/usr/include/trilinos/Tpetra_CrsMatrix_decl.hpp is in libtrilinos-tpetra-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 | // @HEADER
// ***********************************************************************
//
// Tpetra: Templated Linear Algebra Services Package
// Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
// @HEADER
#ifndef TPETRA_CRSMATRIX_DECL_HPP
#define TPETRA_CRSMATRIX_DECL_HPP
/// \file Tpetra_CrsMatrix_decl.hpp
/// \brief Declaration of the Tpetra::CrsMatrix class
///
/// If you want to use Tpetra::CrsMatrix, include
/// "Tpetra_CrsMatrix.hpp" (a file which CMake generates and installs
/// for you). If you only want the declaration of Tpetra::CrsMatrix,
/// include this file (Tpetra_CrsMatrix_decl.hpp).
#include "Tpetra_ConfigDefs.hpp"
#include "Tpetra_RowMatrix_decl.hpp"
#include "Tpetra_Exceptions.hpp"
#include "Tpetra_DistObject.hpp"
#include "Tpetra_CrsGraph.hpp"
#include "Tpetra_Vector.hpp"
#include "KokkosCompat_ClassicNodeAPI_Wrapper.hpp"
// localMultiply is templated on DomainScalar and RangeScalar, so we
// have to include this header file here, rather than in the _def
// header file, so that we can get KokkosSparse::spmv.
#include "Kokkos_Sparse.hpp"
// localGaussSeidel and reorderedLocalGaussSeidel are templated on
// DomainScalar and RangeScalar, so we have to include this header
// file here, rather than in the _def header file, so that we can get
// the interfaces to the corresponding local computational kernels.
#include "Kokkos_Sparse_impl_sor.hpp"
namespace Tpetra {
/// \class CrsMatrix
/// \brief Sparse matrix that presents a row-oriented interface that
/// lets users read or modify entries.
///
/// \tparam Scalar The type of the numerical entries of the matrix.
/// (You can use real-valued or complex-valued types here, unlike
/// in Epetra, where the scalar type is always \c double.)
/// \tparam LocalOrdinal The type of local indices. See the
/// documentation of Map for requirements.
/// \tparam GlobalOrdinal The type of global indices. See the
/// documentation of Map for requirements.
/// \tparam Node The Kokkos Node type. See the documentation of Map
/// for requirements.
///
/// This class implements a distributed-memory parallel sparse matrix,
/// and provides sparse matrix-vector multiply (including transpose)
/// and sparse triangular solve operations. It provides access by rows
/// to the elements of the matrix, as if the local data were stored in
/// compressed sparse row format. (Implementations are <i>not</i>
/// required to store the data in this way internally.) This class has
/// an interface like that of Epetra_CrsMatrix, but also allows
/// insertion of data into nonowned rows, much like Epetra_FECrsMatrix.
///
/// \section Tpetra_CrsMatrix_prereq Prerequisites
///
/// Before reading the rest of this documentation, it helps to know
/// something about the Teuchos memory management classes, in
/// particular Teuchos::RCP, Teuchos::ArrayRCP, and Teuchos::ArrayView.
/// You should also know a little bit about MPI (the Message Passing
/// Interface for distributed-memory programming). You won't have to
/// use MPI directly to use CrsMatrix, but it helps to be familiar with
/// the general idea of distributed storage of data over a
/// communicator. Finally, you should read the documentation of Map
/// and MultiVector.
///
/// \section Tpetra_CrsMatrix_local_vs_global Local and global indices
///
/// The distinction between local and global indices might confuse new
/// Tpetra users. Please refer to the documentation of Map for a
/// detailed explanation. This is important because many of
/// CrsMatrix's methods for adding, modifying, or accessing entries
/// come in versions that take either local or global indices. The
/// matrix itself may store indices either as local or global, and the
/// same matrix may use global indices or local indices at different
/// points in its life. You should only use the method version
/// corresponding to the current state of the matrix. For example,
/// getGlobalRowView() returns a view to the indices represented as
/// global; it is incorrect to call this method if the matrix is
/// storing indices as local. Call isGloballyIndexed() or
/// isLocallyIndexed() to find out whether the matrix currently stores
/// indices as local or global.
///
/// It may also help to read CrsGraph's documentation.
///
/// \section Tpetra_CrsMatrix_insertion_into_nonowned_rows Insertion into nonowned rows
///
/// All methods (except for insertGlobalValues() and
/// sumIntoGlobalValues(); see below) that work with global indices
/// only allow operations on indices owned by the calling process. For
/// example, methods that take a global row index expect that row to be
/// owned by the calling process. Access to <i>nonowned rows</i>, that
/// is, rows <i>not</i> owned by the calling process, requires
/// performing an explicit communication via the Import / Export
/// capabilities of the CrsMatrix object. See the documentation of
/// DistObject for more details.
///
/// The methods insertGlobalValues() and sumIntoGlobalValues() are
/// exceptions to this rule. They both allows you to add data to
/// nonowned rows. These data are stored locally and communicated to
/// the appropriate process on the next call to globalAssemble() or
/// fillComplete(). This means that CrsMatrix provides the same
/// nonowned insertion functionality that Epetra provides via
/// Epetra_FECrsMatrix.
///
/// \section Tpetra_DistObject_MultDist Note for developers on DistObject
///
/// DistObject only takes a single Map as input to its constructor.
/// MultiVector is an example of a subclass for which a single Map
/// suffices to describe its data distribution. In that case,
/// DistObject's getMap() method obviously must return that Map.
/// CrsMatrix is an example of a subclass that requires two Map
/// objects: a row Map and a column Map. For CrsMatrix, getMap()
/// returns the row Map. This means that doTransfer() (which
/// CrsMatrix does not override) uses the row Map objects of the
/// source and target CrsMatrix objects. CrsMatrix in turn uses its
/// column Map (if it has one) to "filter" incoming sparse matrix
/// entries whose column indices are not in that process' column
/// Map. This means that CrsMatrix may perform extra communication,
/// though the Import and Export operations are still correct.
///
/// This is necessary if the CrsMatrix does not yet have a column
/// Map. Other processes might have added new entries to the
/// matrix; the calling process has to see them in order to accept
/// them. However, the CrsMatrix may already have a column Map, for
/// example, if it was created with the constructor that takes both
/// a row and a column Map, or if it is fill complete (which creates
/// the column Map if the matrix does not yet have one). In this
/// case, it could be possible to "filter" on the sender (instead of
/// on the receiver, as CrsMatrix currently does) and avoid sending
/// data corresponding to columns that the receiver does not own.
/// Doing this would require revising the Import or Export object
/// (instead of the incoming data) using the column Map, to remove
/// global indices and their target process ranks from the send
/// lists if the target process does not own those columns, and to
/// remove global indices and their source process ranks from the
/// receive lists if the calling process does not own those columns.
/// (Abstractly, this is a kind of set difference between an Import
/// or Export object for the row Maps, and the Import resp. Export
/// object for the column Maps.) This could be done separate from
/// DistObject, by creating a new "filtered" Import or Export
/// object, that keeps the same source and target Map objects but
/// has a different communication plan. We have not yet implemented
/// this optimization.
template <class Scalar = Details::DefaultTypes::scalar_type,
class LocalOrdinal = Details::DefaultTypes::local_ordinal_type,
class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type,
class Node = Details::DefaultTypes::node_type,
const bool classic = Node::classic>
class CrsMatrix :
public RowMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>,
public DistObject<char, LocalOrdinal, GlobalOrdinal, Node, classic>
{
public:
//! @name Typedefs
//@{
/// \brief This class' first template parameter; the type of each
/// entry in the matrix.
typedef Scalar scalar_type;
/// \brief The type used internally in place of \c Scalar.
///
/// Some \c Scalar types might not work with Kokkos on all
/// execution spaces, due to missing CUDA device macros or
/// volatile overloads. The C++ standard type std::complex<T> has
/// this problem. To fix this, we replace std::complex<T> values
/// internally with the (usually) bitwise identical type
/// Kokkos::complex<T>. The latter is the \c impl_scalar_type
/// corresponding to \c Scalar = std::complex.
typedef typename Kokkos::Details::ArithTraits<Scalar>::val_type impl_scalar_type;
//! This class' second template parameter; the type of local indices.
typedef LocalOrdinal local_ordinal_type;
//! This class' third template parameter; the type of global indices.
typedef GlobalOrdinal global_ordinal_type;
//! This class' fourth template parameter; the Kokkos device type.
typedef Node node_type;
//! The Kokkos device type.
typedef typename Node::device_type device_type;
//! The Kokkos execution space.
typedef typename device_type::execution_space execution_space;
/// \brief Type of a norm result.
///
/// This is usually the same as the type of the magnitude
/// (absolute value) of <tt>Scalar</tt>, but may differ for
/// certain <tt>Scalar</tt> types.
typedef typename Kokkos::Details::ArithTraits<impl_scalar_type>::mag_type mag_type;
//! The Map specialization suitable for this CrsMatrix specialization.
typedef Map<LocalOrdinal, GlobalOrdinal, Node> map_type;
//! The Import specialization suitable for this CrsMatrix specialization.
typedef Import<LocalOrdinal, GlobalOrdinal, Node> import_type;
//! The Export specialization suitable for this CrsMatrix specialization.
typedef Export<LocalOrdinal, GlobalOrdinal, Node> export_type;
//! The CrsGraph specialization suitable for this CrsMatrix specialization.
typedef CrsGraph<LocalOrdinal, GlobalOrdinal, Node, classic> crs_graph_type;
//! The part of the sparse matrix's graph on each MPI process.
typedef typename crs_graph_type::local_graph_type local_graph_type;
/// \brief The specialization of Kokkos::CrsMatrix that represents
/// the part of the sparse matrix on each MPI process.
typedef Kokkos::CrsMatrix<impl_scalar_type, LocalOrdinal, execution_space, void,
typename local_graph_type::size_type> local_matrix_type;
//! DEPRECATED; use <tt>local_matrix_type::row_map_type</tt> instead.
typedef typename local_matrix_type::row_map_type t_RowPtrs TPETRA_DEPRECATED;
//! DEPRECATED; use <tt>local_matrix_type::row_map_type::non_const_type</tt> instead.
typedef typename local_matrix_type::row_map_type::non_const_type t_RowPtrsNC TPETRA_DEPRECATED;
//! DEPRECATED; use <tt>local_graph_type::entries_type::non_const_type</tt> instead.
typedef typename local_graph_type::entries_type::non_const_type t_LocalOrdinal_1D TPETRA_DEPRECATED;
//! DEPRECATED; use <tt>local_matrix_type::values_type</tt> instead.
typedef typename local_matrix_type::values_type t_ValuesType TPETRA_DEPRECATED;
//! DEPRECATED; use local_matrix_type instead.
typedef local_matrix_type k_local_matrix_type TPETRA_DEPRECATED;
//@}
//! @name Constructors and destructor
//@{
/// \brief Constructor specifying fixed number of entries for each row.
///
/// \param rowMap [in] Distribution of rows of the matrix.
///
/// \param maxNumEntriesPerRow [in] Maximum number of matrix
/// entries per row. If pftype==DynamicProfile, this is only a
/// hint, and you can set this to zero without affecting
/// correctness. If pftype==StaticProfile, this sets the amount
/// of storage allocated, and you cannot exceed this number of
/// entries in any row.
///
/// \param pftype [in] Whether to allocate storage dynamically
/// (DynamicProfile) or statically (StaticProfile).
///
/// \param params [in/out] Optional list of parameters. If not
/// null, any missing parameters will be filled in with their
/// default values.
CrsMatrix (const Teuchos::RCP<const map_type>& rowMap,
size_t maxNumEntriesPerRow,
ProfileType pftype = DynamicProfile,
const Teuchos::RCP<Teuchos::ParameterList>& params = Teuchos::null);
/// \brief Constructor specifying (possibly different) number of entries in each row.
///
/// \param rowMap [in] Distribution of rows of the matrix.
///
/// \param NumEntriesPerRowToAlloc [in] Maximum number of matrix
/// entries to allocate for each row. If
/// pftype==DynamicProfile, this is only a hint. If
/// pftype==StaticProfile, this sets the amount of storage
/// allocated, and you cannot exceed the allocated number of
/// entries for any row.
///
/// \param pftype [in] Whether to allocate storage dynamically
/// (DynamicProfile) or statically (StaticProfile).
///
/// \param params [in/out] Optional list of parameters. If not
/// null, any missing parameters will be filled in with their
/// default values.
CrsMatrix (const Teuchos::RCP<const map_type>& rowMap,
const Teuchos::ArrayRCP<const size_t>& NumEntriesPerRowToAlloc,
ProfileType pftype = DynamicProfile,
const Teuchos::RCP<Teuchos::ParameterList>& params = Teuchos::null);
/// \brief Constructor specifying column Map and fixed number of entries for each row.
///
/// The column Map will be used to filter any matrix entries
/// inserted using insertLocalValues() or insertGlobalValues().
///
/// \param rowMap [in] Distribution of rows of the matrix.
///
/// \param colMap [in] Distribution of columns of the matrix.
///
/// \param maxNumEntriesPerRow [in] Maximum number of matrix
/// entries per row. If pftype==DynamicProfile, this is only a
/// hint, and you can set this to zero without affecting
/// correctness. If pftype==StaticProfile, this sets the amount
/// of storage allocated, and you cannot exceed this number of
/// entries in any row.
///
/// \param pftype [in] Whether to allocate storage dynamically
/// (DynamicProfile) or statically (StaticProfile).
///
/// \param params [in/out] Optional list of parameters. If not
/// null, any missing parameters will be filled in with their
/// default values.
CrsMatrix (const Teuchos::RCP<const map_type>& rowMap,
const Teuchos::RCP<const map_type>& colMap,
size_t maxNumEntriesPerRow,
ProfileType pftype = DynamicProfile,
const Teuchos::RCP<Teuchos::ParameterList>& params = Teuchos::null);
/// \brief Constructor specifying column Map and number of entries in each row.
///
/// The column Map will be used to filter any matrix indices
/// inserted using insertLocalValues() or insertGlobalValues().
///
/// \param rowMap [in] Distribution of rows of the matrix.
///
/// \param colMap [in] Distribution of columns of the matrix.
///
/// \param NumEntriesPerRowToAlloc [in] Maximum number of matrix
/// entries to allocate for each row. If
/// pftype==DynamicProfile, this is only a hint. If
/// pftype==StaticProfile, this sets the amount of storage
/// allocated, and you cannot exceed the allocated number of
/// entries for any row.
///
/// \param pftype [in] Whether to allocate storage dynamically
/// (DynamicProfile) or statically (StaticProfile).
///
/// \param params [in/out] Optional list of parameters. If not
/// null, any missing parameters will be filled in with their
/// default values.
CrsMatrix (const Teuchos::RCP<const map_type>& rowMap,
const Teuchos::RCP<const map_type>& colMap,
const Teuchos::ArrayRCP<const size_t>& NumEntriesPerRowToAlloc,
ProfileType pftype = DynamicProfile,
const Teuchos::RCP<Teuchos::ParameterList>& params = Teuchos::null);
/// \brief Constructor specifying a previously constructed graph.
///
/// Calling this constructor fixes the graph structure of the
/// sparse matrix. We say in this case that the matrix has a
/// "static graph." If you create a CrsMatrix with this
/// constructor, you are not allowed to insert new entries into
/// the matrix, but you are allowed to change values in the
/// matrix.
///
/// The given graph must be fill complete. Note that calling
/// resumeFill() on the graph makes it not fill complete, even if
/// you had previously called fillComplete() on the graph. In
/// that case, you must call fillComplete() on the graph again
/// before invoking this CrsMatrix constructor.
///
/// This constructor is marked \c explicit so that you can't
/// create a CrsMatrix by accident when passing a CrsGraph into a
/// function that takes a CrsMatrix.
///
/// \param graph [in] The graph structure of the sparse matrix.
/// The graph <i>must</i> be fill complete.
/// \param params [in/out] Optional list of parameters. If not
/// null, any missing parameters will be filled in with their
/// default values.
explicit CrsMatrix (const Teuchos::RCP<const crs_graph_type>& graph,
const Teuchos::RCP<Teuchos::ParameterList>& params = Teuchos::null);
/// \brief Constructor specifying column Map and arrays containing
/// the matrix in sorted local indices.
///
/// \param rowMap [in] Distribution of rows of the matrix.
///
/// \param colMap [in] Distribution of columns of the matrix.
///
/// \param rowPointers [in] The beginning of each row in the matrix,
/// as in a CSR "rowptr" array. The length of this vector should be
/// equal to the number of rows in the graph, plus one. This last
/// entry should store the nunber of nonzeros in the matrix.
///
/// \param columnIndices [in] The local indices of the columns,
/// as in a CSR "colind" array. The length of this vector
/// should be equal to the number of unknowns in the matrix.
///
/// \param values [in] The local entries in the matrix,
/// as in a CSR "vals" array. The length of this vector
/// should be equal to the number of unknowns in the matrix.
///
/// \param params [in/out] Optional list of parameters. If not
/// null, any missing parameters will be filled in with their
/// default values.
CrsMatrix (const Teuchos::RCP<const map_type>& rowMap,
const Teuchos::RCP<const map_type>& colMap,
const typename local_matrix_type::row_map_type& rowPointers,
const typename local_graph_type::entries_type::non_const_type& columnIndices,
const typename local_matrix_type::values_type& values,
const Teuchos::RCP<Teuchos::ParameterList>& params = null);
/// \brief Constructor specifying column Map and arrays containing
/// the matrix in sorted, local ids.
///
/// \param rowMap [in] Distribution of rows of the matrix.
///
/// \param colMap [in] Distribution of columns of the matrix.
///
/// \param rowPointers [in] The beginning of each row in the matrix,
/// as in a CSR "rowptr" array. The length of this vector should be
/// equal to the number of rows in the graph, plus one. This last
/// entry should store the nunber of nonzeros in the matrix.
///
/// \param columnIndices [in] The local indices of the columns,
/// as in a CSR "colind" array. The length of this vector
/// should be equal to the number of unknowns in the matrix.
///
/// \param values [in] The local entries in the matrix,
/// as in a CSR "vals" array. The length of this vector
/// should be equal to the number of unknowns in the matrix.
///
/// \param params [in/out] Optional list of parameters. If not
/// null, any missing parameters will be filled in with their
/// default values.
CrsMatrix (const Teuchos::RCP<const map_type>& rowMap,
const Teuchos::RCP<const map_type>& colMap,
const Teuchos::ArrayRCP<size_t>& rowPointers,
const Teuchos::ArrayRCP<LocalOrdinal>& columnIndices,
const Teuchos::ArrayRCP<Scalar>& values,
const Teuchos::RCP<ParameterList>& params = null);
/// \brief Constructor specifying column Map and a local matrix,
/// which the resulting CrsMatrix views.
///
/// Unlike most other CrsMatrix constructors, successful
/// completion of this constructor will result in a fill-complete
/// matrix.
///
/// \param rowMap [in] Distribution of rows of the matrix.
///
/// \param colMap [in] Distribution of columns of the matrix.
///
/// \param lclMatrix [in] A local CrsMatrix containing all local
/// matrix values as well as a local graph. The graph's local
/// row indices must come from the specified row Map, and its
/// local column indices must come from the specified column
/// Map.
///
/// \param params [in/out] Optional list of parameters. If not
/// null, any missing parameters will be filled in with their
/// default values.
CrsMatrix (const Teuchos::RCP<const map_type>& rowMap,
const Teuchos::RCP<const map_type>& colMap,
const local_matrix_type& lclMatrix,
const Teuchos::RCP<Teuchos::ParameterList>& params = null);
// This friend declaration makes the clone() method work.
template <class S2, class LO2, class GO2, class N2, const bool isClassic>
friend class CrsMatrix;
/// \brief Create a deep copy of this CrsMatrix, where the copy
/// may have a different Node type.
///
/// \param node2 [in] Kokkos Node instance for the returned copy.
/// \param params [in/out] Optional list of parameters. If not
/// null, any missing parameters will be filled in with their
/// default values.
///
/// Parameters to \c params:
/// - "Static profile clone" [boolean, default: true] If \c true,
/// create the copy with a static allocation profile. If false,
/// use a dynamic allocation profile.
/// - "Locally indexed clone" [boolean] If \c true, fill clone
/// using this matrix's column Map and local indices. This
/// matrix must have a column Map in order for this to work. If
/// false, fill clone using global indices. By default, this
/// will use local indices only if this matrix is using local
/// indices.
/// - "fillComplete clone" [boolean, default: true] If \c true,
/// call fillComplete() on the cloned CrsMatrix object, with
/// parameters from the input parameters' "CrsMatrix" sublist
/// The domain Map and range Map passed to fillComplete() are
/// those of the map being cloned, if they exist. Otherwise, the
/// row Map is used.
template <class Node2>
Teuchos::RCP<CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node2, Node2::classic> >
clone (const Teuchos::RCP<Node2>& node2,
const Teuchos::RCP<Teuchos::ParameterList>& params = null) const
{
using Teuchos::ArrayRCP;
using Teuchos::null;
using Teuchos::ParameterList;
using Teuchos::RCP;
using Teuchos::rcp;
using Teuchos::sublist;
typedef CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node2, Node2::classic> CrsMatrix2;
typedef Map<LocalOrdinal, GlobalOrdinal, Node2> Map2;
const char tfecfFuncName[] = "clone";
// Get parameter values. Set them initially to their default values.
bool fillCompleteClone = true;
bool useLocalIndices = this->hasColMap ();
ProfileType pftype = StaticProfile;
if (! params.is_null ()) {
fillCompleteClone = params->get ("fillComplete clone", fillCompleteClone);
useLocalIndices = params->get ("Locally indexed clone", useLocalIndices);
bool staticProfileClone = true;
staticProfileClone = params->get ("Static profile clone", staticProfileClone);
pftype = staticProfileClone ? StaticProfile : DynamicProfile;
}
TEUCHOS_TEST_FOR_EXCEPTION_CLASS_FUNC(
! this->hasColMap () && useLocalIndices, std::runtime_error,
": You requested that the returned clone have local indices, but the "
"the source matrix does not have a column Map yet.");
RCP<const Map2> clonedRowMap = this->getRowMap ()->template clone<Node2> (node2);
// Get an upper bound on the number of entries per row.
RCP<CrsMatrix2> clonedMatrix;
ArrayRCP<const size_t> numEntriesPerRow;
size_t numEntriesForAll = 0;
bool boundSameForAllLocalRows = false;
staticGraph_->getNumEntriesPerLocalRowUpperBound (numEntriesPerRow,
numEntriesForAll,
boundSameForAllLocalRows);
TEUCHOS_TEST_FOR_EXCEPTION_CLASS_FUNC(
numEntriesForAll != 0 &&
static_cast<size_t> (numEntriesPerRow.size ()) != 0,
std::logic_error, ": getNumEntriesPerLocalRowUpperBound returned a "
"nonzero numEntriesForAll = " << numEntriesForAll << " , as well as a "
"numEntriesPerRow array of nonzero length " << numEntriesPerRow.size ()
<< ". This should never happen. Please report this bug to the Tpetra "
"developers.");
TEUCHOS_TEST_FOR_EXCEPTION_CLASS_FUNC(
numEntriesForAll != 0 && ! boundSameForAllLocalRows,
std::logic_error, ": getNumEntriesPerLocalRowUpperBound returned a "
"nonzero numEntriesForAll = " << numEntriesForAll << " , but claims "
"(via its third output value) that the upper bound is not the same for "
"all rows. This should never happen. Please report this bug to the "
"Tpetra developers.");
TEUCHOS_TEST_FOR_EXCEPTION_CLASS_FUNC(
numEntriesPerRow.size () != 0 && boundSameForAllLocalRows,
std::logic_error, ": getNumEntriesPerLocalRowUpperBound returned a "
"numEntriesPerRow array of nonzero length " << numEntriesPerRow.size ()
<< ", but claims (via its third output value) that the upper bound is "
"not the same for all rows. This should never happen. Please report "
"this bug to the Tpetra developers.");
RCP<ParameterList> matParams =
params.is_null () ? null : sublist (params,"CrsMatrix");
if (useLocalIndices) {
RCP<const Map2> clonedColMap =
this->getColMap ()->template clone<Node2> (node2);
if (numEntriesPerRow.is_null ()) {
clonedMatrix = rcp (new CrsMatrix2 (clonedRowMap, clonedColMap,
numEntriesForAll, pftype,
matParams));
}
else {
clonedMatrix = rcp (new CrsMatrix2 (clonedRowMap, clonedColMap,
numEntriesPerRow, pftype,
matParams));
}
}
else {
if (numEntriesPerRow.is_null ()) {
clonedMatrix = rcp (new CrsMatrix2 (clonedRowMap, numEntriesForAll,
pftype, matParams));
}
else {
clonedMatrix = rcp (new CrsMatrix2 (clonedRowMap, numEntriesPerRow,
pftype, matParams));
}
}
// done with these
numEntriesPerRow = Teuchos::null;
numEntriesForAll = 0;
if (useLocalIndices) {
clonedMatrix->allocateValues (LocalIndices,
CrsMatrix2::GraphNotYetAllocated);
if (this->isLocallyIndexed ()) {
ArrayView<const LocalOrdinal> linds;
ArrayView<const Scalar> vals;
for (LocalOrdinal lrow = clonedRowMap->getMinLocalIndex ();
lrow <= clonedRowMap->getMaxLocalIndex ();
++lrow) {
this->getLocalRowView (lrow, linds, vals);
if (linds.size ()) {
clonedMatrix->insertLocalValues (lrow, linds, vals);
}
}
}
else { // this->isGloballyIndexed()
Array<LocalOrdinal> linds;
Array<Scalar> vals;
for (LocalOrdinal lrow = clonedRowMap->getMinLocalIndex ();
lrow <= clonedRowMap->getMaxLocalIndex ();
++lrow) {
size_t theNumEntries = this->getNumEntriesInLocalRow (lrow);
if (theNumEntries > static_cast<size_t> (linds.size ())) {
linds.resize (theNumEntries);
}
if (theNumEntries > static_cast<size_t> (vals.size ())) {
vals.resize (theNumEntries);
}
this->getLocalRowCopy (clonedRowMap->getGlobalElement (lrow),
linds (), vals (), theNumEntries);
if (theNumEntries != 0) {
clonedMatrix->insertLocalValues (lrow, linds (0, theNumEntries),
vals (0, theNumEntries));
}
}
}
}
else { // useGlobalIndices
clonedMatrix->allocateValues (GlobalIndices,
CrsMatrix2::GraphNotYetAllocated);
if (this->isGloballyIndexed ()) {
ArrayView<const GlobalOrdinal> ginds;
ArrayView<const Scalar> vals;
for (GlobalOrdinal grow = clonedRowMap->getMinGlobalIndex ();
grow <= clonedRowMap->getMaxGlobalIndex ();
++grow) {
this->getGlobalRowView (grow, ginds, vals);
if (ginds.size () > 0) {
clonedMatrix->insertGlobalValues (grow, ginds, vals);
}
}
}
else { // this->isLocallyIndexed()
Array<GlobalOrdinal> ginds;
Array<Scalar> vals;
for (GlobalOrdinal grow = clonedRowMap->getMinGlobalIndex ();
grow <= clonedRowMap->getMaxGlobalIndex ();
++grow) {
size_t theNumEntries = this->getNumEntriesInGlobalRow (grow);
if (theNumEntries > static_cast<size_t> (ginds.size ())) {
ginds.resize (theNumEntries);
}
if (theNumEntries > static_cast<size_t> (vals.size ())) {
vals.resize (theNumEntries);
}
this->getGlobalRowCopy (grow, ginds (), vals (), theNumEntries);
if (theNumEntries != 0) {
clonedMatrix->insertGlobalValues (grow, ginds (0, theNumEntries),
vals (0, theNumEntries));
}
}
}
}
if (fillCompleteClone) {
RCP<const Map2> clonedRangeMap;
RCP<const Map2> clonedDomainMap;
try {
if (! this->getRangeMap ().is_null () &&
this->getRangeMap () != clonedRowMap) {
clonedRangeMap = this->getRangeMap ()->template clone<Node2> (node2);
}
else {
clonedRangeMap = clonedRowMap;
}
if (! this->getDomainMap ().is_null () &&
this->getDomainMap () != clonedRowMap) {
clonedDomainMap = this->getDomainMap ()->template clone<Node2> (node2);
}
else {
clonedDomainMap = clonedRowMap;
}
}
catch (std::exception &e) {
const bool caughtExceptionOnClone = true;
TEUCHOS_TEST_FOR_EXCEPTION
(caughtExceptionOnClone, std::runtime_error,
Teuchos::typeName (*this) << "::clone: Caught the following "
"exception while cloning range and domain Maps on a clone of "
"type " << Teuchos::typeName (*clonedMatrix) << ": " << e.what ());
}
RCP<ParameterList> fillparams =
params.is_null () ? Teuchos::null : sublist (params, "fillComplete");
try {
clonedMatrix->fillComplete (clonedDomainMap, clonedRangeMap,
fillparams);
}
catch (std::exception &e) {
const bool caughtExceptionOnClone = true;
TEUCHOS_TEST_FOR_EXCEPTION(
caughtExceptionOnClone, std::runtime_error,
Teuchos::typeName (*this) << "::clone: Caught the following "
"exception while calling fillComplete() on a clone of type "
<< Teuchos::typeName (*clonedMatrix) << ": " << e.what ());
}
}
return clonedMatrix;
}
//! Destructor.
virtual ~CrsMatrix ();
//@}
//! @name Methods for inserting, modifying, or removing entries
//@{
/// \brief Insert one or more entries into the matrix, using global indices.
///
/// \param globalRow [in] Global index of the row into which to
/// insert the entries.
/// \param cols [in] Global indices of the columns into which
/// to insert the entries.
/// \param values [in] Values to insert into the above columns.
///
/// For all k in 0, ..., <tt>col.size()-1</tt>, insert the value
/// <tt>values[k]</tt> into entry <tt>(globalRow, cols[k])</tt> of
/// the matrix. If that entry already exists, add the new value
/// to the old value.
///
/// This is a local operation. It does not communicate (using
/// MPI). If row \c globalRow is owned by the calling process,
/// the entries will be inserted immediately. Otherwise, if that
/// row is <i>not</i> owned by the calling process, then the
/// entries will be stored locally for now, and only communicated
/// to the process that owns the row when either fillComplete() or
/// globalAssemble() is called. If that process already has an
/// entry, the incoming value will be added to the old value, just
/// as if it were inserted on the owning process.
//
/// If the matrix has a column Map (<tt>hasColMap() == true</tt>),
/// and if globalRow is owned by process p, then it is forbidden
/// to insert column indices that are not in the column Map on
/// process p. Tpetra will test the input column indices to
/// ensure this is the case, but if \c globalRow is not owned by
/// the calling process, the test will be deferred until the next
/// call to globalAssemble() or fillComplete().
///
/// \warning The behavior described in the above paragraph differs
/// from that of Epetra. If the matrix has a column Map,
/// Epetra_CrsMatrix "filters" column indices not in the column
/// Map. Many users found this confusing, so we changed it so
/// that nonowned column indices are forbidden.
///
/// It is legal to call this method whether the matrix's column
/// indices are globally or locally indexed. If the matrix's
/// column indices are locally indexed (<tt>isLocallyIndexed() ==
/// true</tt>), then this method will convert the input global
/// column indices to local column indices.
///
/// For better performance when filling entries into a sparse
/// matrix, consider the following tips:
/// <ol>
/// <li>Use local indices (e.g., insertLocalValues()) if you know
/// the column Map in advance. Converting global indices to
/// local indices is expensive. Of course, if you don't know
/// the column Map in advance, you must use global indices.</li>
/// <li>When invoking the CrsMatrix constructor, give the best
/// possible upper bounds on the number of entries in each row
/// of the matrix. This will avoid expensive reallocation if
/// your bound was not large enough.</li>
/// <li>If your upper bound on the number of entries in each row
/// will always be correct, create the matrix with
/// StaticProfile. This uses a faster and more compact data
/// structure to store the matrix.</li>
/// <li>If you plan to reuse a matrix's graph structure, but
/// change its values, in repeated fillComplete() / resumeFill()
/// cycles, you can get the best performance by creating the
/// matrix with a const CrsGraph. Do this by using the
/// CrsMatrix constructor that accepts an RCP of a const
/// CrsGraph. If you do this, you must use the "replace" or
/// "sumInto" methods to change the values of the matrix; you
/// may not use insertGlobalValues() or
/// insertLocalValues().</li>
/// </ol>
void
insertGlobalValues (const GlobalOrdinal globalRow,
const Teuchos::ArrayView<const GlobalOrdinal>& cols,
const Teuchos::ArrayView<const Scalar>& vals);
/// \brief Insert one or more entries into the matrix, using local indices.
///
/// \param LocalRow [in] Local index of the row into which to
/// insert the entries. It must be owned by the row Map on the
/// calling process.
/// \param cols [in] Local indices of the columns into which to
/// insert the entries. All of the column indices must be owned
/// by the column Map on the calling process.
/// \param values [in] Values to insert into the above columns.
///
/// For all k in 0, ..., <tt>cols.size()-1</tt>, insert the value
/// <tt>values[k]</tt> into entry <tt>(globalRow, cols[k])</tt> of
/// the matrix. If that entry already exists, add the new value
/// to the old value.
///
/// In order to call this method, the matrix must be locally
/// indexed, and it must have a column Map.
///
/// For better performance when filling entries into a sparse
/// matrix, consider the following tips:
/// <ol>
/// <li>When invoking the CrsMatrix constructor, give the best
/// possible upper bounds on the number of entries in each row
/// of the matrix. This will avoid expensive reallocation if
/// your bound was not large enough.</li>
/// <li>If your upper bound on the number of entries in each row
/// will always be correct, create the matrix with
/// StaticProfile. This uses a faster and more compact data
/// structure to store the matrix.</li>
/// <li>If you plan to reuse a matrix's graph structure, but
/// change its values, in repeated fillComplete() / resumeFill()
/// cycles, you can get the best performance by creating the
/// matrix with a const CrsGraph. Do this by using the
/// CrsMatrix constructor that accepts an RCP of a const
/// CrsGraph. If you do this, you must use the "replace" or
/// "sumInto" methods to change the values of the matrix; you
/// may not use insertGlobalValues() or
/// insertLocalValues().</li>
/// </ol>
void
insertLocalValues (const LocalOrdinal localRow,
const ArrayView<const LocalOrdinal> &cols,
const ArrayView<const Scalar> &vals);
/// \brief Replace one or more entries' values, using global indices.
///
/// \param globalRow [in] Global index of the row in which to
/// replace the entries. This row <i>must</i> be owned by the
/// calling process.
/// \param cols [in] Global indices of the columns in which to
/// replace the entries.
/// \param vals [in] Values to use for replacing the entries.
///
/// For all k in 0, ..., <tt>cols.size()-1</tt>, replace the value
/// at entry <tt>(globalRow, cols[k])</tt> of the matrix with
/// <tt>vals[k]</tt>. That entry must exist in the matrix
/// already.
///
/// If <tt>(globalRow, cols[k])</tt> corresponds to an entry that
/// is duplicated in this matrix row (likely because it was
/// inserted more than once and fillComplete() has not been called
/// in the interim), the behavior of this method is not defined.
///
/// \return The number of indices for which values were actually
/// replaced; the number of "correct" indices.
///
/// If the returned value N satisfies
///
/// <tt>0 <= N < cols.size()</tt>,
///
/// then <tt>cols.size() - N</tt> of the entries of <tt>cols</tt>
/// are not valid global column indices. If the returned value is
/// Teuchos::OrdinalTraits<LocalOrdinal>::invalid(), then at least
/// one of the following is true:
/// <ul>
/// <li> <tt>! isFillActive ()</tt> </li>
/// <li> <tt> cols.size () != vals.size ()</tt> </li>
/// </ul>
LocalOrdinal
replaceGlobalValues (GlobalOrdinal globalRow,
const ArrayView<const GlobalOrdinal>& cols,
const ArrayView<const Scalar>& vals);
/// \brief Replace one or more entries' values, using local indices.
///
/// \param localRow [in] local index of the row in which to
/// replace the entries. This row <i>must</i> be owned by the
/// calling process.
/// \param cols [in] Local indices of the columns in which to
/// replace the entries.
/// \param vals [in] Values to use for replacing the entries.
///
/// For all k in 0, ..., <tt>cols.size()-1</tt>, replace the value
/// at entry <tt>(localRow, cols[k])</tt> of the matrix with
/// <tt>vals[k]</tt>. That entry must exist in the matrix
/// already.
///
/// \return The number of indices for which values were actually
/// replaced; the number of "correct" indices.
///
/// If the returned value N satisfies
///
/// <tt>0 <= N < cols.size()</tt>,
///
/// then <tt>cols.size() - N</tt> of the entries of <tt>cols</tt>
/// are not valid local column indices. If the returned value is
/// Teuchos::OrdinalTraits<LocalOrdinal>::invalid(), then at least
/// one of the following is true:
/// <ul>
/// <li> <tt>! isFillActive ()</tt> </li>
/// <li> <tt>! hasColMap ()</tt> </li>
/// <li> <tt> cols.size () != vals.size ()</tt> </li>
/// </ul>
LocalOrdinal
replaceLocalValues (const LocalOrdinal localRow,
const ArrayView<const LocalOrdinal>& cols,
const ArrayView<const Scalar>& vals);
/// \brief Sum into one or more sparse matrix entries, using global indices.
///
/// This is a local operation; it does not involve communication.
/// However, if you sum into rows not owned by the calling
/// process, it may result in future communication in
/// globalAssemble() (which is called by fillComplete()).
///
/// If \c globalRow is owned by the calling process, then this
/// method performs the sum-into operation right away. Otherwise,
/// if the row is <i>not</i> owned by the calling process, this
/// method defers the sum-into operation until globalAssemble().
/// That method communicates data for nonowned rows to the
/// processes that own those rows. Then, globalAssemble() does
/// one of the following:
/// - It calls insertGlobalValues() for that data if the matrix
/// has a dynamic graph.
/// - It calls sumIntoGlobalValues() for that data if the matrix
/// has a static graph. The matrix silently ignores
/// (row,column) pairs that do not exist in the graph.
///
/// \param globalRow [in] The global index of the row in which to
/// sum into the matrix entries.
/// \param cols [in] One or more column indices.
/// \param vals [in] One or more values corresponding to those
/// column indices. <tt>vals[k]</tt> corresponds to
/// <tt>cols[k]</tt>.
///
/// \return The number of indices for which values were actually
/// modified; the number of "correct" indices.
///
/// This method has the same preconditions and return value
/// meaning as replaceGlobalValues() (which see).
LocalOrdinal
sumIntoGlobalValues (const GlobalOrdinal globalRow,
const ArrayView<const GlobalOrdinal> &cols,
const ArrayView<const Scalar> &vals);
/// \brief Sum into one or more sparse matrix entries, using local indices.
///
/// \param localRow [in] Local index of a row. This row
/// <i>must</i> be owned by the calling process.
/// \param cols [in] Local indices of the columns whose entries we
/// want to modify.
/// \param vals [in] Values corresponding to the above column
/// indices. <tt>vals[k]</tt> corresponds to <tt>cols[k]</tt>.
///
/// \return The number of indices for which values were actually
/// modified; the number of "correct" indices.
///
/// This method has the same preconditions and return value
/// meaning as replaceLocalValues() (which see).
LocalOrdinal
sumIntoLocalValues (const LocalOrdinal localRow,
const ArrayView<const LocalOrdinal>& cols,
const ArrayView<const Scalar>& vals);
//! Set all matrix entries equal to \c alpha.
void setAllToScalar (const Scalar &alpha);
//! Scale the matrix's values: <tt>this := alpha*this</tt>.
void scale (const Scalar &alpha);
//! Sets the 1D pointer arrays of the graph.
/**
\pre <tt>hasColMap() == true</tt>
\pre <tt>getGraph() != Teuchos::null</tt>
\pre No insert/sum routines have been called
\warning This method is intended for expert developer use only, and should never be called by user code.
*/
void
setAllValues (const typename local_matrix_type::row_map_type& rowPointers,
const typename local_graph_type::entries_type::non_const_type& columnIndices,
const typename local_matrix_type::values_type& values);
//! Sets the 1D pointer arrays of the graph.
/**
\pre <tt>hasColMap() == true</tt>
\pre <tt>getGraph() != Teuchos::null</tt>
\pre No insert/sum routines have been called
FIXME (mfh 24 Feb 2014) Why is the third prerequisites above
different than the third prerequisite from the original class?
The original is that fillComplete() must have been called.
\warning This method is intended for expert developer use only, and should never be called by user code.
*/
void
setAllValues (const Teuchos::ArrayRCP<size_t>& rowPointers,
const Teuchos::ArrayRCP<LocalOrdinal>& columnIndices,
const Teuchos::ArrayRCP<Scalar>& values);
void
getAllValues (Teuchos::ArrayRCP<const size_t>& rowPointers,
Teuchos::ArrayRCP<const LocalOrdinal>& columnIndices,
Teuchos::ArrayRCP<const Scalar>& values) const;
//@}
//! @name Transformational methods
//@{
/// \brief Communicate nonlocal contributions to other processes.
///
/// Users do not normally need to call this method. fillComplete
/// always calls this method, unless you specifically tell
/// fillComplete to do otherwise by setting its "No Nonlocal
/// Changes" parameter to \c true. Thus, it suffices to call
/// fillComplete.
///
/// Methods like insertGlobalValues and sumIntoGlobalValues let
/// you add or modify entries in rows that are not owned by the
/// calling process. These entries are called "nonlocal
/// contributions." The methods that allow nonlocal contributions
/// store the entries on the calling process, until globalAssemble
/// is called. globalAssemble sends these nonlocal contributions
/// to the process(es) that own them, where they then become part
/// of the matrix.
///
/// This method only does global assembly if there are nonlocal
/// entries on at least one process. It does an all-reduce to
/// find that out. If not, it returns early, without doing any
/// more communication or work.
///
/// If you previously inserted into a row which is not owned by
/// <i>any</i> process in the row Map, the behavior of this method
/// is undefined. It may detect the invalid row indices and throw
/// an exception, or it may silently drop the entries inserted
/// into invalid rows. Behavior may vary, depending on whether
/// Tpetra was built with debug checking enabled.
void globalAssemble();
/// \brief Resume operations that may change the values or
/// structure of the matrix.
///
/// This method must be called as a collective operation.
///
/// Calling fillComplete "freezes" both the values and the
/// structure of the matrix. If you want to modify the matrix
/// again, you must first call resumeFill. You then may not call
/// resumeFill again on that matrix until you first call
/// fillComplete. You may make sequences of fillComplete,
/// resumeFill calls as many times as you wish.
///
/// \post <tt>isFillActive() && ! isFillComplete()</tt>
void resumeFill (const RCP<ParameterList>& params = null);
/*! \brief Signal that data entry is complete, specifying domain and range maps.
Off-node indices are distributed (via globalAssemble()), indices are sorted, redundant indices are eliminated, and global indices are transformed to local indices.
\pre <tt>isFillActive() == true<tt>
\pre <tt>isFillComplete()() == false<tt>
\post <tt>isFillActive() == false<tt>
\post <tt>isFillComplete() == true<tt>
Parameters:
- "No Nonlocal Changes" (\c bool): Default is false. If true,
the caller promises that no modifications to nonowned rows
have happened on any process since the last call to
fillComplete. This saves a global all-reduce to check whether
any process did a nonlocal insert. Nonlocal changes include
any sumIntoGlobalValues or insertGlobalValues call with a row
index that is not in the row Map of the calling process.
- "Sort column Map ghost GIDs" (\c bool): Default is true.
makeColMap() (which fillComplete may call) always groups
remote GIDs by process rank, so that all remote GIDs with the
same owning rank occur contiguously. By default, it always
sorts remote GIDs in increasing order within those groups.
This behavior differs from Epetra, which does not sort remote
GIDs with the same owning process. If you don't want to sort
(for compatibility with Epetra), set this parameter to \c
false. This parameter only takes effect if the matrix owns
the graph. This is an expert mode parameter ONLY. We make no
promises about backwards compatibility of this parameter. It
may change or disappear at any time.
*/
void
fillComplete (const RCP<const map_type>& domainMap,
const RCP<const map_type>& rangeMap,
const RCP<ParameterList>& params = null);
/*! \brief Signal that data entry is complete.
Off-node entries are distributed (via globalAssemble()), repeated entries are summed, and global indices are transformed to local indices.
\note This method calls fillComplete( getRowMap(), getRowMap(), os ).
\pre <tt>isFillActive() == true<tt>
\pre <tt>isFillComplete()() == false<tt>
\post <tt>isFillActive() == false<tt>
\post <tt>isFillComplete() == true<tt>
*/
void fillComplete (const RCP<ParameterList>& params = null);
/// \brief Perform a fillComplete on a matrix that already has data.
///
/// The matrix must already have filled local 1-D storage
/// (k_clInds1D_ and k_rowPtrs_ for the graph, and k_values1D_ in
/// the matrix). If the matrix has been constructed in any other
/// way, this method will throw an exception. This routine is
/// needed to support other Trilinos packages and should not be
/// called by ordinary users.
///
/// \warning This method is intended for expert developer use
/// only, and should never be called by user code.
void
expertStaticFillComplete (const RCP<const map_type>& domainMap,
const RCP<const map_type>& rangeMap,
const RCP<const import_type>& importer = Teuchos::null,
const RCP<const export_type>& exporter = Teuchos::null,
const RCP<ParameterList>& params = Teuchos::null);
/// \brief Replace the matrix's column Map with the given Map.
///
/// \param newColMap [in] New column Map. Must be nonnull.
///
/// \pre The matrix must have no entries inserted yet, on any
/// process in the row Map's communicator.
///
/// \pre The matrix must not have been created with a constant
/// (a.k.a. "static") CrsGraph.
void
replaceColMap (const Teuchos::RCP<const map_type>& newColMap);
/// \brief Reindex the column indices in place, and replace the
/// column Map. Optionally, replace the Import object as well.
///
/// \pre The matrix is <i>not</i> fill complete:
/// <tt>! this->isFillComplete() </tt>.
/// \pre Either the input graph is \c NULL, or it is <i>not</i>
/// fill complete:
/// <tt>graph == NULL || ! graph->isFillComplete()</tt>.
/// \pre On every calling process, every index owned by the
/// current column Map must also be owned by the new column Map.
/// \pre If the new Import object is provided, the new Import
/// object's source Map must be the same as the current domain
/// Map, and the new Import's target Map must be the same as the
/// new column Map.
///
/// \param graph [in] The matrix's graph. If you don't provide
/// this (i.e., if <tt>graph == NULL</tt>), then the matrix must
/// own its graph, which will be modified in place. (That is,
/// you must <i>not</i> have created the matrix with a constant
/// graph.) If you <i>do</i> provide this, then the method will
/// assume that it is the same graph as the matrix's graph, and
/// the provided graph will be modified in place.
/// \param newColMap [in] New column Map. Must be nonnull.
/// \param newImport [in] New Import object. Optional; computed
/// if not provided or if null. Computing an Import is
/// expensive, so it is worth providing this if you can.
/// \param sortEachRow [in] If true, sort the indices (and their
/// corresponding values) in each row after reindexing.
///
/// Why would you want to use this method? Well, for example, you
/// might need to use an Ifpack2 preconditioner that only accepts
/// a matrix with a certain kind of column Map. Your matrix has
/// the wrong kind of column Map, but you know how to compute the
/// right kind of column Map. You might also know an efficient
/// way to compute an Import object from the current domain Map to
/// the new column Map. (For an instance of the latter, see the
/// Details::makeOptimizedColMapAndImport function in
/// Tpetra_Details_makeOptimizedColMap.hpp.)
///
/// Suppose that you created this CrsMatrix with a constant graph;
/// that is, that you called the CrsMatrix constructor that takes
/// a CrsGraph as input:
///
/// \code
/// RCP<CrsGraph<> > G (new CrsGraph<> (rowMap, origColMap, ...));
/// // ... fill G ...
/// G->fillComplete (domMap, ranMap);
/// CrsMatrix<> A (G);
/// // ... fill A ...
/// \endcode
///
/// Now suppose that you want to give A to a preconditioner that
/// can't handle a matrix with an arbitrary column Map (in the
/// example above, <tt>origColMap</tt>). You first must create a
/// new suitable column Map <tt>newColMap</tt>, and optionally a
/// new Import object <tt>newImport</tt> from the matrix's current
/// domain Map to the new column Map. Then, call this method,
/// passing in G (which must <i>not</i> be fill complete) while
/// the matrix is <i>not</i> fill complete. Be sure to save the
/// graph's <i>original</i> Import object; you'll need that later.
///
/// \code
/// RCP<const CrsGraph<>::import_type> origImport = G->getImporter ();
/// G->resumeFill ();
/// A.reindexColumns (G.getRawPtr (), newColMap, newImport);
/// G.fillComplete (domMap, ranMap);
/// A.fillComplete (domMap, ranMap);
/// \endcode
///
/// Now you may give the matrix A to the preconditioner in
/// question. After doing so, and after you solve the linear
/// system using the preconditioner, you might want to put the
/// matrix back like it originally was. You can do that, too!
///
/// \code
/// A.resumeFill ();
/// G->resumeFill ();
/// A.reindexColumns (G.getRawPtr (), origColMap, origImport);
/// G->fillComplete (domMap, ranMap);
/// A->fillComplete (domMap, ranMap);
/// \endcode
void
reindexColumns (crs_graph_type* const graph,
const Teuchos::RCP<const map_type>& newColMap,
const Teuchos::RCP<const import_type>& newImport = Teuchos::null,
const bool sortEachRow = true);
/// \brief Replace the current domain Map and Import with the given objects.
///
/// \param newDomainMap [in] New domain Map. Must be nonnull.
/// \param newImporter [in] Optional Import object. If null, we
/// will compute it.
///
/// \pre The matrix must be fill complete:
/// <tt>isFillComplete() == true</tt>.
/// \pre If the Import is provided, its target Map must be the
/// same as the column Map of the matrix.
/// \pre If the Import is provided, its source Map must be the
/// same as the provided new domain Map.
void
replaceDomainMapAndImporter (const Teuchos::RCP<const map_type>& newDomainMap,
Teuchos::RCP<const import_type>& newImporter);
/// \brief Remove processes owning zero rows from the Maps and their communicator.
///
/// \warning This method is ONLY for use by experts. We highly
/// recommend using the nonmember function of the same name
/// defined in Tpetra_DistObject_decl.hpp.
///
/// \warning We make NO promises of backwards compatibility.
/// This method may change or disappear at any time.
///
/// \param newMap [in] This <i>must</i> be the result of calling
/// the removeEmptyProcesses() method on the row Map. If it
/// is not, this method's behavior is undefined. This pointer
/// will be null on excluded processes.
virtual void
removeEmptyProcessesInPlace (const Teuchos::RCP<const map_type>& newMap);
//@}
//! @name Methods implementing RowMatrix
//@{
//! The communicator over which the matrix is distributed.
Teuchos::RCP<const Teuchos::Comm<int> > getComm() const;
//! The Kokkos Node instance.
Teuchos::RCP<node_type> getNode () const;
//! The Map that describes the row distribution in this matrix.
Teuchos::RCP<const map_type> getRowMap () const;
//! The Map that describes the column distribution in this matrix.
Teuchos::RCP<const map_type> getColMap () const;
//! This matrix's graph, as a RowGraph.
Teuchos::RCP<const RowGraph<LocalOrdinal, GlobalOrdinal, Node> > getGraph () const;
//! This matrix's graph, as a CrsGraph.
Teuchos::RCP<const crs_graph_type> getCrsGraph () const;
//! The local sparse matrix.
local_matrix_type getLocalMatrix () const {return lclMatrix_; }
/// \brief Number of global elements in the row map of this matrix.
///
/// This is <it>not</it> the number of rows in the matrix as a
/// mathematical object. This method returns the global sum of
/// the number of local elements in the row map on each processor,
/// which is the row map's getGlobalNumElements(). Since the row
/// map is not one-to-one in general, that global sum could be
/// different than the number of rows in the matrix. If you want
/// the number of rows in the matrix, ask the range map for its
/// global number of elements, using the following code:
/// <code>
/// global_size_t globalNumRows = getRangeMap()->getGlobalNumElements();
/// </code>
/// This method retains the behavior of Epetra, which also asks
/// the row map for the global number of rows, rather than asking
/// the range map.
///
/// \warning Undefined if isFillActive().
///
global_size_t getGlobalNumRows() const;
/// \brief The number of global columns in the matrix.
///
/// This equals the number of entries in the matrix's domain Map.
///
/// \warning Undefined if isFillActive().
global_size_t getGlobalNumCols() const;
/// \brief The number of matrix rows owned by the calling process.
///
/// Note that the sum of all the return values over all processes
/// in the row Map's communicator does not necessarily equal the
/// global number of rows in the matrix, if the row Map is
/// overlapping.
size_t getNodeNumRows() const;
/// \brief The number of columns connected to the locally owned rows of this matrix.
///
/// Throws std::runtime_error if <tt>! hasColMap ()</tt>.
size_t getNodeNumCols() const;
//! The index base for global indices for this matrix.
GlobalOrdinal getIndexBase() const;
//! The global number of entries in this matrix.
global_size_t getGlobalNumEntries() const;
//! The local number of entries in this matrix.
size_t getNodeNumEntries() const;
//! \brief Returns the current number of entries on this node in the specified global row.
/*! Returns OrdinalTraits<size_t>::invalid() if the specified global row does not belong to this matrix. */
size_t getNumEntriesInGlobalRow (GlobalOrdinal globalRow) const;
//! Returns the current number of entries on this node in the specified local row.
/*! Returns OrdinalTraits<size_t>::invalid() if the specified local row is not valid for this matrix. */
size_t getNumEntriesInLocalRow (LocalOrdinal localRow) const;
//! \brief Returns the number of global diagonal entries, based on global row/column index comparisons.
/** Undefined if isFillActive().
*/
global_size_t getGlobalNumDiags() const;
//! \brief Returns the number of local diagonal entries, based on global row/column index comparisons.
/** Undefined if isFillActive().
*/
size_t getNodeNumDiags() const;
//! \brief Returns the maximum number of entries across all rows/columns on all nodes.
/** Undefined if isFillActive().
*/
size_t getGlobalMaxNumRowEntries() const;
//! \brief Returns the maximum number of entries across all rows/columns on this node.
/** Undefined if isFillActive().
*/
size_t getNodeMaxNumRowEntries() const;
//! \brief Indicates whether the matrix has a well-defined column map.
bool hasColMap() const;
//! \brief Indicates whether the matrix is lower triangular.
/** Undefined if isFillActive().
*/
bool isLowerTriangular() const;
//! \brief Indicates whether the matrix is upper triangular.
/** Undefined if isFillActive().
*/
bool isUpperTriangular() const;
/// \brief Whether the matrix is locally indexed on the calling process.
///
/// The matrix is locally indexed on the calling process if and
/// only if all of the following hold:
/// <ol>
/// <li> The matrix is not empty on the calling process </li>
/// <li> The matrix has a column Map </li>
/// </ol>
///
/// The following is always true:
/// \code
/// (! locallyIndexed() && ! globallyIndexed()) || (locallyIndexed() || globallyIndexed());
/// \endcode
/// That is, a matrix may be neither locally nor globally indexed,
/// but it can never be both. Furthermore a matrix that is not
/// fill complete, might have some processes that are neither
/// locally nor globally indexed, and some processes that are
/// globally indexed. The processes that are neither do not have
/// any entries.
bool isLocallyIndexed() const;
/// \brief Whether the matrix is globally indexed on the calling process.
///
/// The matrix is globally indexed on the calling process if and
/// only if all of the following hold:
/// <ol>
/// <li> The matrix is not empty on the calling process </li>
/// <li> The matrix does not yet have a column Map </li>
/// </ol>
///
/// The following is always true:
/// \code
/// (! locallyIndexed() && ! globallyIndexed()) || (locallyIndexed() || globallyIndexed());
/// \endcode
/// That is, a matrix may be neither locally nor globally indexed,
/// but it can never be both. Furthermore a matrix that is not
/// fill complete, might have some processes that are neither
/// locally nor globally indexed, and some processes that are
/// globally indexed. The processes that are neither do not have
/// any entries.
bool isGloballyIndexed() const;
/// \brief Whether the matrix is fill complete.
///
/// A matrix is <i>fill complete</i> (or "in compute mode") when
/// fillComplete() has been called without an intervening call to
/// resumeFill(). A matrix must be fill complete in order to call
/// computational kernels like sparse matrix-vector multiply and
/// sparse triangular solve. A matrix must be <i>not</i> fill
/// complete ("in edit mode") in order to call methods that
/// insert, modify, or remove entries.
///
/// The following are always true:
/// <ul>
/// <li> <tt> isFillActive() == ! isFillComplete() </tt>
/// <li> <tt> isFillActive() || isFillComplete() </tt>
/// </ul>
///
/// A matrix starts out (after its constructor returns) as not
/// fill complete. It becomes fill complete after fillComplete()
/// returns, and becomes not fill complete again if resumeFill()
/// is called. Some methods like clone() and some of the
/// "nonmember constructors" (like importAndFillComplete() and
/// exportAndFillComplete()) may return a fill-complete matrix.
bool isFillComplete() const;
/// \brief Whether the matrix is not fill complete.
///
/// A matrix is <i>fill complete</i> (or "in compute mode") when
/// fillComplete() has been called without an intervening call to
/// resumeFill(). A matrix must be fill complete in order to call
/// computational kernels like sparse matrix-vector multiply and
/// sparse triangular solve. A matrix must be <i>not</i> fill
/// complete ("in edit mode") in order to call methods that
/// insert, modify, or remove entries.
///
/// The following are always true:
/// <ul>
/// <li> <tt> isFillActive() == ! isFillComplete() </tt>
/// <li> <tt> isFillActive() || isFillComplete() </tt>
/// </ul>
///
/// A matrix starts out (after its constructor returns) as not
/// fill complete. It becomes fill complete after fillComplete()
/// returns, and becomes not fill complete again if resumeFill()
/// is called. Some methods like clone() and some of the
/// "nonmember constructors" (like importAndFillComplete() and
/// exportAndFillComplete()) may return a fill-complete matrix.
bool isFillActive() const;
//! \brief Returns \c true if storage has been optimized.
/**
Optimized storage means that the allocation of each row is equal to the
number of entries. The effect is that a pass through the matrix, i.e.,
during a mat-vec, requires minimal memory traffic. One limitation of
optimized storage is that no new indices can be added to the matrix.
*/
bool isStorageOptimized () const;
//! Returns \c true if the matrix was allocated with static data structures.
ProfileType getProfileType () const;
//! Indicates that the graph is static, so that new entries cannot be added to this matrix.
bool isStaticGraph () const;
/// \brief Compute and return the Frobenius norm of the matrix.
///
/// The Frobenius norm of the matrix is defined as
/// \f\[
/// \|A\|_F = \sqrt{\sum_{i,j} \|A(i,j)\|^2}.
/// \f\].
///
/// If the matrix is fill complete, then the computed value is
/// cached; the cache is cleared whenever resumeFill() is called.
/// Otherwise, the value is computed every time the method is
/// called.
mag_type getFrobeniusNorm () const;
/// \brief Return \c true if getLocalRowView() and
/// getGlobalRowView() are valid for this object.
virtual bool supportsRowViews () const;
/// \brief Fill given arrays with a deep copy of the locally owned
/// entries of the matrix in a given row, using global column
/// indices.
///
/// \param GlobalRow [in] Global index of the row for which to
/// return entries.
/// \param Indices [out] Global column indices corresponding to
/// values.
/// \param Values [out] Matrix values.
/// \param NumEntries [out] Number of entries.
///
/// \note To Tpetra developers: Discussion of whether to use
/// <tt>Scalar</tt> or <tt>impl_scalar_type</tt> for output
/// array of matrix values.
///
/// If \c Scalar differs from <tt>impl_scalar_type</tt>, as for
/// example with std::complex<T> and Kokkos::complex<T>, we must
/// choose which type to use. We must make the same choice as
/// RowMatrix does, else CrsMatrix won't compile, because it won't
/// implement a pure virtual method. We choose <tt>Scalar</tt>,
/// for the following reasons. First, <tt>Scalar</tt> is the
/// user's preferred type, and <tt>impl_scalar_type</tt> an
/// implementation detail that makes Tpetra work with Kokkos.
/// Second, Tpetra's public interface provides a host-only
/// interface, which eliminates some reasons for requiring
/// implementation-specific types like Kokkos::complex.
///
/// We do eventually want to put Tpetra methods in Kokkos kernels,
/// but we only <i>need</i> to put them in host kernels, since
/// Tpetra is a host-only interface. Users can still manually
/// handle conversion from <tt>Scalar</tt> to
/// <tt>impl_scalar_type</tt> for reductions.
///
/// The right thing to do would be to rewrite RowMatrix so that
/// getGlobalRowCopy is NOT inherited, but is implemented by a
/// pure virtual "hook" getGlobalRowCopyImpl. The latter takes
/// raw pointers. That would give us the freedom to overload
/// getGlobalRowCopy, which one normally can't do with virtual
/// methods. It would make sense for one getGlobalRowCopyImpl
/// method to implement both Teuchos::ArrayView and Kokos::View
/// versions of getGlobalRowCopy.
///
/// Note: A std::runtime_error exception is thrown if either
/// <tt>Indices</tt> or <tt>Values</tt> is not large enough to
/// hold the data associated with row \c GlobalRow. If row
/// <tt>GlobalRow</tt> is not owned by the calling process, then
/// \c Indices and \c Values are unchanged and \c NumIndices is
/// returned as Teuchos::OrdinalTraits<size_t>::invalid().
void
getGlobalRowCopy (GlobalOrdinal GlobalRow,
const Teuchos::ArrayView<GlobalOrdinal>& Indices,
const Teuchos::ArrayView<Scalar>& Values,
size_t& NumEntries) const;
/// \brief Fill given arrays with a deep copy of the locally owned
/// entries of the matrix in a given row, using local column
/// indices.
///
/// \param localRow [in] Local index of the row for which to
/// return entries.
/// \param colInds [out] Local column indices corresponding to
/// values.
/// \param vals [out] Matrix values.
/// \param numEntries [out] Number of entries returned.
///
/// Note: A std::runtime_error exception is thrown if either
/// <tt>colInds</tt> or \c vals is not large enough to hold the
/// data associated with row \c localRow. If row \c localRow is
/// not owned by the calling process, then <tt>colInds</tt> and
/// <tt>vals</tt> are unchanged and <tt>numEntries</tt> is
/// returned as Teuchos::OrdinalTraits<size_t>::invalid().
void
getLocalRowCopy (LocalOrdinal localRow,
const Teuchos::ArrayView<LocalOrdinal>& colInds,
const Teuchos::ArrayView<Scalar>& vals,
size_t& numEntries) const;
/// \brief Get a constant, nonpersisting view of a row of this
/// matrix, using global row and column indices.
///
/// \param GlobalRow [in] Global index of the row to view.
/// \param indices [out] On output: view of the global column
/// indices in the row.
/// \param values [out] On output: view of the values in the row.
///
/// \pre <tt>isLocallyIndexed () == false</tt>
/// \post <tt>indices.size () == this->getNumEntriesInGlobalRow (GlobalRow)</tt>
///
/// If \c GlobalRow is not a valid global row index on the calling
/// process, then \c indices is set to null.
void
getGlobalRowView (GlobalOrdinal GlobalRow,
Teuchos::ArrayView<const GlobalOrdinal>& indices,
Teuchos::ArrayView<const Scalar>& values) const;
/// \brief Get a constant, nonpersisting view of a row of this
/// matrix, using local row and column indices.
///
/// \param LocalRow [in] Local index of the row to view.
/// \param indices [out] On output: view of the local column
/// indices in the row.
/// \param values [out] On output: view of the values in the row.
///
/// \pre <tt>isGloballyIndexed () == false</tt>
/// \post <tt>indices.size () == this->getNumEntriesInLocalRow (LocalRow)</tt>
///
/// If \c LocalRow is not a valid local row index on the calling
/// process, then \c indices is set to null.
void
getLocalRowView (LocalOrdinal LocalRow,
Teuchos::ArrayView<const LocalOrdinal>& indices,
Teuchos::ArrayView<const Scalar>& values) const;
/// \brief Get a copy of the diagonal entries of the matrix.
///
/// This method returns a Vector with the same Map as this
/// matrix's row Map. On each process, it contains the diagonal
/// entries owned by the calling process.
void getLocalDiagCopy (Vector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic>& diag) const;
/// \brief Get offsets of the diagonal entries in the matrix.
///
/// \warning This method is only for expert users.
/// \warning We make no promises about backwards compatibility
/// for this method. It may disappear or change at any time.
/// \warning This method must be called collectively. We reserve
/// the right to do extra checking in a debug build that will
/// require collectives.
///
/// \pre The matrix must be locally indexed (which means that it
/// has a column Map).
/// \pre All diagonal entries of the matrix's graph must be
/// populated on this process. Results are undefined otherwise.
/// \post <tt>offsets.size() == getNodeNumRows()</tt>
///
/// This method creates an array of offsets of the local diagonal
/// entries in the matrix. This array is suitable for use in the
/// two-argument version of getLocalDiagCopy(). However, its
/// contents are not defined in any other context. For example,
/// you should not rely on offsets[i] being the index of the
/// diagonal entry in the views returned by getLocalRowView().
/// This may be the case, but it need not be. (For example, we
/// may choose to optimize the lookups down to the optimized
/// storage level, in which case the offsets will be computed with
/// respect to the underlying storage format, rather than with
/// respect to the views.)
///
/// Calling any of the following invalidates the output array:
/// - insertGlobalValues()
/// - insertLocalValues()
/// - fillComplete() (with a dynamic graph)
/// - resumeFill() (with a dynamic graph)
///
/// If the matrix has a const ("static") graph, and if that graph
/// is fill complete, then the offsets array remains valid through
/// calls to fillComplete() and resumeFill(). "Invalidates" means
/// that you must call this method again to recompute the offsets.
void getLocalDiagOffsets (Teuchos::ArrayRCP<size_t>& offsets) const;
/// \brief Variant of getLocalDiagCopy() that uses precomputed offsets.
///
/// \warning This method is only for expert users.
/// \warning We make no promises about backwards compatibility
/// for this method. It may disappear or change at any time.
///
/// This method uses the offsets of the diagonal entries, as
/// precomputed by getLocalDiagOffsets(), to speed up copying the
/// diagonal of the matrix. The offsets must be recomputed if any
/// of the following methods are called:
/// - insertGlobalValues()
/// - insertLocalValues()
/// - fillComplete() (with a dynamic graph)
/// - resumeFill() (with a dynamic graph)
///
/// If the matrix has a const ("static") graph, and if that graph
/// is fill complete, then the offsets array remains valid through
/// calls to fillComplete() and resumeFill().
void
getLocalDiagCopy (Vector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic>& diag,
const Teuchos::ArrayView<const size_t>& offsets) const;
/** \brief . */
void
leftScale (const Vector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic>& x);
/** \brief . */
void
rightScale (const Vector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic>& x);
//@}
//! @name Advanced templated methods
//@{
/// \brief Compute a sparse matrix-MultiVector product local to each process.
///
/// This method computes the <i>local</i> part of <tt>Y := beta*Y
/// + alpha*Op(A)*X</tt>, where <tt>Op(A)</tt> is either \f$A\f$,
/// \f$A^T\f$ (the transpose), or \f$A^H\f$ (the conjugate
/// transpose). "The local part" means that this method does no
/// communication between processes, even if this is necessary for
/// correctness of the matrix-vector multiply. Use the apply()
/// method if you want to compute the mathematical sparse
/// matrix-vector multiply.
///
/// This method is mainly of use to Tpetra developers, though some
/// users may find it helpful if they plan to reuse the result of
/// doing an Import on the input MultiVector for several sparse
/// matrix-vector multiplies with matrices that have the same
/// column Map.
///
/// When <tt>Op(A)</tt> is \f$A\f$ (<tt>trans ==
/// Teuchos::NO_TRANS</tt>), then X's Map must be the same as the
/// column Map of this matrix, and Y's Map must be the same as the
/// row Map of this matrix. We say in this case that X is
/// "post-Imported," and Y is "pre-Exported." When <tt>Op(A)</tt>
/// is \f$A^T\f$ or \f$A^H\f$ (\c trans is <tt>Teuchos::TRANS</tt>
/// or <tt>Teuchos::CONJ_TRANS</tt>, then X's Map must be the same
/// as the row Map of this matrix, and Y's Map must be the same as
/// the column Map of this matrix.
///
/// Both X and Y must have constant stride, and they may not alias
/// one another (that is, occupy overlapping space in memory). We
/// may not necessarily check for aliasing, and if we do, we will
/// only do this in a debug build. Aliasing X and Y may cause
/// nondeterministically incorrect results.
///
/// This method is templated on the type of entries in both the
/// input MultiVector (\c DomainScalar) and the output MultiVector
/// (\c RangeScalar). Thus, this method works for MultiVector
/// objects of arbitrary type. However, this method only performs
/// computation local to each MPI process. Use
/// CrsMatrixMultiplyOp to handle global communication (the Import
/// and Export operations for the input resp. output MultiVector),
/// if you have a matrix with entries of a different type than the
/// input and output MultiVector objects.
///
/// If <tt>beta == 0</tt>, this operation will enjoy overwrite
/// semantics: Y will be overwritten with the result of the
/// multiplication, even if it contains <tt>NaN</tt>
/// (not-a-number) floating-point entries. Otherwise, the
/// multiply result will be accumulated into \c Y.
template <class DomainScalar, class RangeScalar>
void
localMultiply (const MultiVector<DomainScalar, LocalOrdinal, GlobalOrdinal, Node, classic>& X,
MultiVector<RangeScalar, LocalOrdinal, GlobalOrdinal, Node, classic>& Y,
Teuchos::ETransp mode,
RangeScalar alpha,
RangeScalar beta) const
{
using Teuchos::NO_TRANS;
// Just like Scalar and impl_scalar_type may differ in CrsMatrix,
// RangeScalar and its corresponding impl_scalar_type may differ in
// MultiVector.
typedef typename MultiVector<RangeScalar, LocalOrdinal, GlobalOrdinal,
Node, classic>::impl_scalar_type range_impl_scalar_type;
#ifdef HAVE_TPETRA_DEBUG
const char tfecfFuncName[] = "localMultiply: ";
#endif // HAVE_TPETRA_DEBUG
const range_impl_scalar_type theAlpha = static_cast<range_impl_scalar_type> (alpha);
const range_impl_scalar_type theBeta = static_cast<range_impl_scalar_type> (beta);
const bool conjugate = (mode == Teuchos::CONJ_TRANS);
const bool transpose = (mode != Teuchos::NO_TRANS);
#ifdef HAVE_TPETRA_DEBUG
TEUCHOS_TEST_FOR_EXCEPTION_CLASS_FUNC
(X.getNumVectors () != Y.getNumVectors (), std::runtime_error,
"X.getNumVectors() = " << X.getNumVectors () << " != Y.getNumVectors() = "
<< Y.getNumVectors () << ".");
TEUCHOS_TEST_FOR_EXCEPTION_CLASS_FUNC
(! transpose && X.getLocalLength () != getColMap ()->getNodeNumElements (),
std::runtime_error, "NO_TRANS case: X has the wrong number of local rows. "
"X.getLocalLength() = " << X.getLocalLength () << " != getColMap()->"
"getNodeNumElements() = " << getColMap ()->getNodeNumElements () << ".");
TEUCHOS_TEST_FOR_EXCEPTION_CLASS_FUNC
(! transpose && Y.getLocalLength () != getRowMap ()->getNodeNumElements (),
std::runtime_error, "NO_TRANS case: Y has the wrong number of local rows. "
"Y.getLocalLength() = " << Y.getLocalLength () << " != getRowMap()->"
"getNodeNumElements() = " << getRowMap ()->getNodeNumElements () << ".");
TEUCHOS_TEST_FOR_EXCEPTION_CLASS_FUNC
(transpose && X.getLocalLength () != getRowMap ()->getNodeNumElements (),
std::runtime_error, "TRANS or CONJ_TRANS case: X has the wrong number of "
"local rows. X.getLocalLength() = " << X.getLocalLength () << " != "
"getRowMap()->getNodeNumElements() = "
<< getRowMap ()->getNodeNumElements () << ".");
TEUCHOS_TEST_FOR_EXCEPTION_CLASS_FUNC
(transpose && Y.getLocalLength () != getColMap ()->getNodeNumElements (),
std::runtime_error, "TRANS or CONJ_TRANS case: X has the wrong number of "
"local rows. Y.getLocalLength() = " << Y.getLocalLength () << " != "
"getColMap()->getNodeNumElements() = "
<< getColMap ()->getNodeNumElements () << ".");
TEUCHOS_TEST_FOR_EXCEPTION_CLASS_FUNC
(! isFillComplete (), std::runtime_error, "The matrix is not fill "
"complete. You must call fillComplete() (possibly with domain and range "
"Map arguments) without an intervening resumeFill() call before you may "
"call this method.");
TEUCHOS_TEST_FOR_EXCEPTION_CLASS_FUNC
(! X.isConstantStride () || ! Y.isConstantStride (), std::runtime_error,
"X and Y must be constant stride.");
// If the two pointers are NULL, then they don't alias one
// another, even though they are equal.
TEUCHOS_TEST_FOR_EXCEPTION_CLASS_FUNC(
X.getDualView ().d_view.ptr_on_device () == Y.getDualView ().d_view.ptr_on_device () &&
X.getDualView ().d_view.ptr_on_device () != NULL,
std::runtime_error, "X and Y may not alias one another.");
#endif // HAVE_TPETRA_DEBUG
// Y = alpha*op(M) + beta*Y
if (transpose) {
KokkosSparse::spmv (conjugate ? KokkosSparse::ConjugateTranspose : KokkosSparse::Transpose,
theAlpha,
lclMatrix_,
X.template getLocalView<device_type> (),
theBeta,
Y.template getLocalView<device_type> ());
}
else {
KokkosSparse::spmv (KokkosSparse::NoTranspose,
theAlpha,
lclMatrix_,
X.template getLocalView<device_type> (),
theBeta,
Y.template getLocalView<device_type> ());
}
}
/// \brief Gauss-Seidel or SOR on \f$B = A X\f$.
///
/// Apply a forward or backward sweep of Gauss-Seidel or
/// Successive Over-Relaxation (SOR) to the linear system(s) \f$B
/// = A X\f$. For Gauss-Seidel, set the damping factor \c omega
/// to 1.
///
/// \tparam DomainScalar The type of entries in the input
/// multivector X. This may differ from the type of entries in
/// A or in B.
/// \tparam RangeScalar The type of entries in the output
/// multivector B. This may differ from the type of entries in
/// A or in X.
///
/// \param B [in] Right-hand side(s).
/// \param X [in/out] On input: initial guess(es). On output:
/// result multivector(s).
/// \param D [in] Inverse of diagonal entries of the matrix A.
/// \param omega [in] SOR damping factor. omega = 1 results in
/// Gauss-Seidel.
/// \param direction [in] Sweep direction: KokkosClassic::Forward or
/// KokkosClassic::Backward. ("Symmetric" requires interprocess
/// communication (before each sweep), which is not part of the
/// local kernel.)
template <class DomainScalar, class RangeScalar>
void
localGaussSeidel (const MultiVector<DomainScalar, LocalOrdinal, GlobalOrdinal, Node, classic> &B,
MultiVector<RangeScalar, LocalOrdinal, GlobalOrdinal, Node, classic> &X,
const MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic> &D,
const RangeScalar& dampingFactor,
const KokkosClassic::ESweepDirection direction) const
{
typedef LocalOrdinal LO;
typedef GlobalOrdinal GO;
typedef Tpetra::MultiVector<DomainScalar, LO, GO, Node, classic> DMV;
typedef Tpetra::MultiVector<RangeScalar, LO, GO, Node, classic> RMV;
typedef Tpetra::MultiVector<Scalar, LO, GO, Node, classic> MMV;
typedef typename DMV::dual_view_type::host_mirror_space HMDT ;
typedef typename Graph::local_graph_type k_local_graph_type;
typedef typename k_local_graph_type::size_type offset_type;
const char prefix[] = "Tpetra::CrsMatrix::localGaussSeidel: ";
TEUCHOS_TEST_FOR_EXCEPTION
(! this->isFillComplete (), std::runtime_error,
prefix << "The matrix is not fill complete.");
const size_t lclNumRows = this->getNodeNumRows ();
const size_t numVecs = B.getNumVectors ();
TEUCHOS_TEST_FOR_EXCEPTION
(X.getNumVectors () != numVecs, std::invalid_argument,
prefix << "B.getNumVectors() = " << numVecs << " != "
"X.getNumVectors() = " << X.getNumVectors () << ".");
TEUCHOS_TEST_FOR_EXCEPTION
(B.getLocalLength () != lclNumRows, std::invalid_argument,
prefix << "B.getLocalLength() = " << B.getLocalLength ()
<< " != this->getNodeNumRows() = " << lclNumRows << ".");
typename DMV::dual_view_type::t_host B_lcl = B.template getLocalView<HMDT> ();
typename RMV::dual_view_type::t_host X_lcl = X.template getLocalView<HMDT> ();
typename MMV::dual_view_type::t_host D_lcl = D.template getLocalView<HMDT> ();
offset_type B_stride[8], X_stride[8], D_stride[8];
B_lcl.stride (B_stride);
X_lcl.stride (X_stride);
D_lcl.stride (D_stride);
local_matrix_type lclMatrix = this->getLocalMatrix ();
k_local_graph_type lclGraph = lclMatrix.graph;
typename local_matrix_type::row_map_type ptr = lclGraph.row_map;
typename local_matrix_type::index_type ind = lclGraph.entries;
typename local_matrix_type::values_type val = lclMatrix.values;
const offset_type* const ptrRaw = ptr.ptr_on_device ();
const LO* const indRaw = ind.ptr_on_device ();
const impl_scalar_type* const valRaw = val.ptr_on_device ();
const std::string dir ((direction == KokkosClassic::Forward) ? "F" : "B");
KokkosSparse::Impl::Sequential::gaussSeidel (static_cast<LO> (lclNumRows),
static_cast<LO> (numVecs),
ptrRaw, indRaw, valRaw,
B_lcl.ptr_on_device (), B_stride[1],
X_lcl.ptr_on_device (), X_stride[1],
D_lcl.ptr_on_device (),
static_cast<impl_scalar_type> (dampingFactor),
dir.c_str ());
}
/// \brief Reordered Gauss-Seidel or SOR on \f$B = A X\f$.
///
/// Apply a forward or backward sweep of reordered Gauss-Seidel or
/// Successive Over-Relaxation (SOR) to the linear system(s) \f$B
/// = A X\f$. For Gauss-Seidel, set the damping factor \c omega
/// to 1. The ordering can be a partial one, in which case the Gauss-Seidel is only
/// executed on a local subset of unknowns.
///
/// \tparam DomainScalar The type of entries in the input
/// multivector X. This may differ from the type of entries in
/// A or in B.
/// \tparam RangeScalar The type of entries in the output
/// multivector B. This may differ from the type of entries in
/// A or in X.
///
/// \param B [in] Right-hand side(s).
/// \param X [in/out] On input: initial guess(es). On output:
/// result multivector(s).
/// \param D [in] Inverse of diagonal entries of the matrix A.
/// \param rowIndices [in] Ordered list of indices on which to execute GS.
/// \param omega [in] SOR damping factor. omega = 1 results in
/// Gauss-Seidel.
/// \param direction [in] Sweep direction: KokkosClassic::Forward or
/// KokkosClassic::Backward. ("Symmetric" requires interprocess
/// communication (before each sweep), which is not part of the
/// local kernel.)
template <class DomainScalar, class RangeScalar>
void
reorderedLocalGaussSeidel (const MultiVector<DomainScalar, LocalOrdinal, GlobalOrdinal, Node, classic>& B,
MultiVector<RangeScalar, LocalOrdinal, GlobalOrdinal, Node, classic>& X,
const MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic>& D,
const Teuchos::ArrayView<LocalOrdinal>& rowIndices,
const RangeScalar& dampingFactor,
const KokkosClassic::ESweepDirection direction) const
{
typedef LocalOrdinal LO;
typedef GlobalOrdinal GO;
typedef Tpetra::MultiVector<DomainScalar, LO, GO, Node, classic> DMV;
typedef Tpetra::MultiVector<RangeScalar, LO, GO, Node, classic> RMV;
typedef Tpetra::MultiVector<Scalar, LO, GO, Node, classic> MMV;
typedef typename DMV::dual_view_type::host_mirror_space HMDT ;
typedef typename Graph::local_graph_type k_local_graph_type;
typedef typename k_local_graph_type::size_type offset_type;
const char prefix[] = "Tpetra::CrsMatrix::reorderedLocalGaussSeidel: ";
TEUCHOS_TEST_FOR_EXCEPTION
(! this->isFillComplete (), std::runtime_error,
prefix << "The matrix is not fill complete.");
const size_t lclNumRows = this->getNodeNumRows ();
const size_t numVecs = B.getNumVectors ();
TEUCHOS_TEST_FOR_EXCEPTION
(X.getNumVectors () != numVecs, std::invalid_argument,
prefix << "B.getNumVectors() = " << numVecs << " != "
"X.getNumVectors() = " << X.getNumVectors () << ".");
TEUCHOS_TEST_FOR_EXCEPTION
(B.getLocalLength () != lclNumRows, std::invalid_argument,
prefix << "B.getLocalLength() = " << B.getLocalLength ()
<< " != this->getNodeNumRows() = " << lclNumRows << ".");
TEUCHOS_TEST_FOR_EXCEPTION
(static_cast<size_t> (rowIndices.size ()) < lclNumRows,
std::invalid_argument, prefix << "rowIndices.size() = "
<< rowIndices.size () << " < this->getNodeNumRows() = "
<< lclNumRows << ".");
typename DMV::dual_view_type::t_host B_lcl = B.template getLocalView<HMDT> ();
typename RMV::dual_view_type::t_host X_lcl = X.template getLocalView<HMDT> ();
typename MMV::dual_view_type::t_host D_lcl = D.template getLocalView<HMDT> ();
offset_type B_stride[8], X_stride[8], D_stride[8];
B_lcl.stride (B_stride);
X_lcl.stride (X_stride);
D_lcl.stride (D_stride);
local_matrix_type lclMatrix = this->getLocalMatrix ();
typename Graph::local_graph_type lclGraph = lclMatrix.graph;
typename local_matrix_type::index_type ind = lclGraph.entries;
typename local_matrix_type::row_map_type ptr = lclGraph.row_map;
typename local_matrix_type::values_type val = lclMatrix.values;
const offset_type* const ptrRaw = ptr.ptr_on_device ();
const LO* const indRaw = ind.ptr_on_device ();
const impl_scalar_type* const valRaw = val.ptr_on_device ();
const std::string dir = (direction == KokkosClassic::Forward) ? "F" : "B";
KokkosSparse::Impl::Sequential::reorderedGaussSeidel (static_cast<LO> (lclNumRows),
static_cast<LO> (numVecs),
ptrRaw, indRaw, valRaw,
B_lcl.ptr_on_device (),
B_stride[1],
X_lcl.ptr_on_device (),
X_stride[1],
D_lcl.ptr_on_device (),
rowIndices.getRawPtr (),
static_cast<LO> (lclNumRows),
static_cast<impl_scalar_type> (dampingFactor),
dir.c_str ());
}
/// \brief Solves a linear system when the underlying matrix is
/// locally triangular.
///
/// X is required to be post-imported, i.e., described by the
/// column map of the matrix. Y is required to be pre-exported,
/// i.e., described by the row map of the matrix.
///
/// This method is templated on the scalar type of MultiVector
/// objects, allowing this method to be applied to MultiVector
/// objects of arbitrary type. However, if you intend to use this
/// with template parameters not equal to Scalar, we recommend
/// that you wrap this matrix in a CrsMatrixSolveOp. That class
/// will handle the Import/Export operations required to apply a
/// matrix with non-trivial communication needs.
///
/// Both X and Y are required to have constant stride. However,
/// unlike multiply(), it is permissible for <tt>&X == &Y</tt>. No
/// run-time checking will be performed in a non-debug build.
template <class DomainScalar, class RangeScalar>
void
localSolve (const MultiVector<RangeScalar, LocalOrdinal, GlobalOrdinal, Node, classic>& Y,
MultiVector<DomainScalar, LocalOrdinal, GlobalOrdinal, Node, classic>& X,
Teuchos::ETransp mode) const
{
using Teuchos::CONJ_TRANS;
using Teuchos::NO_TRANS;
using Teuchos::TRANS;
typedef LocalOrdinal LO;
typedef GlobalOrdinal GO;
typedef Tpetra::MultiVector<DomainScalar, LO, GO, Node, classic> DMV;
typedef Tpetra::MultiVector<RangeScalar, LO, GO, Node, classic> RMV;
typedef typename DMV::dual_view_type::host_mirror_space HMDT ;
const char tfecfFuncName[] = "localSolve: ";
TEUCHOS_TEST_FOR_EXCEPTION_CLASS_FUNC
(! isFillComplete (), std::runtime_error,
"The matrix is not fill complete.");
TEUCHOS_TEST_FOR_EXCEPTION_CLASS_FUNC
(! X.isConstantStride () || ! Y.isConstantStride (), std::invalid_argument,
"X and Y must be constant stride.");
TEUCHOS_TEST_FOR_EXCEPTION_CLASS_FUNC
(! isUpperTriangular () && ! isLowerTriangular (), std::runtime_error,
"The matrix is neither upper triangular or lower triangular. "
"You may only call this method if the matrix is triangular. "
"Remember that this is a local (per MPI process) property, and that "
"Tpetra only knows how to do a local (per process) triangular solve.");
TEUCHOS_TEST_FOR_EXCEPTION_CLASS_FUNC
(STS::isComplex && mode == TRANS, std::logic_error, "This method does "
"not currently support non-conjugated transposed solve (mode == "
"Teuchos::TRANS) for complex scalar types.");
// FIXME (mfh 27 Aug 2014) Tpetra has always made the odd decision
// that if _some_ diagonal entries are missing locally, then it
// assumes that the matrix has an implicitly stored unit diagonal.
// Whether the matrix has an implicit unit diagonal or not should
// be up to the user to decide. What if the graph has no diagonal
// entries, and the user wants it that way? The only reason this
// matters, though, is for the triangular solve, and in that case,
// missing diagonal entries will cause trouble anyway. However,
// it would make sense to warn the user if they ask for a
// triangular solve with an incomplete diagonal. Furthermore,
// this code should only assume an implicitly stored unit diagonal
// if the matrix has _no_ explicitly stored diagonal entries.
const std::string uplo = isUpperTriangular () ? "U" :
(isLowerTriangular () ? "L" : "N");
const std::string trans = (mode == Teuchos::CONJ_TRANS) ? "C" :
(mode == Teuchos::TRANS ? "T" : "N");
const std::string diag =
(getNodeNumDiags () < getNodeNumRows ()) ? "U" : "N";
local_matrix_type A_lcl = this->getLocalMatrix ();
// FIXME (mfh 23 Apr 2015) We currently only have a host,
// sequential kernel for local sparse triangular solve.
Y.getDualView ().template sync<HMDT> (); // Y is read-only
X.getDualView ().template sync<HMDT> ();
X.getDualView ().template modify<HMDT> (); // we will write to X
if (X.isConstantStride () && Y.isConstantStride ()) {
typename DMV::dual_view_type::t_host X_lcl = X.template getLocalView<HMDT> ();
typename RMV::dual_view_type::t_host Y_lcl = Y.template getLocalView<HMDT> ();
KokkosSparse::trsv (uplo.c_str (), trans.c_str (), diag.c_str (), A_lcl, Y_lcl, X_lcl);
}
else {
const size_t numVecs = std::min (X.getNumVectors (), Y.getNumVectors ());
for (size_t j = 0; j < numVecs; ++j) {
auto X_j = X.getVector (j);
auto Y_j = X.getVector (j);
auto X_lcl = X_j->template getLocalView<HMDT> ();
auto Y_lcl = Y_j->template getLocalView<HMDT> ();
KokkosSparse::trsv (uplo.c_str (), trans.c_str (), diag.c_str (), A_lcl, Y_lcl, X_lcl);
}
}
}
/// \brief Return another CrsMatrix with the same entries, but
/// converted to a different Scalar type \c T.
template <class T>
Teuchos::RCP<CrsMatrix<T, LocalOrdinal, GlobalOrdinal, Node, classic> >
convert () const;
//@}
//! @name Methods implementing Operator
//@{
/// \brief Compute a sparse matrix-MultiVector multiply.
///
/// This method computes <tt>Y := beta*Y + alpha*Op(A)*X</tt>,
/// where <tt>Op(A)</tt> is either \f$A\f$, \f$A^T\f$ (the
/// transpose), or \f$A^H\f$ (the conjugate transpose).
///
/// If <tt>beta == 0</tt>, this operation will enjoy overwrite
/// semantics: Y's entries will be ignored, and Y will be
/// overwritten with the result of the multiplication, even if it
/// contains <tt>NaN</tt> (not-a-number) floating-point entries.
void
apply (const MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic>& X,
MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic>&Y,
Teuchos::ETransp mode = Teuchos::NO_TRANS,
Scalar alpha = ScalarTraits<Scalar>::one(),
Scalar beta = ScalarTraits<Scalar>::zero()) const;
//! Whether apply() allows applying the transpose or conjugate transpose.
bool hasTransposeApply () const;
/// \brief The domain Map of this matrix.
///
/// This method implements Tpetra::Operator. If fillComplete()
/// has not yet been called at least once on this matrix, or if
/// the matrix was not constructed with a domain Map, then this
/// method returns Teuchos::null.
Teuchos::RCP<const map_type> getDomainMap () const;
/// \brief The range Map of this matrix.
///
/// This method implements Tpetra::Operator. If fillComplete()
/// has not yet been called at least once on this matrix, or if
/// the matrix was not constructed with a domain Map, then this
/// method returns Teuchos::null.
Teuchos::RCP<const map_type> getRangeMap () const;
//@}
//! @name Other "apply"-like methods
//@{
/// \brief "Hybrid" Jacobi + (Gauss-Seidel or SOR) on \f$B = A X\f$.
///
/// "Hybrid" means Successive Over-Relaxation (SOR) or
/// Gauss-Seidel within an (MPI) process, but Jacobi between
/// processes. Gauss-Seidel is a special case of SOR, where the
/// damping factor is one.
///
/// The Forward or Backward sweep directions have their usual SOR
/// meaning within the process. Interprocess communication occurs
/// once before the sweep, as it normally would in Jacobi.
///
/// The Symmetric sweep option means two sweeps: first Forward,
/// then Backward. Interprocess communication occurs before each
/// sweep, as in Jacobi. Thus, Symmetric results in two
/// interprocess communication steps.
///
/// \param B [in] Right-hand side(s).
/// \param X [in/out] On input: initial guess(es). On output:
/// result multivector(s).
/// \param D [in] Inverse of diagonal entries of the matrix A.
/// \param dampingFactor [in] SOR damping factor. A damping
/// factor of one results in Gauss-Seidel.
/// \param direction [in] Sweep direction: Forward, Backward, or
/// Symmetric.
/// \param numSweeps [in] Number of sweeps. We count each
/// Symmetric sweep (including both its Forward and its Backward
/// sweep) as one.
///
/// \section Tpetra_KR_CrsMatrix_gaussSeidel_req Requirements
///
/// This method has the following requirements:
///
/// 1. X is in the domain Map of the matrix.
/// 2. The domain and row Maps of the matrix are the same.
/// 3. The column Map contains the domain Map, and both start at the same place.
/// 4. The row Map is uniquely owned.
/// 5. D is in the row Map of the matrix.
/// 6. X is actually a view of a column Map multivector.
/// 7. Neither B nor D alias X.
///
/// #1 is just the usual requirement for operators: the input
/// multivector must always be in the domain Map. The
/// Gauss-Seidel kernel imposes additional requirements, since it
///
/// - overwrites the input multivector with the output (which
/// implies #2), and
/// - uses the same local indices for the input and output
/// multivector (which implies #2 and #3).
///
/// #3 is reasonable if the matrix constructed the column Map,
/// because the method that does this (CrsGraph::makeColMap) puts
/// the local GIDs (those in the domain Map) in front and the
/// remote GIDs (not in the domain Map) at the end of the column
/// Map. However, if you constructed the column Map yourself, you
/// are responsible for maintaining this invariant. #6 lets us do
/// the Import from the domain Map to the column Map in place.
///
/// The Gauss-Seidel kernel also assumes that each process has the
/// entire value (not a partial value to sum) of all the diagonal
/// elements in the rows in its row Map. (We guarantee this anyway
/// though the separate D vector.) This is because each element of
/// the output multivector depends nonlinearly on the diagonal
/// elements. Shared ownership of off-diagonal elements would
/// produce different results.
void
gaussSeidel (const MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic> &B,
MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic> &X,
const MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic> &D,
const Scalar& dampingFactor,
const ESweepDirection direction,
const int numSweeps) const;
/// \brief Reordered "Hybrid" Jacobi + (Gauss-Seidel or SOR) on \f$B = A X\f$.
///
/// "Hybrid" means Successive Over-Relaxation (SOR) or
/// Gauss-Seidel within an (MPI) process, but Jacobi between
/// processes. Gauss-Seidel is a special case of SOR, where the
/// damping factor is one. The ordering can be a partial one, in which case the Gauss-Seidel is only
/// executed on a local subset of unknowns.
///
/// The Forward or Backward sweep directions have their usual SOR
/// meaning within the process. Interprocess communication occurs
/// once before the sweep, as it normally would in Jacobi.
///
/// The Symmetric sweep option means two sweeps: first Forward,
/// then Backward. Interprocess communication occurs before each
/// sweep, as in Jacobi. Thus, Symmetric results in two
/// interprocess communication steps.
///
/// \param B [in] Right-hand side(s).
/// \param X [in/out] On input: initial guess(es). On output:
/// result multivector(s).
/// \param D [in] Inverse of diagonal entries of the matrix A.
/// \param rowIndices [in] Ordered list of indices on which to execute GS.
/// \param dampingFactor [in] SOR damping factor. A damping
/// factor of one results in Gauss-Seidel.
/// \param direction [in] Sweep direction: Forward, Backward, or
/// Symmetric.
/// \param numSweeps [in] Number of sweeps. We count each
/// Symmetric sweep (including both its Forward and its Backward
/// sweep) as one.
///
/// \section Tpetra_KR_CrsMatrix_reorderedGaussSeidel_req Requirements
///
/// This method has the following requirements:
///
/// 1. X is in the domain Map of the matrix.
/// 2. The domain and row Maps of the matrix are the same.
/// 3. The column Map contains the domain Map, and both start at the same place.
/// 4. The row Map is uniquely owned.
/// 5. D is in the row Map of the matrix.
/// 6. X is actually a view of a column Map multivector.
/// 7. Neither B nor D alias X.
///
/// #1 is just the usual requirement for operators: the input
/// multivector must always be in the domain Map. The
/// Gauss-Seidel kernel imposes additional requirements, since it
///
/// - overwrites the input multivector with the output (which
/// implies #2), and
/// - uses the same local indices for the input and output
/// multivector (which implies #2 and #3).
///
/// #3 is reasonable if the matrix constructed the column Map,
/// because the method that does this (CrsGraph::makeColMap) puts
/// the local GIDs (those in the domain Map) in front and the
/// remote GIDs (not in the domain Map) at the end of the column
/// Map. However, if you constructed the column Map yourself, you
/// are responsible for maintaining this invariant. #6 lets us do
/// the Import from the domain Map to the column Map in place.
///
/// The Gauss-Seidel kernel also assumes that each process has the
/// entire value (not a partial value to sum) of all the diagonal
/// elements in the rows in its row Map. (We guarantee this anyway
/// though the separate D vector.) This is because each element of
/// the output multivector depends nonlinearly on the diagonal
/// elements. Shared ownership of off-diagonal elements would
/// produce different results.
void
reorderedGaussSeidel (const MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic>& B,
MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic>& X,
const MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic>& D,
const Teuchos::ArrayView<LocalOrdinal>& rowIndices,
const Scalar& dampingFactor,
const ESweepDirection direction,
const int numSweeps) const;
/// \brief Version of gaussSeidel(), with fewer requirements on X.
///
/// This method is just like gaussSeidel(), except that X need
/// only be in the domain Map. This method does not require that
/// X be a domain Map view of a column Map multivector. As a
/// result, this method must copy X into a domain Map multivector
/// before operating on it.
///
/// \param X [in/out] On input: initial guess(es). On output:
/// result multivector(s).
/// \param B [in] Right-hand side(s), in the range Map.
/// \param D [in] Inverse of diagonal entries of the matrix,
/// in the row Map.
/// \param dampingFactor [in] SOR damping factor. A damping
/// factor of one results in Gauss-Seidel.
/// \param direction [in] Sweep direction: Forward, Backward, or
/// Symmetric.
/// \param numSweeps [in] Number of sweeps. We count each
/// Symmetric sweep (including both its Forward and its
/// Backward sweep) as one.
/// \param zeroInitialGuess [in] If true, this method will fill X
/// with zeros initially. If false, this method will assume
/// that X contains a possibly nonzero initial guess on input.
/// Note that a nonzero initial guess may impose an additional
/// nontrivial communication cost (an additional Import).
///
/// \pre Domain, range, and row Maps of the sparse matrix are all the same.
/// \pre No other argument aliases X.
void
gaussSeidelCopy (MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic> &X,
const MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic> &B,
const MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic> &D,
const Scalar& dampingFactor,
const ESweepDirection direction,
const int numSweeps,
const bool zeroInitialGuess) const;
/// \brief Version of reorderedGaussSeidel(), with fewer requirements on X.
///
/// This method is just like reorderedGaussSeidel(), except that X need
/// only be in the domain Map. This method does not require that
/// X be a domain Map view of a column Map multivector. As a
/// result, this method must copy X into a domain Map multivector
/// before operating on it.
///
/// \param X [in/out] On input: initial guess(es). On output:
/// result multivector(s).
/// \param B [in] Right-hand side(s), in the range Map.
/// \param D [in] Inverse of diagonal entries of the matrix,
/// in the row Map.
/// \param rowIndices [in] Ordered list of indices on which to execute GS.
/// \param dampingFactor [in] SOR damping factor. A damping
/// factor of one results in Gauss-Seidel.
/// \param direction [in] Sweep direction: Forward, Backward, or
/// Symmetric.
/// \param numSweeps [in] Number of sweeps. We count each
/// Symmetric sweep (including both its Forward and its
/// Backward sweep) as one.
/// \param zeroInitialGuess [in] If true, this method will fill X
/// with zeros initially. If false, this method will assume
/// that X contains a possibly nonzero initial guess on input.
/// Note that a nonzero initial guess may impose an additional
/// nontrivial communication cost (an additional Import).
///
/// \pre Domain, range, and row Maps of the sparse matrix are all the same.
/// \pre No other argument aliases X.
void
reorderedGaussSeidelCopy (MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic>& X,
const MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic>& B,
const MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic>& D,
const Teuchos::ArrayView<LocalOrdinal>& rowIndices,
const Scalar& dampingFactor,
const ESweepDirection direction,
const int numSweeps,
const bool zeroInitialGuess) const;
/// \brief Implementation of RowMatrix::add: return <tt>alpha*A + beta*this</tt>.
///
/// This override of the default implementation ensures that, when
/// called on a CrsMatrix, this method always returns a CrsMatrix
/// of exactly the same type as <tt>*this</tt>. "Exactly the same
/// type" means that all the template parameters match, including
/// the fifth template parameter. The input matrix A need not
/// necessarily be a CrsMatrix or a CrsMatrix of the same type as
/// <tt>*this</tt>, though this method may be able to optimize
/// further in that case.
virtual Teuchos::RCP<RowMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node> >
add (const Scalar& alpha,
const RowMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node>& A,
const Scalar& beta,
const Teuchos::RCP<const Map<LocalOrdinal, GlobalOrdinal, Node> >& domainMap,
const Teuchos::RCP<const Map<LocalOrdinal, GlobalOrdinal, Node> >& rangeMap,
const Teuchos::RCP<Teuchos::ParameterList>& params) const;
//@}
//! @name Implementation of Teuchos::Describable interface
//@{
//! A one-line description of this object.
std::string description () const;
//! Print the object with some verbosity level to an FancyOStream object.
void
describe (Teuchos::FancyOStream &out,
const Teuchos::EVerbosityLevel verbLevel =
Teuchos::Describable::verbLevel_default) const;
//@}
//! @name Implementation of DistObject interface
//@{
virtual bool
checkSizes (const SrcDistObject& source);
virtual void
copyAndPermute (const SrcDistObject& source,
size_t numSameIDs,
const Teuchos::ArrayView<const LocalOrdinal>& permuteToLIDs,
const Teuchos::ArrayView<const LocalOrdinal>& permuteFromLIDs);
virtual void
packAndPrepare (const SrcDistObject& source,
const Teuchos::ArrayView<const LocalOrdinal>& exportLIDs,
Teuchos::Array<char>& exports,
const Teuchos::ArrayView<size_t>& numPacketsPerLID,
size_t& constantNumPackets,
Distributor& distor);
private:
/// \brief Unpack the imported column indices and values, and
/// combine into matrix.
void
unpackAndCombineImpl (const Teuchos::ArrayView<const LocalOrdinal> &importLIDs,
const Teuchos::ArrayView<const char> &imports,
const Teuchos::ArrayView<size_t> &numPacketsPerLID,
size_t constantNumPackets,
Distributor& distor,
CombineMode combineMode);
public:
/// \brief Unpack the imported column indices and values, and combine into matrix.
///
/// \warning The allowed \c combineMode depends on whether the
/// matrix's graph is static or dynamic. ADD, REPLACE, and
/// ABSMAX are valid for a static graph, but INSERT is not.
/// ADD and INSERT are valid for a dynamic graph; ABSMAX and
/// REPLACE have not yet been implemented (and would require
/// serious changes to matrix assembly in order to implement
/// sensibly).
void
unpackAndCombine (const Teuchos::ArrayView<const LocalOrdinal> &importLIDs,
const Teuchos::ArrayView<const char> &imports,
const Teuchos::ArrayView<size_t> &numPacketsPerLID,
size_t constantNumPackets,
Distributor& distor,
CombineMode combineMode);
//@}
//! @name Implementation of Packable interface
//@{
/// \brief Pack this object's data for an Import or Export.
///
/// \warning To be called only by the packAndPrepare method of
/// appropriate classes of DistObject.
///
/// \param exportLIDs [in] Local indices of the rows to pack.
/// \param exports [out] On output: array of packed matrix
/// entries; allocated by method.
/// \param numPacketsPerLID [out] On output: numPacketsPerLID[i]
/// is the number of bytes of the \c exports array used for
/// storing packed local row \c exportLIDs[i].
/// \param constantNumPackets [out] If zero on output, the packed
/// rows may have different numbers of entries. If nonzero on
/// output, then that number gives the constant number of
/// entries for all packed rows <i>on all processes in the
/// matrix's communicator</i>.
/// \param distor [in/out] The Distributor object which implements
/// the Import or Export operation that is calling this method.
///
/// \subsection Tpetra_KR_CrsMatrix_pack_summary Packing scheme
///
/// The number of "packets" per row is the number of bytes per
/// row. Each row has the following storage format:
///
/// <tt>[numEnt, vals, inds]</tt>,
///
/// where:
/// <ul>
/// <li> \c numEnt (\c LocalOrdinal): number of entries in the
/// row. </li>
/// <li> \c vals: array of \c Scalar. For the k-th entry in the
/// row, \c vals[k] is its value and \c inds[k] its global
/// column index. </li>
/// <li> \c inds: array of \c GlobalOrdinal. For the k-th entry
/// in the row, \c vals[k] is its value and \c inds[k] its
/// global column index. </li>
/// </ul>
///
/// We reserve the right to pad for alignment in the future. In
/// that case, the number of bytes reported by \c numPacketsPerLID
/// will reflect padding to align each datum to its size, and the
/// row will have final padding as well to ensure that the
/// <i>next</i> row is aligned. Rows with zero entries will still
/// take zero bytes, however.
///
/// RowMatrix::pack will always use the same packing scheme as
/// this method. This ensures correct Import / Export from a
/// RowMatrix to a CrsMatrix.
///
/// We do <i>not</i> recommend relying on the details of this
/// packing scheme. We describe it here more for Tpetra
/// developers and less for users.
///
/// \subsection Tpetra_KR_CrsMatrix_pack_disc Discussion
///
/// DistObject requires packing an object's entries as type
/// <tt>Packet</tt>, which is the first template parameter of
/// DistObject. Since sparse matrices have both values and
/// indices, we use <tt>Packet=char</tt> and pack them into
/// buffers of <tt>char</tt> (really "byte"). Indices are stored
/// as global indices, in case the source and target matrices have
/// different column Maps (or don't have a column Map yet).
///
/// Currently, we only pack values and column indices. Row
/// indices are stored implicitly as the local indices (LIDs) to
/// pack (see \c exportLIDs). This is because a DistObject
/// instance only has one Map, and currently we use the row Map
/// for CrsMatrix (and RowMatrix). This makes redistribution of
/// matrices with 2-D distributions less efficient, but it works
/// for now. This may change in the future.
///
/// On output, \c numPacketsPerLID[i] gives the number of bytes
/// used to pack local row \c exportLIDs[i] of \c this object (the
/// source object of an Import or Export). If \c offset is the
/// exclusive prefix sum-scan of \c numPacketsPerLID, then on
/// output, <tt>exports[offset[i] .. offset[i+1]]</tt>
/// (half-exclusive range) contains the packed entries for local
/// row \c exportLIDs[i].
///
/// Entries for each row use a "struct of arrays" pattern to match
/// how sparse matrices actually store their data. The number of
/// entries in the row goes first, all values go next, and all
/// column indices (stored as global indices) go last. Values and
/// column indices occur in the same order. Rows with zero
/// entries always take zero bytes (we do not store their number
/// of entries explicitly). This ensures sparsity of storage and
/// communication in case most rows are empty.
///
/// \subsection Tpetra_KR_CrsMatrix_pack_why Justification
///
/// GCC >= 4.9 and recent-future versions of the Intel compiler
/// implement stricter aliasing rules that forbid unaligned type
/// punning. If we were to pack as an "array of structs" -- in
/// this case, an array of <tt>(Scalar, GlobalOrdinal)</tt> pairs
/// -- then we would either have to pad each matrix entry for
/// alignment, or call memcpy twice per matrix entry to pack and
/// unpack. The "struct of arrays" storage scheme reduces the
/// padding requirement to a constant per row, or reduces the
/// number of memcpy calls to two per row.
///
/// We include the number of entries in each row in that row's
/// packed data, to make unpacking easier. This saves us from an
/// error-prone computation to find the number of entries from the
/// number of bytes. That computation gets even more difficult if
/// we have to introduce padding for alignment in the future.
/// Knowing the number of entries for each row also makes
/// parallelizing packing and unpacking easier.
///
/// \subsection Tpetra_KR_CrsMatrix_pack_assum Technical assumptions
///
/// <ul>
/// <li> \c sizeof(Scalar) says how much data were used to
/// represent a \c Scalar in its packed form. </li>
/// <li> \c sizeof returns the same value on all processes for
/// <tt>Scalar</tt>, \c LocalOrdinal, and \c GlobalOrdinal.
/// </li>
/// </ul>
virtual void
pack (const Teuchos::ArrayView<const LocalOrdinal>& exportLIDs,
Teuchos::Array<char>& exports,
const Teuchos::ArrayView<size_t>& numPacketsPerLID,
size_t& constantNumPackets,
Distributor& distor) const;
private:
/// \brief Pack data for the current row to send.
///
/// \param numEntOut [out] Where to write the number of entries in
/// the row.
/// \param valOut [out] Output (packed) array of matrix values.
/// \param indOut [out] Output (packed) array of matrix column
/// indices (as global indices).
/// \param numEnt [in] Number of entries in the row.
/// \param lclRow [in] Local index of the row.
///
/// This method does not allocate temporary storage. We intend
/// for this to be safe to call in a thread-parallel way at some
/// point, though it is currently not, due to thread safety issues
/// with Teuchos::RCP (always) and Teuchos::ArrayView (in a debug
/// build).
///
/// \return \c true if the method succeeded, else \c false.
bool
packRow (char* const numEntOut,
char* const valOut,
char* const indOut,
const size_t numEnt,
const LocalOrdinal lclRow) const;
/// \brief Unpack and combine received data for the current row.
///
/// \pre <tt>tmpSize >= numEnt</tt>
///
/// \param valInTmp [out] Temporary storage for values. Has
/// tmpSize entries.
/// \param indInTmp [out] Temporary storage for indices. Has
/// tmpSize entries.
/// \param tmpNumEnt [in] Number of entries (not bytes!) in each
/// of valInTmp and indInTmp.
/// \param valIn [in] Pointer to where values live in receive
/// buffer. Not necessarily aligned to sizeof(Scalar) (so must
/// memcpy into temporary storage).
/// \param indIn [out] Pointer to where indices live in receive
/// buffer. Not necessarily aligned to sizeof(GlobalOrdinal)
/// (so must memcpy into temporary storage).
/// \param numEnt [in] Number of entries in the row.
/// \param lclRow [in] Local index of the row.
/// \param combineMode [in] Combine mode (how to merge entries in
/// the same row with the same column index).
///
/// \return \c true if the method succeeded, else \c false.
bool
unpackRow (Scalar* const valInTmp,
GlobalOrdinal* const indInTmp,
const size_t tmpNumEnt,
const char* const valIn,
const char* const indIn,
const size_t numEnt,
const LocalOrdinal lclRow,
const Tpetra::CombineMode combineMode);
/// \brief Allocate space for pack() to pack entries to send.
///
/// \param exports [in/out] Pack buffer to (re)allocate.
/// \param totalNumEntries [out] Total number of entries to send.
/// \param exportLIDs [in] Local indices of the rows to send.
void
allocatePackSpace (Teuchos::Array<char>& exports,
size_t& totalNumEntries,
const Teuchos::ArrayView<const LocalOrdinal>& exportLIDs) const;
//@}
public:
//! Get the Kokkos local values
typename local_matrix_type::values_type getLocalValuesView () const {
return k_values1D_;
}
private:
// Friend declaration for nonmember function.
template<class CrsMatrixType>
friend Teuchos::RCP<CrsMatrixType>
importAndFillCompleteCrsMatrix (const Teuchos::RCP<const CrsMatrixType>& sourceMatrix,
const Import<typename CrsMatrixType::local_ordinal_type,
typename CrsMatrixType::global_ordinal_type,
typename CrsMatrixType::node_type>& importer,
const Teuchos::RCP<const Map<typename CrsMatrixType::local_ordinal_type,
typename CrsMatrixType::global_ordinal_type,
typename CrsMatrixType::node_type> >& domainMap,
const Teuchos::RCP<const Map<typename CrsMatrixType::local_ordinal_type,
typename CrsMatrixType::global_ordinal_type,
typename CrsMatrixType::node_type> >& rangeMap,
const Teuchos::RCP<Teuchos::ParameterList>& params);
// Friend declaration for nonmember function.
template<class CrsMatrixType>
friend Teuchos::RCP<CrsMatrixType>
exportAndFillCompleteCrsMatrix (const Teuchos::RCP<const CrsMatrixType>& sourceMatrix,
const Export<typename CrsMatrixType::local_ordinal_type,
typename CrsMatrixType::global_ordinal_type,
typename CrsMatrixType::node_type>& exporter,
const Teuchos::RCP<const Map<typename CrsMatrixType::local_ordinal_type,
typename CrsMatrixType::global_ordinal_type,
typename CrsMatrixType::node_type> >& domainMap,
const Teuchos::RCP<const Map<typename CrsMatrixType::local_ordinal_type,
typename CrsMatrixType::global_ordinal_type,
typename CrsMatrixType::node_type> >& rangeMap,
const Teuchos::RCP<Teuchos::ParameterList>& params);
public:
/// \brief Import from <tt>this</tt> to the given destination
/// matrix, and make the result fill complete.
///
/// If destMatrix.is_null(), this creates a new matrix as the
/// destination. (This is why destMatrix is passed in by nonconst
/// reference to RCP.) Otherwise it checks for "pristine" status
/// and throws if that is not the case. "Pristine" means that the
/// matrix has no entries and is not fill complete.
///
/// Use of the "non-member constructor" version of this method,
/// exportAndFillCompleteCrsMatrix, is preferred for user
/// applications.
///
/// \warning This method is intended for expert developer use
/// only, and should never be called by user code.
void
importAndFillComplete (Teuchos::RCP<CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic> >& destMatrix,
const import_type& importer,
const Teuchos::RCP<const map_type>& domainMap,
const Teuchos::RCP<const map_type>& rangeMap,
const Teuchos::RCP<Teuchos::ParameterList>& params = Teuchos::null) const;
/// \brief Export from <tt>this</tt> to the given destination
/// matrix, and make the result fill complete.
///
/// If destMatrix.is_null(), this creates a new matrix as the
/// destination. (This is why destMatrix is passed in by nonconst
/// reference to RCP.) Otherwise it checks for "pristine" status
/// and throws if that is not the case. "Pristine" means that the
/// matrix has no entries and is not fill complete.
///
/// Use of the "non-member constructor" version of this method,
/// exportAndFillCompleteCrsMatrix, is preferred for user
/// applications.
///
/// \warning This method is intended for expert developer use
/// only, and should never be called by user code.
void
exportAndFillComplete (Teuchos::RCP<CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic> >& destMatrix,
const export_type& exporter,
const Teuchos::RCP<const map_type>& domainMap = Teuchos::null,
const Teuchos::RCP<const map_type>& rangeMap = Teuchos::null,
const Teuchos::RCP<Teuchos::ParameterList>& params = Teuchos::null) const;
private:
/// \brief Transfer (e.g. Import/Export) from <tt>this</tt> to the
/// given destination matrix, and make the result fill complete.
///
/// If destMat.is_null(), this creates a new matrix, otherwise it
/// checks for "pristine" status and throws if that is not the
/// case. This method implements importAndFillComplete and
/// exportAndFillComplete, which in turn implemment the nonmember
/// "constructors" importAndFillCompleteCrsMatrix and
/// exportAndFillCompleteCrsMatrix. It's convenient to put those
/// nonmember constructors' implementations inside the CrsMatrix
/// class, so that we don't have to put much code in the _decl
/// header file.
///
/// The point of this method is to fuse three tasks:
///
/// 1. Create a destination matrix (CrsMatrix constructor)
/// 2. Import or Export this matrix to the destination matrix
/// 3. Call fillComplete on the destination matrix
///
/// Fusing these tasks can avoid some communication and work.
void
transferAndFillComplete (Teuchos::RCP<CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic> >& destMatrix,
const ::Tpetra::Details::Transfer<LocalOrdinal, GlobalOrdinal, Node>& rowTransfer,
const Teuchos::RCP<const map_type>& domainMap = Teuchos::null,
const Teuchos::RCP<const map_type>& rangeMap = Teuchos::null,
const Teuchos::RCP<Teuchos::ParameterList>& params = Teuchos::null) const;
// We forbid copy construction by declaring this method private
// and not implementing it.
CrsMatrix (const CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic>& rhs);
// We forbid assignment (operator=) by declaring this method
// private and not implementing it.
CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic>&
operator= (const CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic>& rhs);
/// \brief Like insertGlobalValues(), but with column filtering.
///
/// "Column filtering" means that if the matrix has a column Map,
/// then this method ignores entries in columns that are not in
/// the column Map.
///
/// See discussion in the documentation of getGlobalRowCopy()
/// about why we use \c Scalar and not \c impl_scalar_type here
/// for the input array type.
void
insertGlobalValuesFiltered (const GlobalOrdinal globalRow,
const Teuchos::ArrayView<const GlobalOrdinal>& indices,
const Teuchos::ArrayView<const Scalar>& values);
/// \brief Like insertLocalValues(), but with column filtering.
///
/// "Column filtering" means that if the matrix has a column Map,
/// then this method ignores entries in columns that are not in
/// the column Map.
///
/// See discussion in the documentation of getGlobalRowCopy()
/// about why we use \c Scalar and not \c impl_scalar_type here
/// for the input array type.
void
insertLocalValuesFiltered (const LocalOrdinal localRow,
const Teuchos::ArrayView<const LocalOrdinal>& indices,
const Teuchos::ArrayView<const Scalar>& values);
/// \brief Combine in the data using the given combine mode.
///
/// The copyAndPermute() and unpackAndCombine() methods use this
/// function to combine incoming entries from the source matrix
/// with the target matrix's current data. This method's behavior
/// depends on whether the target matrix (that is, this matrix)
/// has a static graph.
///
/// See discussion in the documentation of getGlobalRowCopy()
/// about why we use \c Scalar and not \c impl_scalar_type here
/// for the input array type.
void
combineGlobalValues (const GlobalOrdinal globalRowIndex,
const Teuchos::ArrayView<const GlobalOrdinal>& columnIndices,
const Teuchos::ArrayView<const Scalar>& values,
const Tpetra::CombineMode combineMode);
/// \brief Transform CrsMatrix entries, using global indices.
///
/// For every entry \f$A(i,j)\f$ to transform, if \f$v_{ij}\f$ is
/// the corresponding entry of the \c values array, then we apply
/// the binary function f to \f$A(i,j)\f$ as follows:
/// \f[
/// A(i,j) := f(A(i,j), v_{ij}).
/// \f]
/// For example, BinaryFunction = std::plus<Scalar> does the same
/// thing as sumIntoLocalValues(), and BinaryFunction =
/// project2nd<Scalar,Scalar> does the same thing as
/// replaceLocalValues().
///
/// \tparam BinaryFunction The type of binary function to apply.
/// std::binary_function is a model for this.
///
/// \param globalRow [in] (Global) index of the row to modify.
/// This row <i>must</t> be owned by the calling process.
///
/// \param indices [in] (Global) indices in the row to modify.
/// Indices not in the column Map (if the matrix already has a
/// column Map) and their corresponding values will be ignored.
///
/// \param values [in] Values to use for modification.
///
/// This method works whether indices are local or global.
/// However, it will cost more if indices are local, since it will
/// have to convert the local indices to global indices in that
/// case.
///
/// See discussion in the documentation of getGlobalRowCopy()
/// about why we use \c Scalar and not \c impl_scalar_type here
/// for the input array type.
template<class BinaryFunction>
LocalOrdinal
transformGlobalValues (GlobalOrdinal globalRow,
const Teuchos::ArrayView<const GlobalOrdinal>& indices,
const Teuchos::ArrayView<const Scalar>& values,
BinaryFunction f)
{
using Teuchos::Array;
using Teuchos::ArrayView;
typedef LocalOrdinal LO;
typedef GlobalOrdinal GO;
typedef impl_scalar_type ST;
typedef typename ArrayView<const GO>::size_type size_type;
if (! isFillActive ()) {
// Fill must be active in order to call this method.
return Teuchos::OrdinalTraits<LO>::invalid ();
}
else if (values.size () != indices.size ()) {
// The sizes of values and indices must match.
return Teuchos::OrdinalTraits<LO>::invalid ();
}
const LO lrow = this->getRowMap ()->getLocalElement (globalRow);
if (lrow == Teuchos::OrdinalTraits<LO>::invalid ()) {
// We don't own the row, so we're not allowed to modify its values.
return Teuchos::OrdinalTraits<LO>::invalid ();
}
if (staticGraph_.is_null ()) {
return Teuchos::OrdinalTraits<LO>::invalid ();
}
const crs_graph_type& graph = *staticGraph_;
RowInfo rowInfo = graph.getRowInfo (lrow);
if (indices.size () == 0) {
return static_cast<LO> (0);
}
else {
ArrayView<const ST> valsIn =
Teuchos::av_reinterpret_cast<const ST> (values);
ArrayView<ST> curVals = this->getViewNonConst (rowInfo);
if (isLocallyIndexed ()) {
// Convert the given global indices to local indices.
//
// FIXME (mfh 08 Jul 2014) Why can't we ask the graph to do
// that? It could do the conversions in place, so that we
// wouldn't need temporary storage.
const map_type& colMap = * (this->getColMap ());
const size_type numInds = indices.size ();
Array<LO> lclInds (numInds);
for (size_type k = 0; k < numInds; ++k) {
// There is no need to filter out indices not in the
// column Map. Those that aren't will be mapped to
// invalid(), which the graph's transformGlobalValues()
// will filter out (but not count in its return value).
lclInds[k] = colMap.getLocalElement (indices[k]);
}
return graph.template transformLocalValues<ST, BinaryFunction> (rowInfo,
curVals,
lclInds (),
valsIn, f);
}
else if (isGloballyIndexed ()) {
return graph.template transformGlobalValues<ST, BinaryFunction> (rowInfo,
curVals,
indices,
valsIn, f);
}
else {
// If the graph is neither locally nor globally indexed on
// the calling process, that means that the calling process
// can't possibly have any entries in the owned row. Thus,
// there are no entries to transform, so we return zero.
return static_cast<LO> (0);
}
}
}
private:
/// \brief Special case of insertGlobalValues for when globalRow
/// is <i>not<i> owned by the calling process.
///
/// See discussion in the documentation of getGlobalRowCopy()
/// about why we use \c Scalar and not \c impl_scalar_type here
/// for the input array type.
void
insertNonownedGlobalValues (const GlobalOrdinal globalRow,
const Teuchos::ArrayView<const GlobalOrdinal>& indices,
const Teuchos::ArrayView<const Scalar>& values);
//! Type of the DistObject specialization from which this class inherits.
typedef DistObject<char, LocalOrdinal, GlobalOrdinal, Node, classic> dist_object_type;
protected:
// useful typedefs
typedef Teuchos::OrdinalTraits<LocalOrdinal> OTL;
typedef Kokkos::Details::ArithTraits<impl_scalar_type> STS;
typedef Kokkos::Details::ArithTraits<mag_type> STM;
typedef MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic> MV;
typedef Vector<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic> V;
typedef crs_graph_type Graph;
// Enums
enum GraphAllocationStatus {
GraphAlreadyAllocated,
GraphNotYetAllocated
};
/// \brief Allocate values (and optionally indices) using the Node.
///
/// \param gas [in] If GraphNotYetAllocated, allocate the
/// indices of \c myGraph_ via \c allocateIndices(lg) before
/// allocating values.
///
/// \param lg [in] Argument passed into \c
/// myGraph_->allocateIndices(), if applicable.
///
/// \pre If the graph (that is, staticGraph_) indices are
/// already allocated, then gas must be GraphAlreadyAllocated.
/// Otherwise, gas must be GraphNotYetAllocated. We only
/// check for this precondition in debug mode.
///
/// \pre If the graph indices are not already allocated, then
/// the graph must be owned by the matrix.
void allocateValues (ELocalGlobal lg, GraphAllocationStatus gas);
/// \brief Sort the entries of each row by their column indices.
///
/// This only does anything if the graph isn't already sorted
/// (i.e., ! myGraph_->isSorted ()). This method is called in
/// fillComplete().
void sortEntries();
/// \brief Merge entries in each row with the same column indices.
///
/// This only does anything if the graph isn't already merged
/// (i.e., ! myGraph_->isMerged ()). This method is called in
/// fillComplete().
void mergeRedundantEntries();
/// \brief Clear matrix properties that require collectives.
///
/// This clears whatever computeGlobalConstants() (which see)
/// computed, in preparation for changes to the matrix. The
/// current implementation of this method does nothing.
///
/// This method is called in resumeFill().
void clearGlobalConstants();
/// \brief Compute matrix properties that require collectives.
///
/// The corresponding Epetra_CrsGraph method computes things
/// like the global number of nonzero entries, that require
/// collectives over the matrix's communicator. The current
/// Tpetra implementation of this method does nothing.
///
/// This method is called in fillComplete().
void computeGlobalConstants();
/// \brief Column Map MultiVector used in apply() and gaussSeidel().
///
/// This is a column Map MultiVector. It is used as the target of
/// the forward mode Import operation (if necessary) in apply()
/// and gaussSeidel(), and the source of the reverse mode Export
/// operation (if necessary) in these methods. Both of these
/// methods create this MultiVector on demand if needed, and reuse
/// it (if possible) for subsequent calls.
///
/// This is declared <tt>mutable</tt> because the methods in
/// question are const, yet want to cache the MultiVector for
/// later use.
mutable Teuchos::RCP<MV> importMV_;
/// \brief Row Map MultiVector used in apply().
///
/// This is a row Map MultiVector. It is uses as the source of
/// the forward mode Export operation (if necessary) in apply()
/// and gaussSeidel(), and the target of the reverse mode Import
/// operation (if necessary) in these methods. Both of these
/// methods create this MultiVector on demand if needed, and reuse
/// it (if possible) for subsequent calls.
///
/// This is declared <tt>mutable</tt> because the methods in
/// question are const, yet want to cache the MultiVector for
/// later use.
mutable Teuchos::RCP<MV> exportMV_;
/// \brief Create a (or fetch a cached) column Map MultiVector.
///
/// \param X_domainMap [in] A domain Map Multivector. The
/// returned MultiVector, if nonnull, will have the same number
/// of columns as Y_domainMap.
///
/// \param force [in] Force creating the MultiVector if it hasn't
/// been created already.
///
/// The \c force parameter is helpful when the domain Map and the
/// column Map are the same (so that normally we wouldn't need the
/// column Map MultiVector), but the following (for example)
/// holds:
///
/// 1. The kernel needs a constant stride input MultiVector, but
/// the given input MultiVector is not constant stride.
///
/// We don't test for the above in this method, because it depends
/// on the specific kernel.
Teuchos::RCP<MV>
getColumnMapMultiVector (const MV& X_domainMap,
const bool force = false) const;
/// \brief Create a (or fetch a cached) row Map MultiVector.
///
/// \param Y_rangeMap [in] A range Map Multivector. The returned
/// MultiVector, if nonnull, will have the same number of
/// columns as Y_rangeMap.
///
/// \param force [in] Force creating the MultiVector if it hasn't
/// been created already.
///
/// The \c force parameter is helpful when the range Map and the
/// row Map are the same (so that normally we wouldn't need the
/// row Map MultiVector), but one of the following holds:
///
/// 1. The kernel needs a constant stride output MultiVector,
/// but the given output MultiVector is not constant stride.
///
/// 2. The kernel does not permit aliasing of its input and output
/// MultiVector arguments, but they do alias each other.
///
/// We don't test for the above in this method, because it depends
/// on the specific kernel.
Teuchos::RCP<MV>
getRowMapMultiVector (const MV& Y_rangeMap,
const bool force = false) const;
//! Special case of apply() for <tt>mode == Teuchos::NO_TRANS</tt>.
void
applyNonTranspose (const MV& X_in,
MV& Y_in,
Scalar alpha,
Scalar beta) const;
//! Special case of apply() for <tt>mode != Teuchos::NO_TRANS</tt>.
void
applyTranspose (const MV& X_in,
MV& Y_in,
const Teuchos::ETransp mode,
Scalar alpha,
Scalar beta) const;
// matrix data accessors
/// \brief Constant view of all entries (including extra space) in
/// the given row.
///
/// Unlike getGlobalRowView(), this method returns
/// <tt>impl_scalar_type</tt>, not \c Scalar. This is because
/// this method is <i>not</i> part of the public interface of
/// CrsMatrix.
Teuchos::ArrayView<const impl_scalar_type> getView (RowInfo rowinfo) const;
/// \brief Nonconst view of all entries (including extra space) in
/// the given row.
///
/// Unlike getGlobalRowView(), this method returns
/// <tt>impl_scalar_type</tt>, not \c Scalar. This is because
/// this method is <i>not</i> part of the public interface of
/// CrsMatrix.
Teuchos::ArrayView<impl_scalar_type> getViewNonConst (RowInfo rowinfo);
/// \brief Fill data into the local matrix.
///
/// This method is only called in fillComplete(), and it is only
/// called if the graph's structure is already fixed (that is, if
/// the matrix does not own the graph).
void fillLocalMatrix (const Teuchos::RCP<Teuchos::ParameterList>& params);
/// \brief Fill data into the local graph and matrix.
///
/// This method is only called in fillComplete(), and it is only
/// called if the graph's structure is <i>not</i> already fixed
/// (that is, if the matrix <i>does</i> own the graph).
void fillLocalGraphAndMatrix (const Teuchos::RCP<Teuchos::ParameterList>& params);
//! Check that this object's state is sane; throw if it's not.
void checkInternalState () const;
/// \name (Global) graph pointers
///
/// We keep two graph pointers in order to maintain const
/// correctness. myGraph_ is a graph which we create internally.
/// Operations that change the sparsity structure also modify
/// myGraph_. If myGraph_ != null, then staticGraph_ == myGraph_
/// pointerwise (we set the pointers equal to each other when we
/// create myGraph_). myGraph_ is only null if this CrsMatrix was
/// created using the constructor with a const CrsGraph input
/// argument. In this case, staticGraph_ is set to the input
/// CrsGraph.
//@{
Teuchos::RCP<const Graph> staticGraph_;
Teuchos::RCP< Graph> myGraph_;
//@}
//! The local sparse matrix.
local_matrix_type lclMatrix_;
/// \name Sparse matrix values.
///
/// k_values1D_ represents the values assuming "1-D" compressed
/// sparse row storage. values2D_ represents the values as an
/// array of arrays, one (inner) array per row of the sparse
/// matrix.
///
/// Before allocation, both arrays are null. After allocation,
/// one is null. If static allocation, then values2D_ is null.
/// If dynamic allocation, then k_values1D_ is null. The
/// allocation always matches that of graph_, as the graph does
/// the allocation for the matrix.
//@{
typename local_matrix_type::values_type k_values1D_;
Teuchos::ArrayRCP<Teuchos::Array<impl_scalar_type> > values2D_;
//@}
/// \brief Status of the matrix's storage, when not in a
/// fill-complete state.
///
/// The phrase "When not in a fill-complete state" is important.
/// When the matrix is fill complete, it <i>always</i> uses 1-D
/// "packed" storage. However, if the "Optimize Storage"
/// parameter to fillComplete was false, the matrix may keep
/// unpacked 1-D or 2-D storage around and resume it on the next
/// resumeFill call.
Details::EStorageStatus storageStatus_;
//! Whether the matrix is fill complete.
bool fillComplete_;
/// \brief Nonlocal data added using insertGlobalValues().
///
/// These data are cleared by globalAssemble(), once it finishes
/// redistributing them to their owning processes.
///
/// For a given nonowned global row gRow which was given to
/// insertGlobalValues() or sumIntoGlobalValues(),
/// <tt>nonlocals_[gRow].first[k]</tt> is the column index of an
/// inserted entry, and <tt>nonlocals_[gRow].second[k]</tt> is its
/// value. Duplicate column indices for the same row index are
/// allowed and will be summed during globalAssemble().
///
/// This used to be a map from GlobalOrdinal to (GlobalOrdinal,
/// Scalar) pairs. This makes gcc issue a "note" about the ABI of
/// structs containing std::complex members changing. CDash
/// reports this as a warning, even though it's a "note," not a
/// warning. However, I don't want it to show up, so I rearranged
/// the map's value type to a pair of arrays, rather than an array
/// of pairs.
///
/// \note For Epetra developers: Tpetra::CrsMatrix corresponds
/// more to Epetra_FECrsMatrix than to Epetra_CrsMatrix. The
/// insertGlobalValues() method in Tpetra::CrsMatrix, unlike
/// its corresponding method in Epetra_CrsMatrix, allows
/// insertion into rows which are not owned by the calling
/// process. The globalAssemble() method redistributes these
/// to their owning processes.
std::map<GlobalOrdinal, std::pair<Teuchos::Array<GlobalOrdinal>,
Teuchos::Array<Scalar> > > nonlocals_;
/// \brief Cached Frobenius norm of the (global) matrix.
///
/// The value -1 means that the norm has not yet been computed, or
/// that the values in the matrix may have changed and the norm
/// must be recomputed.
mutable mag_type frobNorm_;
public:
// FIXME (mfh 24 Feb 2014) Is it _really_ necessary to make this a
// public inner class of CrsMatrix? It looks like it doesn't
// depend on any implementation details of CrsMatrix at all. It
// should really be declared and defined outside of CrsMatrix.
template<class ViewType, class OffsetViewType>
struct pack_functor {
typedef typename ViewType::execution_space execution_space;
ViewType src_;
ViewType dst_;
OffsetViewType src_offset_;
OffsetViewType dst_offset_;
typedef typename OffsetViewType::non_const_value_type scalar_index_type;
pack_functor (ViewType dst, ViewType src,
OffsetViewType dst_offset, OffsetViewType src_offset) :
src_ (src),
dst_ (dst),
src_offset_ (src_offset),
dst_offset_ (dst_offset)
{}
KOKKOS_INLINE_FUNCTION
void operator () (const LocalOrdinal row) const {
scalar_index_type srcPos = src_offset_(row);
const scalar_index_type dstEnd = dst_offset_(row+1);
scalar_index_type dstPos = dst_offset_(row);
for ( ; dstPos < dstEnd; ++dstPos, ++srcPos) {
dst_(dstPos) = src_(srcPos);
}
}
};
}; // class CrsMatrix
/** \brief Non-member function to create an empty CrsMatrix given a
row map and a non-zero profile.
\return A dynamically allocated (DynamicProfile) matrix with
specified number of nonzeros per row (defaults to zero).
\relatesalso CrsMatrix
*/
template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node, const bool classic = Node::classic>
Teuchos::RCP<CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic> >
createCrsMatrix (const Teuchos::RCP<const Map<LocalOrdinal, GlobalOrdinal, Node> >& map,
size_t maxNumEntriesPerRow = 0,
const Teuchos::RCP<Teuchos::ParameterList>& params = Teuchos::null)
{
typedef CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node, classic> matrix_type;
return Teuchos::rcp (new matrix_type (map, maxNumEntriesPerRow,
DynamicProfile, params));
}
/// \brief Nonmember CrsMatrix constructor that fuses Import and fillComplete().
/// \relatesalso CrsMatrix
/// \tparam CrsMatrixType A specialization of CrsMatrix.
///
/// A common use case is to create an empty destination CrsMatrix,
/// redistribute from a source CrsMatrix (by an Import or Export
/// operation), then call fillComplete() on the destination
/// CrsMatrix. This constructor fuses these three cases, for an
/// Import redistribution.
///
/// Fusing redistribution and fillComplete() exposes potential
/// optimizations. For example, it may make constructing the column
/// Map faster, and it may avoid intermediate unoptimized storage in
/// the destination CrsMatrix. These optimizations may improve
/// performance for specialized kernels like sparse matrix-matrix
/// multiply, as well as for redistributing data after doing load
/// balancing.
///
/// The resulting matrix is fill complete (in the sense of
/// isFillComplete()) and has optimized storage (in the sense of
/// isStorageOptimized()). By default, its domain Map is the domain
/// Map of the source matrix, and its range Map is the range Map of
/// the source matrix.
///
/// \warning If the target Map of the Import is a subset of the
/// source Map of the Import, then you cannot use the default
/// range Map. You should instead construct a nonoverlapping
/// version of the target Map and supply that as the nondefault
/// value of the range Map.
///
/// \param sourceMatrix [in] The source matrix from which to
/// import. The source of an Import must have a nonoverlapping
/// distribution.
///
/// \param importer [in] The Import instance containing a
/// precomputed redistribution plan. The source Map of the
/// Import must be the same as the rowMap of sourceMatrix unless
/// the "Reverse Mode" option on the params list, in which case
/// the targetMap of Import must match the rowMap of the sourceMatrix
///
/// \param domainMap [in] Domain Map of the returned matrix. If
/// null, we use the default, which is the domain Map of the
/// source matrix.
///
/// \param rangeMap [in] Range Map of the returned matrix. If
/// null, we use the default, which is the range Map of the
/// source matrix.
///
/// \param params [in/out] Optional list of parameters. If not
/// null, any missing parameters will be filled in with their
/// default values.
template<class CrsMatrixType>
Teuchos::RCP<CrsMatrixType>
importAndFillCompleteCrsMatrix (const Teuchos::RCP<const CrsMatrixType>& sourceMatrix,
const Import<typename CrsMatrixType::local_ordinal_type,
typename CrsMatrixType::global_ordinal_type,
typename CrsMatrixType::node_type>& importer,
const Teuchos::RCP<const Map<typename CrsMatrixType::local_ordinal_type,
typename CrsMatrixType::global_ordinal_type,
typename CrsMatrixType::node_type> >& domainMap = Teuchos::null,
const Teuchos::RCP<const Map<typename CrsMatrixType::local_ordinal_type,
typename CrsMatrixType::global_ordinal_type,
typename CrsMatrixType::node_type> >& rangeMap = Teuchos::null,
const Teuchos::RCP<Teuchos::ParameterList>& params = Teuchos::null)
{
Teuchos::RCP<CrsMatrixType> destMatrix;
sourceMatrix->importAndFillComplete (destMatrix,importer, domainMap, rangeMap, params);
return destMatrix;
}
/// \brief Nonmember CrsMatrix constructor that fuses Export and fillComplete().
/// \relatesalso CrsMatrix
/// \tparam CrsMatrixType A specialization of CrsMatrix.
///
/// For justification, see the documentation of
/// importAndFillCompleteCrsMatrix() (which is the Import analog of
/// this function).
///
/// The resulting matrix is fill complete (in the sense of
/// isFillComplete()) and has optimized storage (in the sense of
/// isStorageOptimized()). By default, its domain Map is the domain
/// Map of the source matrix, and its range Map is the range Map of
/// the source matrix.
///
/// \param sourceMatrix [in] The source matrix from which to
/// export. Its row Map may be overlapping, since the source of
/// an Export may be overlapping.
///
/// \param exporter [in] The Export instance containing a
/// precomputed redistribution plan. The source Map of the
/// Export must be the same as the row Map of sourceMatrix.
///
/// \param domainMap [in] Domain Map of the returned matrix. If
/// null, we use the default, which is the domain Map of the
/// source matrix.
///
/// \param rangeMap [in] Range Map of the returned matrix. If
/// null, we use the default, which is the range Map of the
/// source matrix.
///
/// \param params [in/out] Optional list of parameters. If not
/// null, any missing parameters will be filled in with their
/// default values.
template<class CrsMatrixType>
Teuchos::RCP<CrsMatrixType>
exportAndFillCompleteCrsMatrix (const Teuchos::RCP<const CrsMatrixType>& sourceMatrix,
const Export<typename CrsMatrixType::local_ordinal_type,
typename CrsMatrixType::global_ordinal_type,
typename CrsMatrixType::node_type>& exporter,
const Teuchos::RCP<const Map<typename CrsMatrixType::local_ordinal_type,
typename CrsMatrixType::global_ordinal_type,
typename CrsMatrixType::node_type> >& domainMap = Teuchos::null,
const Teuchos::RCP<const Map<typename CrsMatrixType::local_ordinal_type,
typename CrsMatrixType::global_ordinal_type,
typename CrsMatrixType::node_type> >& rangeMap = Teuchos::null,
const Teuchos::RCP<Teuchos::ParameterList>& params = Teuchos::null)
{
Teuchos::RCP<CrsMatrixType> destMatrix;
sourceMatrix->exportAndFillComplete (destMatrix,exporter, domainMap, rangeMap, params);
return destMatrix;
}
} // namespace Tpetra
/**
\example CrsMatrix_NonlocalAfterResume.hpp
\brief An example for inserting non-local entries into a
Tpetra::CrsMatrix using Tpetra::CrsMatrix::insertGlobalValues(),
with multiple calls to Tpetra::CrsMatrix::fillComplete().
*/
#endif // TPETRA_CRSMATRIX_DECL_HPP
|