Y is "pre-Exported."  When <tt>Op(A)</tt>
    /// is \f$A^T\f$ or \f$A^H\f$ (\c trans is <tt>Teuchos::TRANS</tt>
    /// or <tt>Teuchos::CONJ_TRANS</tt>, then X's Map must be the same
    /// as the row Map of this matrix, and Y's Map must be the same as
    /// the column Map of this matrix.
    ///
    /// Both X and Y must have constant stride, and they may not alias
    /// one another (that is, occupy overlapping space in memory).  We
    /// may not necessarily check for aliasing, and if we do, we will
    /// only do this in a debug build.  Aliasing X and Y may cause
    /// nondeterministically incorrect results.
    ///
    /// This method is templated on the type of entries in both the
    /// input MultiVector (\c DomainScalar) and the output MultiVector
    /// (\c RangeScalar).  Thus, this method works for MultiVector
    /// objects of arbitrary type.  However, this method only performs
    /// computation local to each MPI process.  Use
    /// CrsMatrixMultiplyOp to handle global communication (the Import
    /// and Export operations for the input resp. output MultiVector),
    /// if you have a matrix with entries of a different type than the
    /// input and output MultiVector objects.
    ///
    /// If <tt>beta == 0</tt>, this operation will enjoy overwrite
    /// semantics: Y will be overwritten with the result of the
    /// multiplication, even if it contains <tt>NaN</tt>
    /// (not-a-number) floating-point entries.  Otherwise, the
    /// multiply result will be accumulated into \c Y.
    template <class DomainScalar, class RangeScalar>
    void
    localMultiply (const MultiVector<DomainScalar, LocalOrdinal, GlobalOrdinal, Node, classic>& X,
                   MultiVector<RangeScalar, LocalOrdinal, GlobalOrdinal, Node, classic>& Y,
                   Teuchos::ETransp mode,
                   RangeScalar alpha,
                   RangeScalar beta) const
    {
      using Teuchos::NO_TRANS;
      // Just like Scalar and impl_scalar_type may differ in CrsMatrix,
      // RangeScalar and its corresponding impl_scalar_type may differ in
      // MultiVector.
      typedef typename MultiVector<RangeScalar, LocalOrdinal, GlobalOrdinal,
        Node, classic>::impl_scalar_type range_impl_scalar_type;
#ifdef HAVE_TPETRA_DEBUG
      const char tfecfFuncName[] = "localMultiply: ";
#endif // HAVE_TPETRA_DEBUG

      const range_impl_scalar_type theAlpha = static_cast<range_impl_scalar_type> (alpha);
      const range_impl_scalar_type theBeta = static_cast<range_impl_scalar_type> (beta);
      const bool conjugate = (mode == Teuchos::CONJ_TRANS);
      const bool transpose = (mode != Teuchos::NO_TRANS);

#ifdef HAVE_TPETRA_DEBUG
      TEUCHOS_TEST_FOR_EXCEPTION_CLASS_FUNC
        (X.getNumVectors () != Y.getNumVectors (), std::runtime_error,
         "X.getNumVectors() = " << X.getNumVectors () << " != Y.getNumVectors() = "
         << Y.getNumVectors () << ".");
      TEUCHOS_TEST_FOR_EXCEPTION_CLASS_FUNC
        (! transpose && X.getLocalLength () != getColMap ()->getNodeNumElements (),
         std::runtime_error, "NO_TRANS case: X has the wrong number of local rows.  "
         "X.getLocalLength() = " << X.getLocalLength () << " != getColMap()->"
         "getNodeNumElements() = " << getColMap ()->getNodeNumElements () << ".");
      TEUCHOS_TEST_FOR_EXCEPTION_CLASS_FUNC
        (! transpose && Y.getLocalLength () != getRowMap ()->getNodeNumElements (),
         std::runtime_error, "NO_TRANS case: Y has the wrong number of local rows.  "
         "Y.getLocalLength() = " << Y.getLocalLength () << " != getRowMap()->"
         "getNodeNumElements() = " << getRowMap ()->getNodeNumElements () << ".");
      TEUCHOS_TEST_FOR_EXCEPTION_CLASS_FUNC
        (transpose && X.getLocalLength () != getRowMap ()->getNodeNumElements (),
         std::runtime_error, "TRANS or CONJ_TRANS case: X has the wrong number of "
         "local rows.  X.getLocalLength() = " << X.getLocalLength () << " != "
         "getRowMap()->getNodeNumElements() = "
         << getRowMap ()->getNodeNumElements () << ".");
      TEUCHOS_TEST_FOR_EXCEPTION_CLASS_FUNC
        (transpose && Y.getLocalLength () != getColMap ()->getNodeNumElements (),
         std::runtime_error, "TRANS or CONJ_TRANS case: X has the wrong number of "
         "local rows.  Y.getLocalLength() = " << Y.getLocalLength () << " != "
         "getColMap()->getNodeNumElements() = "
         << getColMap ()->getNodeNumElements () << ".");
      TEUCHOS_TEST_FOR_EXCEPTION_CLASS_FUNC
        (! isFillComplete (), std::runtime_error, "The matrix is not fill "
         "complete.  You must call fillComplete() (possibly with domain and range "
         "Map arguments) without an intervening resumeFill() call before you may "
         "call this method.");
      TEUCHOS_TEST_FOR_EXCEPTION_CLASS_FUNC
        (! X.isConstantStride () || ! Y.isConstantStride (), std::runtime_error,
         "X and Y must be constant stride.");
      // If the two pointers are NULL, then they don't alias one
      // another, even though they are equal.
      TEUCHOS_TEST_FOR_EXCEPTION_CLASS_FUNC(
        X.getDualView ().d_view.ptr_on_device () == Y.getDualView ().d_view.ptr_on_device () &&
        X.getDualView ().d_view.ptr_on_device () != NULL,
        std::runtime_error, "X and Y may not alias one another.");
#endif // HAVE_TPETRA_DEBUG

      // Y = alpha*op(M) + beta*Y
      if (transpose) {
        KokkosSparse::spmv (conjugate ? KokkosSparse::ConjugateTranspose : KokkosSparse::Transpose,
                            theAlpha,
                            lclMatrix_,
                            X.template getLocalView<device_type> (),
                            theBeta,
                            Y.template getLocalView<device_type> ());
      }
      else {
        KokkosSparse::spmv (KokkosSparse::NoTranspose,
                            theAlpha,
                            lclMatrix_,
                            X.template getLocalView<device_type> (),
                            theBeta,
                            Y.template getLocalView<device_type> ());
      }
    }

    /// \brief Gauss-Seidel or SOR on \f$B = A X\f$.
    ///
    /// Apply a forward or backward sweep of Gauss-Seidel or
    /// Successive Over-Relaxation (SOR) to the linear system(s) \f$B
    /// = A X\f$.  For Gauss-Seidel, set the damping factor \c omega
    /// to 1.
    ///
    /// \tparam DomainScalar The type of entries in the input
    ///   multivector X.  This may differ from the type of entries in
    ///   A or in B.
    /// \tparam RangeScalar The type of entries in the output
    ///   multivector B.  This may differ from the type of entries in
    ///   A or in X.
    ///
    /// \param B [in] Right-hand side(s).
    /// \param X [in/out] On input: initial guess(es).  On output:
    ///   result multivector(s).
    /// \param D [in] Inverse of diagonal entries of the matrix A.
    /// \param omega [in] SOR damping factor.  omega = 1 results in
    ///   Gauss-Seidel.
    /// \param direction [in] Sweep direction: KokkosClassic::Forward or
    ///   KokkosClassic::Backward.  ("Symmetric" requires interprocess
    ///   communication (before each sweep), which is not part of the
    ///   local kernel.)
    template <class DomainScalar, class RangeScalar>
    void
    localGaussSeidel (const MultiVector<DomainScalar, LocalOrdinal, GlobalOrdinal, Node, classic> &B,
                      MultiVector<RangeScalar, LocalOrdinal, GlobalOrdinal, Node, classic> &X,
                      const MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic> &D,
                      const RangeScalar& dampingFactor,
                      const KokkosClassic::ESweepDirection direction) const
    {
      typedef LocalOrdinal LO;
      typedef GlobalOrdinal GO;
      typedef Tpetra::MultiVector<DomainScalar, LO, GO, Node, classic> DMV;
      typedef Tpetra::MultiVector<RangeScalar, LO, GO, Node, classic> RMV;
      typedef Tpetra::MultiVector<Scalar, LO, GO, Node, classic> MMV;
      typedef typename DMV::dual_view_type::host_mirror_space HMDT ;
      typedef typename Graph::local_graph_type k_local_graph_type;
      typedef typename k_local_graph_type::size_type offset_type;
      const char prefix[] = "Tpetra::CrsMatrix::localGaussSeidel: ";

      TEUCHOS_TEST_FOR_EXCEPTION
        (! this->isFillComplete (), std::runtime_error,
         prefix << "The matrix is not fill complete.");
      const size_t lclNumRows = this->getNodeNumRows ();
      const size_t numVecs = B.getNumVectors ();
      TEUCHOS_TEST_FOR_EXCEPTION
        (X.getNumVectors () != numVecs, std::invalid_argument,
         prefix << "B.getNumVectors() = " << numVecs << " != "
         "X.getNumVectors() = " << X.getNumVectors () << ".");
      TEUCHOS_TEST_FOR_EXCEPTION
        (B.getLocalLength () != lclNumRows, std::invalid_argument,
         prefix << "B.getLocalLength() = " << B.getLocalLength ()
         << " != this->getNodeNumRows() = " << lclNumRows << ".");

      typename DMV::dual_view_type::t_host B_lcl = B.template getLocalView<HMDT> ();
      typename RMV::dual_view_type::t_host X_lcl = X.template getLocalView<HMDT> ();
      typename MMV::dual_view_type::t_host D_lcl = D.template getLocalView<HMDT> ();

      offset_type B_stride[8], X_stride[8], D_stride[8];
      B_lcl.stride (B_stride);
      X_lcl.stride (X_stride);
      D_lcl.stride (D_stride);

      local_matrix_type lclMatrix = this->getLocalMatrix ();
      k_local_graph_type lclGraph = lclMatrix.graph;
      typename local_matrix_type::row_map_type ptr = lclGraph.row_map;
      typename local_matrix_type::index_type ind = lclGraph.entries;
      typename local_matrix_type::values_type val = lclMatrix.values;
      const offset_type* const ptrRaw = ptr.ptr_on_device ();
      const LO* const indRaw = ind.ptr_on_device ();
      const impl_scalar_type* const valRaw = val.ptr_on_device ();

      const std::string dir ((direction == KokkosClassic::Forward) ? "F" : "B");
      KokkosSparse::Impl::Sequential::gaussSeidel (static_cast<LO> (lclNumRows),
                                                   static_cast<LO> (numVecs),
                                                   ptrRaw, indRaw, valRaw,
                                                   B_lcl.ptr_on_device (), B_stride[1],
                                                   X_lcl.ptr_on_device (), X_stride[1],
                                                   D_lcl.ptr_on_device (),
                                                   static_cast<impl_scalar_type> (dampingFactor),
                                                   dir.c_str ());
    }

    /// \brief Reordered Gauss-Seidel or SOR on \f$B = A X\f$.
    ///
    /// Apply a forward or backward sweep of reordered Gauss-Seidel or
    /// Successive Over-Relaxation (SOR) to the linear system(s) \f$B
    /// = A X\f$.  For Gauss-Seidel, set the damping factor \c omega
    /// to 1.  The ordering can be a partial one, in which case the Gauss-Seidel is only
    /// executed on a local subset of unknowns.
    ///
    /// \tparam DomainScalar The type of entries in the input
    ///   multivector X.  This may differ from the type of entries in
    ///   A or in B.
    /// \tparam RangeScalar The type of entries in the output
    ///   multivector B.  This may differ from the type of entries in
    ///   A or in X.
    ///
    /// \param B [in] Right-hand side(s).
    /// \param X [in/out] On input: initial guess(es).  On output:
    ///   result multivector(s).
    /// \param D [in] Inverse of diagonal entries of the matrix A.
    /// \param rowIndices [in] Ordered list of indices on which to execute GS.
    /// \param omega [in] SOR damping factor.  omega = 1 results in
    ///   Gauss-Seidel.
    /// \param direction [in] Sweep direction: KokkosClassic::Forward or
    ///   KokkosClassic::Backward.  ("Symmetric" requires interprocess
    ///   communication (before each sweep), which is not part of the
    ///   local kernel.)
    template <class DomainScalar, class RangeScalar>
    void
    reorderedLocalGaussSeidel (const MultiVector<DomainScalar, LocalOrdinal, GlobalOrdinal, Node, classic>& B,
                               MultiVector<RangeScalar, LocalOrdinal, GlobalOrdinal, Node, classic>& X,
                               const MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic>& D,
                               const Teuchos::ArrayView<LocalOrdinal>& rowIndices,
                               const RangeScalar& dampingFactor,
                               const KokkosClassic::ESweepDirection direction) const
    {
      typedef LocalOrdinal LO;
      typedef GlobalOrdinal GO;
      typedef Tpetra::MultiVector<DomainScalar, LO, GO, Node, classic> DMV;
      typedef Tpetra::MultiVector<RangeScalar, LO, GO, Node, classic> RMV;
      typedef Tpetra::MultiVector<Scalar, LO, GO, Node, classic> MMV;
      typedef typename DMV::dual_view_type::host_mirror_space HMDT ;
      typedef typename Graph::local_graph_type k_local_graph_type;
      typedef typename k_local_graph_type::size_type offset_type;
      const char prefix[] = "Tpetra::CrsMatrix::reorderedLocalGaussSeidel: ";

      TEUCHOS_TEST_FOR_EXCEPTION
        (! this->isFillComplete (), std::runtime_error,
         prefix << "The matrix is not fill complete.");
      const size_t lclNumRows = this->getNodeNumRows ();
      const size_t numVecs = B.getNumVectors ();
      TEUCHOS_TEST_FOR_EXCEPTION
        (X.getNumVectors () != numVecs, std::invalid_argument,
         prefix << "B.getNumVectors() = " << numVecs << " != "
         "X.getNumVectors() = " << X.getNumVectors () << ".");
      TEUCHOS_TEST_FOR_EXCEPTION
        (B.getLocalLength () != lclNumRows, std::invalid_argument,
         prefix << "B.getLocalLength() = " << B.getLocalLength ()
         << " != this->getNodeNumRows() = " << lclNumRows << ".");
      TEUCHOS_TEST_FOR_EXCEPTION
        (static_cast<size_t> (rowIndices.size ()) < lclNumRows,
         std::invalid_argument, prefix << "rowIndices.size() = "
         << rowIndices.size () << " < this->getNodeNumRows() = "
         << lclNumRows << ".");

      typename DMV::dual_view_type::t_host B_lcl = B.template getLocalView<HMDT> ();
      typename RMV::dual_view_type::t_host X_lcl = X.template getLocalView<HMDT> ();
      typename MMV::dual_view_type::t_host D_lcl = D.template getLocalView<HMDT> ();

      offset_type B_stride[8], X_stride[8], D_stride[8];
      B_lcl.stride (B_stride);
      X_lcl.stride (X_stride);
      D_lcl.stride (D_stride);

      local_matrix_type lclMatrix = this->getLocalMatrix ();
      typename Graph::local_graph_type lclGraph = lclMatrix.graph;
      typename local_matrix_type::index_type ind = lclGraph.entries;
      typename local_matrix_type::row_map_type ptr = lclGraph.row_map;
      typename local_matrix_type::values_type val = lclMatrix.values;
      const offset_type* const ptrRaw = ptr.ptr_on_device ();
      const LO* const indRaw = ind.ptr_on_device ();
      const impl_scalar_type* const valRaw = val.ptr_on_device ();

      const std::string dir = (direction == KokkosClassic::Forward) ? "F" : "B";
      KokkosSparse::Impl::Sequential::reorderedGaussSeidel (static_cast<LO> (lclNumRows),
                                                            static_cast<LO> (numVecs),
                                                            ptrRaw, indRaw, valRaw,
                                                            B_lcl.ptr_on_device (),
                                                            B_stride[1],
                                                            X_lcl.ptr_on_device (),
                                                            X_stride[1],
                                                            D_lcl.ptr_on_device (),
                                                            rowIndices.getRawPtr (),
                                                            static_cast<LO> (lclNumRows),
                                                            static_cast<impl_scalar_type> (dampingFactor),
                                                            dir.c_str ());
    }

    /// \brief Solves a linear system when the underlying matrix is
    ///   locally triangular.
    ///
    /// X is required to be post-imported, i.e., described by the
    /// column map of the matrix. Y is required to be pre-exported,
    /// i.e., described by the row map of the matrix.
    ///
    /// This method is templated on the scalar type of MultiVector
    /// objects, allowing this method to be applied to MultiVector
    /// objects of arbitrary type. However, if you intend to use this
    /// with template parameters not equal to Scalar, we recommend
    /// that you wrap this matrix in a CrsMatrixSolveOp.  That class
    /// will handle the Import/Export operations required to apply a
    /// matrix with non-trivial communication needs.
    ///
    /// Both X and Y are required to have constant stride. However,
    /// unlike multiply(), it is permissible for <tt>&X == &Y</tt>. No
    /// run-time checking will be performed in a non-debug build.
    template <class DomainScalar, class RangeScalar>
    void
    localSolve (const MultiVector<RangeScalar, LocalOrdinal, GlobalOrdinal, Node, classic>& Y,
                MultiVector<DomainScalar, LocalOrdinal, GlobalOrdinal, Node, classic>& X,
                Teuchos::ETransp mode) const
    {
      using Teuchos::CONJ_TRANS;
      using Teuchos::NO_TRANS;
      using Teuchos::TRANS;
      typedef LocalOrdinal LO;
      typedef GlobalOrdinal GO;
      typedef Tpetra::MultiVector<DomainScalar, LO, GO, Node, classic> DMV;
      typedef Tpetra::MultiVector<RangeScalar, LO, GO, Node, classic> RMV;
      typedef typename DMV::dual_view_type::host_mirror_space HMDT ;

      const char tfecfFuncName[] = "localSolve: ";

      TEUCHOS_TEST_FOR_EXCEPTION_CLASS_FUNC
        (! isFillComplete (), std::runtime_error,
         "The matrix is not fill complete.");
      TEUCHOS_TEST_FOR_EXCEPTION_CLASS_FUNC
        (! X.isConstantStride () || ! Y.isConstantStride (), std::invalid_argument,
         "X and Y must be constant stride.");
      TEUCHOS_TEST_FOR_EXCEPTION_CLASS_FUNC
        (! isUpperTriangular () && ! isLowerTriangular (), std::runtime_error,
         "The matrix is neither upper triangular or lower triangular.  "
         "You may only call this method if the matrix is triangular.  "
         "Remember that this is a local (per MPI process) property, and that "
         "Tpetra only knows how to do a local (per process) triangular solve.");
      TEUCHOS_TEST_FOR_EXCEPTION_CLASS_FUNC
        (STS::isComplex && mode == TRANS, std::logic_error, "This method does "
         "not currently support non-conjugated transposed solve (mode == "
         "Teuchos::TRANS) for complex scalar types.");

      // FIXME (mfh 27 Aug 2014) Tpetra has always made the odd decision
      // that if _some_ diagonal entries are missing locally, then it
      // assumes that the matrix has an implicitly stored unit diagonal.
      // Whether the matrix has an implicit unit diagonal or not should
      // be up to the user to decide.  What if the graph has no diagonal
      // entries, and the user wants it that way?  The only reason this
      // matters, though, is for the triangular solve, and in that case,
      // missing diagonal entries will cause trouble anyway.  However,
      // it would make sense to warn the user if they ask for a
      // triangular solve with an incomplete diagonal.  Furthermore,
      // this code should only assume an implicitly stored unit diagonal
      // if the matrix has _no_ explicitly stored diagonal entries.

      const std::string uplo = isUpperTriangular () ? "U" :
        (isLowerTriangular () ? "L" : "N");
      const std::string trans = (mode == Teuchos::CONJ_TRANS) ? "C" :
        (mode == Teuchos::TRANS ? "T" : "N");
      const std::string diag =
        (getNodeNumDiags () < getNodeNumRows ()) ? "U" : "N";

      local_matrix_type A_lcl = this->getLocalMatrix ();

      // FIXME (mfh 23 Apr 2015) We currently only have a host,
      // sequential kernel for local sparse triangular solve.

      Y.getDualView ().template sync<HMDT> (); // Y is read-only
      X.getDualView ().template sync<HMDT> ();
      X.getDualView ().template modify<HMDT> (); // we will write to X

      if (X.isConstantStride () && Y.isConstantStride ()) {
        typename DMV::dual_view_type::t_host X_lcl = X.template getLocalView<HMDT> ();
        typename RMV::dual_view_type::t_host Y_lcl = Y.template getLocalView<HMDT> ();
        KokkosSparse::trsv (uplo.c_str (), trans.c_str (), diag.c_str (), A_lcl, Y_lcl, X_lcl);
      }
      else {
        const size_t numVecs = std::min (X.getNumVectors (), Y.getNumVectors ());
        for (size_t j = 0; j < numVecs; ++j) {
          auto X_j = X.getVector (j);
          auto Y_j = X.getVector (j);
          auto X_lcl = X_j->template getLocalView<HMDT> ();
          auto Y_lcl = Y_j->template getLocalView<HMDT> ();
          KokkosSparse::trsv (uplo.c_str (), trans.c_str (), diag.c_str (), A_lcl, Y_lcl, X_lcl);
        }
      }
    }

    /// \brief Return another CrsMatrix with the same entries, but
    ///   converted to a different Scalar type \c T.
    template <class T>
    Teuchos::RCP<CrsMatrix<T, LocalOrdinal, GlobalOrdinal, Node, classic> >
    convert () const;

    //@}
    //! @name Methods implementing Operator
    //@{

    /// \brief Compute a sparse matrix-MultiVector multiply.
    ///
    /// This method computes <tt>Y := beta*Y + alpha*Op(A)*X</tt>,
    /// where <tt>Op(A)</tt> is either \f$A\f$, \f$A^T\f$ (the
    /// transpose), or \f$A^H\f$ (the conjugate transpose).
    ///
    /// If <tt>beta == 0</tt>, this operation will enjoy overwrite
    /// semantics: Y's entries will be ignored, and Y will be
    /// overwritten with the result of the multiplication, even if it
    /// contains <tt>NaN</tt> (not-a-number) floating-point entries.
    void
    apply (const MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic>& X,
           MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic>&Y,
           Teuchos::ETransp mode = Teuchos::NO_TRANS,
           Scalar alpha = ScalarTraits<Scalar>::one(),
           Scalar beta = ScalarTraits<Scalar>::zero()) const;

    //! Whether apply() allows applying the transpose or conjugate transpose.
    bool hasTransposeApply () const;

    /// \brief The domain Map of this matrix.
    ///
    /// This method implements Tpetra::Operator.  If fillComplete()
    /// has not yet been called at least once on this matrix, or if
    /// the matrix was not constructed with a domain Map, then this
    /// method returns Teuchos::null.
    Teuchos::RCP<const map_type> getDomainMap () const;

    /// \brief The range Map of this matrix.
    ///
    /// This method implements Tpetra::Operator.  If fillComplete()
    /// has not yet been called at least once on this matrix, or if
    /// the matrix was not constructed with a domain Map, then this
    /// method returns Teuchos::null.
    Teuchos::RCP<const map_type> getRangeMap () const;

    //@}
    //! @name Other "apply"-like methods
    //@{

    /// \brief "Hybrid" Jacobi + (Gauss-Seidel or SOR) on \f$B = A X\f$.
    ///
    /// "Hybrid" means Successive Over-Relaxation (SOR) or
    /// Gauss-Seidel within an (MPI) process, but Jacobi between
    /// processes.  Gauss-Seidel is a special case of SOR, where the
    /// damping factor is one.
    ///
    /// The Forward or Backward sweep directions have their usual SOR
    /// meaning within the process.  Interprocess communication occurs
    /// once before the sweep, as it normally would in Jacobi.
    ///
    /// The Symmetric sweep option means two sweeps: first Forward,
    /// then Backward.  Interprocess communication occurs before each
    /// sweep, as in Jacobi.  Thus, Symmetric results in two
    /// interprocess communication steps.
    ///
    /// \param B [in] Right-hand side(s).
    /// \param X [in/out] On input: initial guess(es).  On output:
    ///   result multivector(s).
    /// \param D [in] Inverse of diagonal entries of the matrix A.
    /// \param dampingFactor [in] SOR damping factor.  A damping
    ///   factor of one results in Gauss-Seidel.
    /// \param direction [in] Sweep direction: Forward, Backward, or
    ///   Symmetric.
    /// \param numSweeps [in] Number of sweeps.  We count each
    ///   Symmetric sweep (including both its Forward and its Backward
    ///   sweep) as one.
    ///
    /// \section Tpetra_KR_CrsMatrix_gaussSeidel_req Requirements
    ///
    /// This method has the following requirements:
    ///
    /// 1. X is in the domain Map of the matrix.
    /// 2. The domain and row Maps of the matrix are the same.
    /// 3. The column Map contains the domain Map, and both start at the same place.
    /// 4. The row Map is uniquely owned.
    /// 5. D is in the row Map of the matrix.
    /// 6. X is actually a view of a column Map multivector.
    /// 7. Neither B nor D alias X.
    ///
    /// #1 is just the usual requirement for operators: the input
    /// multivector must always be in the domain Map.  The
    /// Gauss-Seidel kernel imposes additional requirements, since it
    ///
    /// - overwrites the input multivector with the output (which
    ///   implies #2), and
    /// - uses the same local indices for the input and output
    ///   multivector (which implies #2 and #3).
    ///
    /// #3 is reasonable if the matrix constructed the column Map,
    /// because the method that does this (CrsGraph::makeColMap) puts
    /// the local GIDs (those in the domain Map) in front and the
    /// remote GIDs (not in the domain Map) at the end of the column
    /// Map.  However, if you constructed the column Map yourself, you
    /// are responsible for maintaining this invariant.  #6 lets us do
    /// the Import from the domain Map to the column Map in place.
    ///
    /// The Gauss-Seidel kernel also assumes that each process has the
    /// entire value (not a partial value to sum) of all the diagonal
    /// elements in the rows in its row Map.  (We guarantee this anyway
    /// though the separate D vector.)  This is because each element of
    /// the output multivector depends nonlinearly on the diagonal
    /// elements.  Shared ownership of off-diagonal elements would
    /// produce different results.
    void
    gaussSeidel (const MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic> &B,
                 MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic> &X,
                 const MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic> &D,
                 const Scalar& dampingFactor,
                 const ESweepDirection direction,
                 const int numSweeps) const;

    /// \brief Reordered "Hybrid" Jacobi + (Gauss-Seidel or SOR) on \f$B = A X\f$.
    ///
    /// "Hybrid" means Successive Over-Relaxation (SOR) or
    /// Gauss-Seidel within an (MPI) process, but Jacobi between
    /// processes.  Gauss-Seidel is a special case of SOR, where the
    /// damping factor is one.  The ordering can be a partial one, in which case the Gauss-Seidel is only
    /// executed on a local subset of unknowns.
    ///
    /// The Forward or Backward sweep directions have their usual SOR
    /// meaning within the process.  Interprocess communication occurs
    /// once before the sweep, as it normally would in Jacobi.
    ///
    /// The Symmetric sweep option means two sweeps: first Forward,
    /// then Backward.  Interprocess communication occurs before each
    /// sweep, as in Jacobi.  Thus, Symmetric results in two
    /// interprocess communication steps.
    ///
    /// \param B [in] Right-hand side(s).
    /// \param X [in/out] On input: initial guess(es).  On output:
    ///   result multivector(s).
    /// \param D [in] Inverse of diagonal entries of the matrix A.
    /// \param rowIndices [in] Ordered list of indices on which to execute GS.
    /// \param dampingFactor [in] SOR damping factor.  A damping
    ///   factor of one results in Gauss-Seidel.
    /// \param direction [in] Sweep direction: Forward, Backward, or
    ///   Symmetric.
    /// \param numSweeps [in] Number of sweeps.  We count each
    ///   Symmetric sweep (including both its Forward and its Backward
    ///   sweep) as one.
    ///
    /// \section Tpetra_KR_CrsMatrix_reorderedGaussSeidel_req Requirements
    ///
    /// This method has the following requirements:
    ///
    /// 1. X is in the domain Map of the matrix.
    /// 2. The domain and row Maps of the matrix are the same.
    /// 3. The column Map contains the domain Map, and both start at the same place.
    /// 4. The row Map is uniquely owned.
    /// 5. D is in the row Map of the matrix.
    /// 6. X is actually a view of a column Map multivector.
    /// 7. Neither B nor D alias X.
    ///
    /// #1 is just the usual requirement for operators: the input
    /// multivector must always be in the domain Map.  The
    /// Gauss-Seidel kernel imposes additional requirements, since it
    ///
    /// - overwrites the input multivector with the output (which
    ///   implies #2), and
    /// - uses the same local indices for the input and output
    ///   multivector (which implies #2 and #3).
    ///
    /// #3 is reasonable if the matrix constructed the column Map,
    /// because the method that does this (CrsGraph::makeColMap) puts
    /// the local GIDs (those in the domain Map) in front and the
    /// remote GIDs (not in the domain Map) at the end of the column
    /// Map.  However, if you constructed the column Map yourself, you
    /// are responsible for maintaining this invariant.  #6 lets us do
    /// the Import from the domain Map to the column Map in place.
    ///
    /// The Gauss-Seidel kernel also assumes that each process has the
    /// entire value (not a partial value to sum) of all the diagonal
    /// elements in the rows in its row Map.  (We guarantee this anyway
    /// though the separate D vector.)  This is because each element of
    /// the output multivector depends nonlinearly on the diagonal
    /// elements.  Shared ownership of off-diagonal elements would
    /// produce different results.
    void
    reorderedGaussSeidel (const MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic>& B,
                          MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic>& X,
                          const MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic>& D,
                          const Teuchos::ArrayView<LocalOrdinal>& rowIndices,
                          const Scalar& dampingFactor,
                          const ESweepDirection direction,
                          const int numSweeps) const;

    /// \brief Version of gaussSeidel(), with fewer requirements on X.
    ///
    /// This method is just like gaussSeidel(), except that X need
    /// only be in the domain Map.  This method does not require that
    /// X be a domain Map view of a column Map multivector.  As a
    /// result, this method must copy X into a domain Map multivector
    /// before operating on it.
    ///
    /// \param X [in/out] On input: initial guess(es).  On output:
    ///   result multivector(s).
    /// \param B [in] Right-hand side(s), in the range Map.
    /// \param D [in] Inverse of diagonal entries of the matrix,
    ///   in the row Map.
    /// \param dampingFactor [in] SOR damping factor.  A damping
    ///   factor of one results in Gauss-Seidel.
    /// \param direction [in] Sweep direction: Forward, Backward, or
    ///   Symmetric.
    /// \param numSweeps [in] Number of sweeps.  We count each
    ///   Symmetric sweep (including both its Forward and its
    ///   Backward sweep) as one.
    /// \param zeroInitialGuess [in] If true, this method will fill X
    ///   with zeros initially.  If false, this method will assume
    ///   that X contains a possibly nonzero initial guess on input.
    ///   Note that a nonzero initial guess may impose an additional
    ///   nontrivial communication cost (an additional Import).
    ///
    /// \pre Domain, range, and row Maps of the sparse matrix are all the same.
    /// \pre No other argument aliases X.
    void
    gaussSeidelCopy (MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic> &X,
                     const MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic> &B,
                     const MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic> &D,
                     const Scalar& dampingFactor,
                     const ESweepDirection direction,
                     const int numSweeps,
                     const bool zeroInitialGuess) const;

    /// \brief Version of reorderedGaussSeidel(), with fewer requirements on X.
    ///
    /// This method is just like reorderedGaussSeidel(), except that X need
    /// only be in the domain Map.  This method does not require that
    /// X be a domain Map view of a column Map multivector.  As a
    /// result, this method must copy X into a domain Map multivector
    /// before operating on it.
    ///
    /// \param X [in/out] On input: initial guess(es).  On output:
    ///   result multivector(s).
    /// \param B [in] Right-hand side(s), in the range Map.
    /// \param D [in] Inverse of diagonal entries of the matrix,
    ///   in the row Map.
    /// \param rowIndices [in] Ordered list of indices on which to execute GS.
    /// \param dampingFactor [in] SOR damping factor.  A damping
    ///   factor of one results in Gauss-Seidel.
    /// \param direction [in] Sweep direction: Forward, Backward, or
    ///   Symmetric.
    /// \param numSweeps [in] Number of sweeps.  We count each
    ///   Symmetric sweep (including both its Forward and its
    ///   Backward sweep) as one.
    /// \param zeroInitialGuess [in] If true, this method will fill X
    ///   with zeros initially.  If false, this method will assume
    ///   that X contains a possibly nonzero initial guess on input.
    ///   Note that a nonzero initial guess may impose an additional
    ///   nontrivial communication cost (an additional Import).
    ///
    /// \pre Domain, range, and row Maps of the sparse matrix are all the same.
    /// \pre No other argument aliases X.
    void
    reorderedGaussSeidelCopy (MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic>& X,
                              const MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic>& B,
                              const MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic>& D,
                              const Teuchos::ArrayView<LocalOrdinal>& rowIndices,
                              const Scalar& dampingFactor,
                              const ESweepDirection direction,
                              const int numSweeps,
                              const bool zeroInitialGuess) const;

    /// \brief Implementation of RowMatrix::add: return <tt>alpha*A + beta*this</tt>.
    ///
    /// This override of the default implementation ensures that, when
    /// called on a CrsMatrix, this method always returns a CrsMatrix
    /// of exactly the same type as <tt>*this</tt>.  "Exactly the same
    /// type" means that all the template parameters match, including
    /// the fifth template parameter.  The input matrix A need not
    /// necessarily be a CrsMatrix or a CrsMatrix of the same type as
    /// <tt>*this</tt>, though this method may be able to optimize
    /// further in that case.
    virtual Teuchos::RCP<RowMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node> >
    add (const Scalar& alpha,
         const RowMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& A,
         const Scalar& beta,
         const Teuchos::RCP<const Map<LocalOrdinal, GlobalOrdinal, Node> >& domainMap,
         const Teuchos::RCP<const Map<LocalOrdinal, GlobalOrdinal, Node> >& rangeMap,
         const Teuchos::RCP<Teuchos::ParameterList>& params) const;

    //@}
    //! @name Implementation of Teuchos::Describable interface
    //@{

    //! A one-line description of this object.
    std::string description () const;

    //! Print the object with some verbosity level to an FancyOStream object.
    void
    describe (Teuchos::FancyOStream &out,
              const Teuchos::EVerbosityLevel verbLevel =
              Teuchos::Describable::verbLevel_default) const;

    //@}
    //! @name Implementation of DistObject interface
    //@{

    virtual bool
    checkSizes (const SrcDistObject& source);

    virtual void
    copyAndPermute (const SrcDistObject& source,
                    size_t numSameIDs,
                    const Teuchos::ArrayView<const LocalOrdinal>& permuteToLIDs,
                    const Teuchos::ArrayView<const LocalOrdinal>& permuteFromLIDs);

    virtual void
    packAndPrepare (const SrcDistObject& source,
                    const Teuchos::ArrayView<const LocalOrdinal>& exportLIDs,
                    Teuchos::Array<char>& exports,
                    const Teuchos::ArrayView<size_t>& numPacketsPerLID,
                    size_t& constantNumPackets,
                    Distributor& distor);

  private:
    /// \brief Unpack the imported column indices and values, and
    ///   combine into matrix.
    void
    unpackAndCombineImpl (const Teuchos::ArrayView<const LocalOrdinal> &importLIDs,
                          const Teuchos::ArrayView<const char> &imports,
                          const Teuchos::ArrayView<size_t> &numPacketsPerLID,
                          size_t constantNumPackets,
                          Distributor& distor,
                          CombineMode combineMode);

  public:
    /// \brief Unpack the imported column indices and values, and combine into matrix.
    ///
    /// \warning The allowed \c combineMode depends on whether the
    ///   matrix's graph is static or dynamic.  ADD, REPLACE, and
    ///   ABSMAX are valid for a static graph, but INSERT is not.
    ///   ADD and INSERT are valid for a dynamic graph; ABSMAX and
    ///   REPLACE have not yet been implemented (and would require
    ///   serious changes to matrix assembly in order to implement
    ///   sensibly).
    void
    unpackAndCombine (const Teuchos::ArrayView<const LocalOrdinal> &importLIDs,
                      const Teuchos::ArrayView<const char> &imports,
                      const Teuchos::ArrayView<size_t> &numPacketsPerLID,
                      size_t constantNumPackets,
                      Distributor& distor,
                      CombineMode combineMode);
    //@}
    //! @name Implementation of Packable interface
    //@{

    /// \brief Pack this object's data for an Import or Export.
    ///
    /// \warning To be called only by the packAndPrepare method of
    ///   appropriate classes of DistObject.
    ///
    /// \param exportLIDs [in] Local indices of the rows to pack.
    /// \param exports [out] On output: array of packed matrix
    ///   entries; allocated by method.
    /// \param numPacketsPerLID [out] On output: numPacketsPerLID[i]
    ///   is the number of bytes of the \c exports array used for
    ///   storing packed local row \c exportLIDs[i].
    /// \param constantNumPackets [out] If zero on output, the packed
    ///   rows may have different numbers of entries.  If nonzero on
    ///   output, then that number gives the constant number of
    ///   entries for all packed rows <i>on all processes in the
    ///   matrix's communicator</i>.
    /// \param distor [in/out] The Distributor object which implements
    ///   the Import or Export operation that is calling this method.
    ///
    /// \subsection Tpetra_KR_CrsMatrix_pack_summary Packing scheme
    ///
    /// The number of "packets" per row is the number of bytes per
    /// row.  Each row has the following storage format:
    ///
    /// <tt>[numEnt, vals, inds]</tt>,
    ///
    /// where:
    /// <ul>
    /// <li> \c numEnt (\c LocalOrdinal): number of entries in the
    ///      row. </li>
    /// <li> \c vals: array of \c Scalar.  For the k-th entry in the
    ///      row, \c vals[k] is its value and \c inds[k] its global
    ///      column index. </li>
    /// <li> \c inds: array of \c GlobalOrdinal.  For the k-th entry
    ///      in the row, \c vals[k] is its value and \c inds[k] its
    ///      global column index. </li>
    /// </ul>
    ///
    /// We reserve the right to pad for alignment in the future.  In
    /// that case, the number of bytes reported by \c numPacketsPerLID
    /// will reflect padding to align each datum to its size, and the
    /// row will have final padding as well to ensure that the
    /// <i>next</i> row is aligned.  Rows with zero entries will still
    /// take zero bytes, however.
    ///
    /// RowMatrix::pack will always use the same packing scheme as
    /// this method.  This ensures correct Import / Export from a
    /// RowMatrix to a CrsMatrix.
    ///
    /// We do <i>not</i> recommend relying on the details of this
    /// packing scheme.  We describe it here more for Tpetra
    /// developers and less for users.
    ///
    /// \subsection Tpetra_KR_CrsMatrix_pack_disc Discussion
    ///
    /// DistObject requires packing an object's entries as type
    /// <tt>Packet</tt>, which is the first template parameter of
    /// DistObject.  Since sparse matrices have both values and
    /// indices, we use <tt>Packet=char</tt> and pack them into
    /// buffers of <tt>char</tt> (really "byte").  Indices are stored
    /// as global indices, in case the source and target matrices have
    /// different column Maps (or don't have a column Map yet).
    ///
    /// Currently, we only pack values and column indices.  Row
    /// indices are stored implicitly as the local indices (LIDs) to
    /// pack (see \c exportLIDs).  This is because a DistObject
    /// instance only has one Map, and currently we use the row Map
    /// for CrsMatrix (and RowMatrix).  This makes redistribution of
    /// matrices with 2-D distributions less efficient, but it works
    /// for now.  This may change in the future.
    ///
    /// On output, \c numPacketsPerLID[i] gives the number of bytes
    /// used to pack local row \c exportLIDs[i] of \c this object (the
    /// source object of an Import or Export).  If \c offset is the
    /// exclusive prefix sum-scan of \c numPacketsPerLID, then on
    /// output, <tt>exports[offset[i] .. offset[i+1]]</tt>
    /// (half-exclusive range) contains the packed entries for local
    /// row \c exportLIDs[i].
    ///
    /// Entries for each row use a "struct of arrays" pattern to match
    /// how sparse matrices actually store their data.  The number of
    /// entries in the row goes first, all values go next, and all
    /// column indices (stored as global indices) go last.  Values and
    /// column indices occur in the same order.  Rows with zero
    /// entries always take zero bytes (we do not store their number
    /// of entries explicitly).  This ensures sparsity of storage and
    /// communication in case most rows are empty.
    ///
    /// \subsection Tpetra_KR_CrsMatrix_pack_why Justification
    ///
    /// GCC >= 4.9 and recent-future versions of the Intel compiler
    /// implement stricter aliasing rules that forbid unaligned type
    /// punning.  If we were to pack as an "array of structs" -- in
    /// this case, an array of <tt>(Scalar, GlobalOrdinal)</tt> pairs
    /// -- then we would either have to pad each matrix entry for
    /// alignment, or call memcpy twice per matrix entry to pack and
    /// unpack.  The "struct of arrays" storage scheme reduces the
    /// padding requirement to a constant per row, or reduces the
    /// number of memcpy calls to two per row.
    ///
    /// We include the number of entries in each row in that row's
    /// packed data, to make unpacking easier.  This saves us from an
    /// error-prone computation to find the number of entries from the
    /// number of bytes.  That computation gets even more difficult if
    /// we have to introduce padding for alignment in the future.
    /// Knowing the number of entries for each row also makes
    /// parallelizing packing and unpacking easier.
    ///
    /// \subsection Tpetra_KR_CrsMatrix_pack_assum Technical assumptions
    ///
    /// <ul>
    /// <li> \c sizeof(Scalar) says how much data were used to
    ///      represent a \c Scalar in its packed form. </li>
    /// <li> \c sizeof returns the same value on all processes for
    ///      <tt>Scalar</tt>, \c LocalOrdinal, and \c GlobalOrdinal.
    ///      </li>
    /// </ul>
    virtual void
    pack (const Teuchos::ArrayView<const LocalOrdinal>& exportLIDs,
          Teuchos::Array<char>& exports,
          const Teuchos::ArrayView<size_t>& numPacketsPerLID,
          size_t& constantNumPackets,
          Distributor& distor) const;

  private:
    /// \brief Pack data for the current row to send.
    ///
    /// \param numEntOut [out] Where to write the number of entries in
    ///   the row.
    /// \param valOut [out] Output (packed) array of matrix values.
    /// \param indOut [out] Output (packed) array of matrix column
    ///   indices (as global indices).
    /// \param numEnt [in] Number of entries in the row.
    /// \param lclRow [in] Local index of the row.
    ///
    /// This method does not allocate temporary storage.  We intend
    /// for this to be safe to call in a thread-parallel way at some
    /// point, though it is currently not, due to thread safety issues
    /// with Teuchos::RCP (always) and Teuchos::ArrayView (in a debug
    /// build).
    ///
    /// \return \c true if the method succeeded, else \c false.
    bool
    packRow (char* const numEntOut,
             char* const valOut,
             char* const indOut,
             const size_t numEnt,
             const LocalOrdinal lclRow) const;

    /// \brief Unpack and combine received data for the current row.
    ///
    /// \pre <tt>tmpSize >= numEnt</tt>
    ///
    /// \param valInTmp [out] Temporary storage for values.  Has
    ///   tmpSize entries.
    /// \param indInTmp [out] Temporary storage for indices.  Has
    ///   tmpSize entries.
    /// \param tmpNumEnt [in] Number of entries (not bytes!) in each
    ///   of valInTmp and indInTmp.
    /// \param valIn [in] Pointer to where values live in receive
    ///   buffer.  Not necessarily aligned to sizeof(Scalar) (so must
    ///   memcpy into temporary storage).
    /// \param indIn [out] Pointer to where indices live in receive
    ///   buffer.  Not necessarily aligned to sizeof(GlobalOrdinal)
    ///   (so must memcpy into temporary storage).
    /// \param numEnt [in] Number of entries in the row.
    /// \param lclRow [in] Local index of the row.
    /// \param combineMode [in] Combine mode (how to merge entries in
    ///   the same row with the same column index).
    ///
    /// \return \c true if the method succeeded, else \c false.
    bool
    unpackRow (Scalar* const valInTmp,
               GlobalOrdinal* const indInTmp,
               const size_t tmpNumEnt,
               const char* const valIn,
               const char* const indIn,
               const size_t numEnt,
               const LocalOrdinal lclRow,
               const Tpetra::CombineMode combineMode);

    /// \brief Allocate space for pack() to pack entries to send.
    ///
    /// \param exports [in/out] Pack buffer to (re)allocate.
    /// \param totalNumEntries [out] Total number of entries to send.
    /// \param exportLIDs [in] Local indices of the rows to send.
    void
    allocatePackSpace (Teuchos::Array<char>& exports,
                       size_t& totalNumEntries,
                       const Teuchos::ArrayView<const LocalOrdinal>& exportLIDs) const;
    //@}

  public:
    //! Get the Kokkos local values
    typename local_matrix_type::values_type getLocalValuesView () const {
      return k_values1D_;
    }

  private:
    // Friend declaration for nonmember function.
    template<class CrsMatrixType>
    friend Teuchos::RCP<CrsMatrixType>
    importAndFillCompleteCrsMatrix (const Teuchos::RCP<const CrsMatrixType>& sourceMatrix,
                                    const Import<typename CrsMatrixType::local_ordinal_type,
                                                 typename CrsMatrixType::global_ordinal_type,
                                                 typename CrsMatrixType::node_type>& importer,
                                    const Teuchos::RCP<const Map<typename CrsMatrixType::local_ordinal_type,
                                                                 typename CrsMatrixType::global_ordinal_type,
                                                                 typename CrsMatrixType::node_type> >& domainMap,
                                    const Teuchos::RCP<const Map<typename CrsMatrixType::local_ordinal_type,
                                                                 typename CrsMatrixType::global_ordinal_type,
                                                                 typename CrsMatrixType::node_type> >& rangeMap,
                                    const Teuchos::RCP<Teuchos::ParameterList>& params);

    // Friend declaration for nonmember function.
    template<class CrsMatrixType>
    friend Teuchos::RCP<CrsMatrixType>
    exportAndFillCompleteCrsMatrix (const Teuchos::RCP<const CrsMatrixType>& sourceMatrix,
                                    const Export<typename CrsMatrixType::local_ordinal_type,
                                                 typename CrsMatrixType::global_ordinal_type,
                                                 typename CrsMatrixType::node_type>& exporter,
                                    const Teuchos::RCP<const Map<typename CrsMatrixType::local_ordinal_type,
                                                                 typename CrsMatrixType::global_ordinal_type,
                                                                 typename CrsMatrixType::node_type> >& domainMap,
                                    const Teuchos::RCP<const Map<typename CrsMatrixType::local_ordinal_type,
                                                                 typename CrsMatrixType::global_ordinal_type,
                                                                 typename CrsMatrixType::node_type> >& rangeMap,
                                    const Teuchos::RCP<Teuchos::ParameterList>& params);

  public:
    /// \brief Import from <tt>this</tt> to the given destination
    ///   matrix, and make the result fill complete.
    ///
    /// If destMatrix.is_null(), this creates a new matrix as the
    /// destination.  (This is why destMatrix is passed in by nonconst
    /// reference to RCP.)  Otherwise it checks for "pristine" status
    /// and throws if that is not the case.  "Pristine" means that the
    /// matrix has no entries and is not fill complete.
    ///
    /// Use of the "non-member constructor" version of this method,
    /// exportAndFillCompleteCrsMatrix, is preferred for user
    /// applications.
    ///
    /// \warning This method is intended for expert developer use
    ///   only, and should never be called by user code.
    void
    importAndFillComplete (Teuchos::RCP<CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic> >& destMatrix,
                           const import_type& importer,
                           const Teuchos::RCP<const map_type>& domainMap,
                           const Teuchos::RCP<const map_type>& rangeMap,
                           const Teuchos::RCP<Teuchos::ParameterList>& params = Teuchos::null) const;

    /// \brief Export from <tt>this</tt> to the given destination
    ///   matrix, and make the result fill complete.
    ///
    /// If destMatrix.is_null(), this creates a new matrix as the
    /// destination.  (This is why destMatrix is passed in by nonconst
    /// reference to RCP.)  Otherwise it checks for "pristine" status
    /// and throws if that is not the case.  "Pristine" means that the
    /// matrix has no entries and is not fill complete.
    ///
    /// Use of the "non-member constructor" version of this method,
    /// exportAndFillCompleteCrsMatrix, is preferred for user
    /// applications.
    ///
    /// \warning This method is intended for expert developer use
    ///   only, and should never be called by user code.
    void
    exportAndFillComplete (Teuchos::RCP<CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic> >& destMatrix,
                           const export_type& exporter,
                           const Teuchos::RCP<const map_type>& domainMap = Teuchos::null,
                           const Teuchos::RCP<const map_type>& rangeMap = Teuchos::null,
                           const Teuchos::RCP<Teuchos::ParameterList>& params = Teuchos::null) const;



  private:
    /// \brief Transfer (e.g. Import/Export) from <tt>this</tt> to the
    ///   given destination matrix, and make the result fill complete.
    ///
    /// If destMat.is_null(), this creates a new matrix, otherwise it
    /// checks for "pristine" status and throws if that is not the
    /// case.  This method implements importAndFillComplete and
    /// exportAndFillComplete, which in turn implemment the nonmember
    /// "constructors" importAndFillCompleteCrsMatrix and
    /// exportAndFillCompleteCrsMatrix.  It's convenient to put those
    /// nonmember constructors' implementations inside the CrsMatrix
    /// class, so that we don't have to put much code in the _decl
    /// header file.
    ///
    /// The point of this method is to fuse three tasks:
    ///
    ///   1. Create a destination matrix (CrsMatrix constructor)
    ///   2. Import or Export this matrix to the destination matrix
    ///   3. Call fillComplete on the destination matrix
    ///
    /// Fusing these tasks can avoid some communication and work.
    void
    transferAndFillComplete (Teuchos::RCP<CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic> >& destMatrix,
                             const ::Tpetra::Details::Transfer<LocalOrdinal, GlobalOrdinal, Node>& rowTransfer,
                             const Teuchos::RCP<const map_type>& domainMap = Teuchos::null,
                             const Teuchos::RCP<const map_type>& rangeMap = Teuchos::null,
                             const Teuchos::RCP<Teuchos::ParameterList>& params = Teuchos::null) const;
    // We forbid copy construction by declaring this method private
    // and not implementing it.
    CrsMatrix (const CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic>& rhs);

    // We forbid assignment (operator=) by declaring this method
    // private and not implementing it.
    CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic>&
    operator= (const CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic>& rhs);

    /// \brief Like insertGlobalValues(), but with column filtering.
    ///
    /// "Column filtering" means that if the matrix has a column Map,
    /// then this method ignores entries in columns that are not in
    /// the column Map.
    ///
    /// See discussion in the documentation of getGlobalRowCopy()
    /// about why we use \c Scalar and not \c impl_scalar_type here
    /// for the input array type.
    void
    insertGlobalValuesFiltered (const GlobalOrdinal globalRow,
                                const Teuchos::ArrayView<const GlobalOrdinal>& indices,
                                const Teuchos::ArrayView<const Scalar>& values);

    /// \brief Like insertLocalValues(), but with column filtering.
    ///
    /// "Column filtering" means that if the matrix has a column Map,
    /// then this method ignores entries in columns that are not in
    /// the column Map.
    ///
    /// See discussion in the documentation of getGlobalRowCopy()
    /// about why we use \c Scalar and not \c impl_scalar_type here
    /// for the input array type.
    void
    insertLocalValuesFiltered (const LocalOrdinal localRow,
                               const Teuchos::ArrayView<const LocalOrdinal>& indices,
                               const Teuchos::ArrayView<const Scalar>& values);

    /// \brief Combine in the data using the given combine mode.
    ///
    /// The copyAndPermute() and unpackAndCombine() methods use this
    /// function to combine incoming entries from the source matrix
    /// with the target matrix's current data.  This method's behavior
    /// depends on whether the target matrix (that is, this matrix)
    /// has a static graph.
    ///
    /// See discussion in the documentation of getGlobalRowCopy()
    /// about why we use \c Scalar and not \c impl_scalar_type here
    /// for the input array type.
    void
    combineGlobalValues (const GlobalOrdinal globalRowIndex,
                         const Teuchos::ArrayView<const GlobalOrdinal>& columnIndices,
                         const Teuchos::ArrayView<const Scalar>& values,
                         const Tpetra::CombineMode combineMode);

    /// \brief Transform CrsMatrix entries, using global indices.
    ///
    /// For every entry \f$A(i,j)\f$ to transform, if \f$v_{ij}\f$ is
    /// the corresponding entry of the \c values array, then we apply
    /// the binary function f to \f$A(i,j)\f$ as follows:
    /// \f[
    ///   A(i,j) := f(A(i,j), v_{ij}).
    /// \f]
    /// For example, BinaryFunction = std::plus<Scalar> does the same
    /// thing as sumIntoLocalValues(), and BinaryFunction =
    /// project2nd<Scalar,Scalar> does the same thing as
    /// replaceLocalValues().
    ///
    /// \tparam BinaryFunction The type of binary function to apply.
    ///   std::binary_function is a model for this.
    ///
    /// \param globalRow [in] (Global) index of the row to modify.
    ///   This row <i>must</t> be owned by the calling process.
    ///
    /// \param indices [in] (Global) indices in the row to modify.
    ///   Indices not in the column Map (if the matrix already has a
    ///   column Map) and their corresponding values will be ignored.
    ///
    /// \param values [in] Values to use for modification.
    ///
    /// This method works whether indices are local or global.
    /// However, it will cost more if indices are local, since it will
    /// have to convert the local indices to global indices in that
    /// case.
    ///
    /// See discussion in the documentation of getGlobalRowCopy()
    /// about why we use \c Scalar and not \c impl_scalar_type here
    /// for the input array type.
    template<class BinaryFunction>
    LocalOrdinal
    transformGlobalValues (GlobalOrdinal globalRow,
                           const Teuchos::ArrayView<const GlobalOrdinal>& indices,
                           const Teuchos::ArrayView<const Scalar>& values,
                           BinaryFunction f)
    {
      using Teuchos::Array;
      using Teuchos::ArrayView;
      typedef LocalOrdinal LO;
      typedef GlobalOrdinal GO;
      typedef impl_scalar_type ST;
      typedef typename ArrayView<const GO>::size_type size_type;

      if (! isFillActive ()) {
        // Fill must be active in order to call this method.
        return Teuchos::OrdinalTraits<LO>::invalid ();
      }
      else if (values.size () != indices.size ()) {
        // The sizes of values and indices must match.
        return Teuchos::OrdinalTraits<LO>::invalid ();
      }

      const LO lrow = this->getRowMap ()->getLocalElement (globalRow);
      if (lrow == Teuchos::OrdinalTraits<LO>::invalid ()) {
        // We don't own the row, so we're not allowed to modify its values.
        return Teuchos::OrdinalTraits<LO>::invalid ();
      }

      if (staticGraph_.is_null ()) {
        return Teuchos::OrdinalTraits<LO>::invalid ();
      }
      const crs_graph_type& graph = *staticGraph_;
      RowInfo rowInfo = graph.getRowInfo (lrow);
      if (indices.size () == 0) {
        return static_cast<LO> (0);
      }
      else {
        ArrayView<const ST> valsIn =
          Teuchos::av_reinterpret_cast<const ST> (values);
        ArrayView<ST> curVals = this->getViewNonConst (rowInfo);
        if (isLocallyIndexed ()) {
          // Convert the given global indices to local indices.
          //
          // FIXME (mfh 08 Jul 2014) Why can't we ask the graph to do
          // that?  It could do the conversions in place, so that we
          // wouldn't need temporary storage.
          const map_type& colMap = * (this->getColMap ());
          const size_type numInds = indices.size ();
          Array<LO> lclInds (numInds);
          for (size_type k = 0; k < numInds; ++k) {
            // There is no need to filter out indices not in the
            // column Map.  Those that aren't will be mapped to
            // invalid(), which the graph's transformGlobalValues()
            // will filter out (but not count in its return value).
            lclInds[k] = colMap.getLocalElement (indices[k]);
          }
          return graph.template transformLocalValues<ST, BinaryFunction> (rowInfo,
                                                                          curVals,
                                                                          lclInds (),
                                                                          valsIn, f);
        }
        else if (isGloballyIndexed ()) {
          return graph.template transformGlobalValues<ST, BinaryFunction> (rowInfo,
                                                                           curVals,
                                                                           indices,
                                                                           valsIn, f);
        }
        else {
          // If the graph is neither locally nor globally indexed on
          // the calling process, that means that the calling process
          // can't possibly have any entries in the owned row.  Thus,
          // there are no entries to transform, so we return zero.
          return static_cast<LO> (0);
        }
      }
    }

  private:
    /// \brief Special case of insertGlobalValues for when globalRow
    ///   is <i>not<i> owned by the calling process.
    ///
    /// See discussion in the documentation of getGlobalRowCopy()
    /// about why we use \c Scalar and not \c impl_scalar_type here
    /// for the input array type.
    void
    insertNonownedGlobalValues (const GlobalOrdinal globalRow,
                                const Teuchos::ArrayView<const GlobalOrdinal>& indices,
                                const Teuchos::ArrayView<const Scalar>& values);

    //! Type of the DistObject specialization from which this class inherits.
    typedef DistObject<char, LocalOrdinal, GlobalOrdinal, Node, classic> dist_object_type;

  protected:
    // useful typedefs
    typedef Teuchos::OrdinalTraits<LocalOrdinal> OTL;
    typedef Kokkos::Details::ArithTraits<impl_scalar_type> STS;
    typedef Kokkos::Details::ArithTraits<mag_type> STM;
    typedef MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic> MV;
    typedef Vector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic>      V;
    typedef crs_graph_type Graph;

    // Enums
    enum GraphAllocationStatus {
      GraphAlreadyAllocated,
      GraphNotYetAllocated
    };

    /// \brief Allocate values (and optionally indices) using the Node.
    ///
    /// \param gas [in] If GraphNotYetAllocated, allocate the
    ///   indices of \c myGraph_ via \c allocateIndices(lg) before
    ///   allocating values.
    ///
    /// \param lg [in] Argument passed into \c
    ///   myGraph_->allocateIndices(), if applicable.
    ///
    /// \pre If the graph (that is, staticGraph_) indices are
    ///   already allocated, then gas must be GraphAlreadyAllocated.
    ///   Otherwise, gas must be GraphNotYetAllocated.  We only
    ///   check for this precondition in debug mode.
    ///
    /// \pre If the graph indices are not already allocated, then
    ///   the graph must be owned by the matrix.
    void allocateValues (ELocalGlobal lg, GraphAllocationStatus gas);

    /// \brief Sort the entries of each row by their column indices.
    ///
    /// This only does anything if the graph isn't already sorted
    /// (i.e., ! myGraph_->isSorted ()).  This method is called in
    /// fillComplete().
    void sortEntries();

    /// \brief Merge entries in each row with the same column indices.
    ///
    /// This only does anything if the graph isn't already merged
    /// (i.e., ! myGraph_->isMerged ()).  This method is called in
    /// fillComplete().
    void mergeRedundantEntries();

    /// \brief Clear matrix properties that require collectives.
    ///
    /// This clears whatever computeGlobalConstants() (which see)
    /// computed, in preparation for changes to the matrix.  The
    /// current implementation of this method does nothing.
    ///
    /// This method is called in resumeFill().
    void clearGlobalConstants();

    /// \brief Compute matrix properties that require collectives.
    ///
    /// The corresponding Epetra_CrsGraph method computes things
    /// like the global number of nonzero entries, that require
    /// collectives over the matrix's communicator.  The current
    /// Tpetra implementation of this method does nothing.
    ///
    /// This method is called in fillComplete().
    void computeGlobalConstants();

    /// \brief Column Map MultiVector used in apply() and gaussSeidel().
    ///
    /// This is a column Map MultiVector.  It is used as the target of
    /// the forward mode Import operation (if necessary) in apply()
    /// and gaussSeidel(), and the source of the reverse mode Export
    /// operation (if necessary) in these methods.  Both of these
    /// methods create this MultiVector on demand if needed, and reuse
    /// it (if possible) for subsequent calls.
    ///
    /// This is declared <tt>mutable</tt> because the methods in
    /// question are const, yet want to cache the MultiVector for
    /// later use.
    mutable Teuchos::RCP<MV> importMV_;

    /// \brief Row Map MultiVector used in apply().
    ///
    /// This is a row Map MultiVector.  It is uses as the source of
    /// the forward mode Export operation (if necessary) in apply()
    /// and gaussSeidel(), and the target of the reverse mode Import
    /// operation (if necessary) in these methods.  Both of these
    /// methods create this MultiVector on demand if needed, and reuse
    /// it (if possible) for subsequent calls.
    ///
    /// This is declared <tt>mutable</tt> because the methods in
    /// question are const, yet want to cache the MultiVector for
    /// later use.
    mutable Teuchos::RCP<MV> exportMV_;

    /// \brief Create a (or fetch a cached) column Map MultiVector.
    ///
    /// \param X_domainMap [in] A domain Map Multivector.  The
    ///   returned MultiVector, if nonnull, will have the same number
    ///   of columns as Y_domainMap.
    ///
    /// \param force [in] Force creating the MultiVector if it hasn't
    ///   been created already.
    ///
    /// The \c force parameter is helpful when the domain Map and the
    /// column Map are the same (so that normally we wouldn't need the
    /// column Map MultiVector), but the following (for example)
    /// holds:
    ///
    /// 1. The kernel needs a constant stride input MultiVector, but
    ///    the given input MultiVector is not constant stride.
    ///
    /// We don't test for the above in this method, because it depends
    /// on the specific kernel.
    Teuchos::RCP<MV>
    getColumnMapMultiVector (const MV& X_domainMap,
                             const bool force = false) const;

    /// \brief Create a (or fetch a cached) row Map MultiVector.
    ///
    /// \param Y_rangeMap [in] A range Map Multivector.  The returned
    ///   MultiVector, if nonnull, will have the same number of
    ///   columns as Y_rangeMap.
    ///
    /// \param force [in] Force creating the MultiVector if it hasn't
    ///   been created already.
    ///
    /// The \c force parameter is helpful when the range Map and the
    /// row Map are the same (so that normally we wouldn't need the
    /// row Map MultiVector), but one of the following holds:
    ///
    /// 1. The kernel needs a constant stride output MultiVector,
    ///    but the given output MultiVector is not constant stride.
    ///
    /// 2. The kernel does not permit aliasing of its input and output
    ///    MultiVector arguments, but they do alias each other.
    ///
    /// We don't test for the above in this method, because it depends
    /// on the specific kernel.
    Teuchos::RCP<MV>
    getRowMapMultiVector (const MV& Y_rangeMap,
                          const bool force = false) const;

    //! Special case of apply() for <tt>mode == Teuchos::NO_TRANS</tt>.
    void
    applyNonTranspose (const MV& X_in,
                       MV& Y_in,
                       Scalar alpha,
                       Scalar beta) const;

    //! Special case of apply() for <tt>mode != Teuchos::NO_TRANS</tt>.
    void
    applyTranspose (const MV& X_in,
                    MV& Y_in,
                    const Teuchos::ETransp mode,
                    Scalar alpha,
                    Scalar beta) const;

    // matrix data accessors

    /// \brief Constant view of all entries (including extra space) in
    ///   the given row.
    ///
    /// Unlike getGlobalRowView(), this method returns
    /// <tt>impl_scalar_type</tt>, not \c Scalar.  This is because
    /// this method is <i>not</i> part of the public interface of
    /// CrsMatrix.
    Teuchos::ArrayView<const impl_scalar_type> getView (RowInfo rowinfo) const;

    /// \brief Nonconst view of all entries (including extra space) in
    ///   the given row.
    ///
    /// Unlike getGlobalRowView(), this method returns
    /// <tt>impl_scalar_type</tt>, not \c Scalar.  This is because
    /// this method is <i>not</i> part of the public interface of
    /// CrsMatrix.
    Teuchos::ArrayView<impl_scalar_type> getViewNonConst (RowInfo rowinfo);

    /// \brief Fill data into the local matrix.
    ///
    /// This method is only called in fillComplete(), and it is only
    /// called if the graph's structure is already fixed (that is, if
    /// the matrix does not own the graph).
    void fillLocalMatrix (const Teuchos::RCP<Teuchos::ParameterList>& params);

    /// \brief Fill data into the local graph and matrix.
    ///
    /// This method is only called in fillComplete(), and it is only
    /// called if the graph's structure is <i>not</i> already fixed
    /// (that is, if the matrix <i>does</i> own the graph).
    void fillLocalGraphAndMatrix (const Teuchos::RCP<Teuchos::ParameterList>& params);

    //! Check that this object's state is sane; throw if it's not.
    void checkInternalState () const;

    /// \name (Global) graph pointers
    ///
    /// We keep two graph pointers in order to maintain const
    /// correctness.  myGraph_ is a graph which we create internally.
    /// Operations that change the sparsity structure also modify
    /// myGraph_.  If myGraph_ != null, then staticGraph_ == myGraph_
    /// pointerwise (we set the pointers equal to each other when we
    /// create myGraph_).  myGraph_ is only null if this CrsMatrix was
    /// created using the constructor with a const CrsGraph input
    /// argument.  In this case, staticGraph_ is set to the input
    /// CrsGraph.
    //@{
    Teuchos::RCP<const Graph> staticGraph_;
    Teuchos::RCP<      Graph>     myGraph_;
    //@}

    //! The local sparse matrix.
    local_matrix_type lclMatrix_;

    /// \name Sparse matrix values.
    ///
    /// k_values1D_ represents the values assuming "1-D" compressed
    /// sparse row storage.  values2D_ represents the values as an
    /// array of arrays, one (inner) array per row of the sparse
    /// matrix.
    ///
    /// Before allocation, both arrays are null.  After allocation,
    /// one is null.  If static allocation, then values2D_ is null.
    /// If dynamic allocation, then k_values1D_ is null.  The
    /// allocation always matches that of graph_, as the graph does
    /// the allocation for the matrix.
    //@{
    typename local_matrix_type::values_type k_values1D_;
    Teuchos::ArrayRCP<Teuchos::Array<impl_scalar_type> > values2D_;
    //@}

    /// \brief Status of the matrix's storage, when not in a
    ///   fill-complete state.
    ///
    /// The phrase "When not in a fill-complete state" is important.
    /// When the matrix is fill complete, it <i>always</i> uses 1-D
    /// "packed" storage.  However, if the "Optimize Storage"
    /// parameter to fillComplete was false, the matrix may keep
    /// unpacked 1-D or 2-D storage around and resume it on the next
    /// resumeFill call.
    Details::EStorageStatus storageStatus_;

    //! Whether the matrix is fill complete.
    bool fillComplete_;

    /// \brief Nonlocal data added using insertGlobalValues().
    ///
    /// These data are cleared by globalAssemble(), once it finishes
    /// redistributing them to their owning processes.
    ///
    /// For a given nonowned global row gRow which was given to
    /// insertGlobalValues() or sumIntoGlobalValues(),
    /// <tt>nonlocals_[gRow].first[k]</tt> is the column index of an
    /// inserted entry, and <tt>nonlocals_[gRow].second[k]</tt> is its
    /// value.  Duplicate column indices for the same row index are
    /// allowed and will be summed during globalAssemble().
    ///
    /// This used to be a map from GlobalOrdinal to (GlobalOrdinal,
    /// Scalar) pairs.  This makes gcc issue a "note" about the ABI of
    /// structs containing std::complex members changing.  CDash
    /// reports this as a warning, even though it's a "note," not a
    /// warning.  However, I don't want it to show up, so I rearranged
    /// the map's value type to a pair of arrays, rather than an array
    /// of pairs.
    ///
    /// \note For Epetra developers: Tpetra::CrsMatrix corresponds
    ///   more to Epetra_FECrsMatrix than to Epetra_CrsMatrix.  The
    ///   insertGlobalValues() method in Tpetra::CrsMatrix, unlike
    ///   its corresponding method in Epetra_CrsMatrix, allows
    ///   insertion into rows which are not owned by the calling
    ///   process.  The globalAssemble() method redistributes these
    ///   to their owning processes.
    std::map<GlobalOrdinal, std::pair<Teuchos::Array<GlobalOrdinal>,
                                      Teuchos::Array<Scalar> > > nonlocals_;

    /// \brief Cached Frobenius norm of the (global) matrix.
    ///
    /// The value -1 means that the norm has not yet been computed, or
    /// that the values in the matrix may have changed and the norm
    /// must be recomputed.
    mutable mag_type frobNorm_;

  public:
    // FIXME (mfh 24 Feb 2014) Is it _really_ necessary to make this a
    // public inner class of CrsMatrix?  It looks like it doesn't
    // depend on any implementation details of CrsMatrix at all.  It
    // should really be declared and defined outside of CrsMatrix.
    template<class ViewType, class OffsetViewType>
    struct pack_functor {
      typedef typename ViewType::execution_space execution_space;
      ViewType src_;
      ViewType dst_;
      OffsetViewType src_offset_;
      OffsetViewType dst_offset_;
      typedef typename OffsetViewType::non_const_value_type scalar_index_type;

      pack_functor (ViewType dst, ViewType src,
                    OffsetViewType dst_offset, OffsetViewType src_offset) :
        src_ (src),
        dst_ (dst),
        src_offset_ (src_offset),
        dst_offset_ (dst_offset)
      {}

      KOKKOS_INLINE_FUNCTION
      void operator () (const LocalOrdinal row) const {
        scalar_index_type srcPos = src_offset_(row);
        const scalar_index_type dstEnd = dst_offset_(row+1);
        scalar_index_type dstPos = dst_offset_(row);
        for ( ; dstPos < dstEnd; ++dstPos, ++srcPos) {
          dst_(dstPos) = src_(srcPos);
        }
      }
    };
  }; // class CrsMatrix


  /** \brief Non-member function to create an empty CrsMatrix given a
        row map and a non-zero profile.

      \return A dynamically allocated (DynamicProfile) matrix with
        specified number of nonzeros per row (defaults to zero).

      \relatesalso CrsMatrix
   */
  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node, const bool classic = Node::classic>
  Teuchos::RCP<CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic> >
  createCrsMatrix (const Teuchos::RCP<const Map<LocalOrdinal, GlobalOrdinal, Node> >& map,
                   size_t maxNumEntriesPerRow = 0,
                   const Teuchos::RCP<Teuchos::ParameterList>& params = Teuchos::null)
  {
    typedef CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic> matrix_type;
    return Teuchos::rcp (new matrix_type (map, maxNumEntriesPerRow,
                                          DynamicProfile, params));
  }

  /// \brief Nonmember CrsMatrix constructor that fuses Import and fillComplete().
  /// \relatesalso CrsMatrix
  /// \tparam CrsMatrixType A specialization of CrsMatrix.
  ///
  /// A common use case is to create an empty destination CrsMatrix,
  /// redistribute from a source CrsMatrix (by an Import or Export
  /// operation), then call fillComplete() on the destination
  /// CrsMatrix.  This constructor fuses these three cases, for an
  /// Import redistribution.
  ///
  /// Fusing redistribution and fillComplete() exposes potential
  /// optimizations.  For example, it may make constructing the column
  /// Map faster, and it may avoid intermediate unoptimized storage in
  /// the destination CrsMatrix.  These optimizations may improve
  /// performance for specialized kernels like sparse matrix-matrix
  /// multiply, as well as for redistributing data after doing load
  /// balancing.
  ///
  /// The resulting matrix is fill complete (in the sense of
  /// isFillComplete()) and has optimized storage (in the sense of
  /// isStorageOptimized()).  By default, its domain Map is the domain
  /// Map of the source matrix, and its range Map is the range Map of
  /// the source matrix.
  ///
  /// \warning If the target Map of the Import is a subset of the
  ///   source Map of the Import, then you cannot use the default
  ///   range Map.  You should instead construct a nonoverlapping
  ///   version of the target Map and supply that as the nondefault
  ///   value of the range Map.
  ///
  /// \param sourceMatrix [in] The source matrix from which to
  ///   import.  The source of an Import must have a nonoverlapping
  ///   distribution.
  ///
  /// \param importer [in] The Import instance containing a
  ///   precomputed redistribution plan.  The source Map of the
  ///   Import must be the same as the rowMap of sourceMatrix unless
  ///   the "Reverse Mode" option on the params list, in which case
  ///   the targetMap of Import must match the rowMap of the sourceMatrix
  ///
  /// \param domainMap [in] Domain Map of the returned matrix.  If
  ///   null, we use the default, which is the domain Map of the
  ///   source matrix.
  ///
  /// \param rangeMap [in] Range Map of the returned matrix.  If
  ///   null, we use the default, which is the range Map of the
  ///   source matrix.
  ///
  /// \param params [in/out] Optional list of parameters.  If not
  ///   null, any missing parameters will be filled in with their
  ///   default values.
  template<class CrsMatrixType>
  Teuchos::RCP<CrsMatrixType>
  importAndFillCompleteCrsMatrix (const Teuchos::RCP<const CrsMatrixType>& sourceMatrix,
                                  const Import<typename CrsMatrixType::local_ordinal_type,
                                               typename CrsMatrixType::global_ordinal_type,
                                               typename CrsMatrixType::node_type>& importer,
                                  const Teuchos::RCP<const Map<typename CrsMatrixType::local_ordinal_type,
                                                               typename CrsMatrixType::global_ordinal_type,
                                                               typename CrsMatrixType::node_type> >& domainMap = Teuchos::null,
                                  const Teuchos::RCP<const Map<typename CrsMatrixType::local_ordinal_type,
                                                               typename CrsMatrixType::global_ordinal_type,
                                                               typename CrsMatrixType::node_type> >& rangeMap = Teuchos::null,
                                  const Teuchos::RCP<Teuchos::ParameterList>& params = Teuchos::null)
  {
    Teuchos::RCP<CrsMatrixType> destMatrix;
    sourceMatrix->importAndFillComplete (destMatrix,importer, domainMap, rangeMap, params);
    return destMatrix;
  }

  /// \brief Nonmember CrsMatrix constructor that fuses Export and fillComplete().
  /// \relatesalso CrsMatrix
  /// \tparam CrsMatrixType A specialization of CrsMatrix.
  ///
  /// For justification, see the documentation of
  /// importAndFillCompleteCrsMatrix() (which is the Import analog of
  /// this function).
  ///
  /// The resulting matrix is fill complete (in the sense of
  /// isFillComplete()) and has optimized storage (in the sense of
  /// isStorageOptimized()).  By default, its domain Map is the domain
  /// Map of the source matrix, and its range Map is the range Map of
  /// the source matrix.
  ///
  /// \param sourceMatrix [in] The source matrix from which to
  ///   export.  Its row Map may be overlapping, since the source of
  ///   an Export may be overlapping.
  ///
  /// \param exporter [in] The Export instance containing a
  ///   precomputed redistribution plan.  The source Map of the
  ///   Export must be the same as the row Map of sourceMatrix.
  ///
  /// \param domainMap [in] Domain Map of the returned matrix.  If
  ///   null, we use the default, which is the domain Map of the
  ///   source matrix.
  ///
  /// \param rangeMap [in] Range Map of the returned matrix.  If
  ///   null, we use the default, which is the range Map of the
  ///   source matrix.
  ///
  /// \param params [in/out] Optional list of parameters.  If not
  ///   null, any missing parameters will be filled in with their
  ///   default values.
  template<class CrsMatrixType>
  Teuchos::RCP<CrsMatrixType>
  exportAndFillCompleteCrsMatrix (const Teuchos::RCP<const CrsMatrixType>& sourceMatrix,
                                  const Export<typename CrsMatrixType::local_ordinal_type,
                                               typename CrsMatrixType::global_ordinal_type,
                                               typename CrsMatrixType::node_type>& exporter,
                                  const Teuchos::RCP<const Map<typename CrsMatrixType::local_ordinal_type,
                                                               typename CrsMatrixType::global_ordinal_type,
                                                               typename CrsMatrixType::node_type> >& domainMap = Teuchos::null,
                                  const Teuchos::RCP<const Map<typename CrsMatrixType::local_ordinal_type,
                                                               typename CrsMatrixType::global_ordinal_type,
                                                               typename CrsMatrixType::node_type> >& rangeMap = Teuchos::null,
                                  const Teuchos::RCP<Teuchos::ParameterList>& params = Teuchos::null)
  {
    Teuchos::RCP<CrsMatrixType> destMatrix;
    sourceMatrix->exportAndFillComplete (destMatrix,exporter, domainMap, rangeMap, params);
    return destMatrix;
  }
} // namespace Tpetra

/**
  \example CrsMatrix_NonlocalAfterResume.hpp
  \brief An example for inserting non-local entries into a
    Tpetra::CrsMatrix using Tpetra::CrsMatrix::insertGlobalValues(),
    with multiple calls to Tpetra::CrsMatrix::fillComplete().
 */

#endif // TPETRA_CRSMATRIX_DECL_HPP