This file is indexed.

/usr/include/trilinos/Tsqr.hpp is in libtrilinos-tpetra-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
//@HEADER
// ************************************************************************
//
//          Kokkos: Node API and Parallel Node Kernels
//              Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER

/// \file Tsqr.hpp
/// \brief Parallel Tall Skinny QR (TSQR) implementation
///
#ifndef __TSQR_Tsqr_hpp
#define __TSQR_Tsqr_hpp

#include <Tsqr_ApplyType.hpp>
#include <Tsqr_Matrix.hpp>
#include <Tsqr_MessengerBase.hpp>
#include <Tsqr_DistTsqr.hpp>
#include <Tsqr_SequentialTsqr.hpp>
#include <Tsqr_Util.hpp>

#include <Kokkos_MultiVector.hpp>
#include <Teuchos_as.hpp>
#include <Teuchos_ScalarTraits.hpp>
#include <Teuchos_SerialDenseMatrix.hpp>


namespace TSQR {

  /// \class Tsqr
  /// \brief Parallel Tall Skinny QR (TSQR) factorization
  /// \author Mark Hoemmen
  ///
  /// This class computes the parallel Tall Skinny QR (TSQR)
  /// factorization of a matrix distributed in block rows across one
  /// or more MPI processes.  The parallel critical path length for
  /// TSQR is independent of the number of columns in the matrix,
  /// unlike ScaLAPACK's comparable QR factorization (P_GEQR2),
  /// Modified Gram-Schmidt, or Classical Gram-Schmidt.
  ///
  /// \tparam LocalOrdinal Index type that can address all elements of
  ///   a matrix, when treated as a 1-D array.  That is, for A[i +
  ///   LDA*j], the index i + LDA*j must fit in a LocalOrdinal.
  ///
  /// \tparam Scalar The type of the matrix entries.
  ///
  /// \tparam NodeTsqrType The intranode (single-node) part of TSQR.
  ///   Defaults to \c SequentialTsqr, which provides a sequential
  ///   cache-blocked implementation.  Any class implementing the same
  ///   compile-time interface is valid.  We provide \c NodeTsqr as an
  ///   archetype of the "NodeTsqrType" concept, but it is not
  ///   necessary that NodeTsqrType derive from that abstract base
  ///   class.  Inheriting from \c NodeTsqr is useful, though, because
  ///   it provides default implementations of some routines that are
  ///   not performance-critical.
  ///
  /// \note TSQR only needs to know about the local ordinal type (used
  ///   to index matrix entries on a single node), not about the
  ///   global ordinal type (used to index matrix entries globally,
  ///   i.e., over all nodes).  For some distributed linear algebra
  ///   libraries, such as Epetra, the local and global ordinal types
  ///   are the same (int, in the case of Epetra).  For other
  ///   distributed linear algebra libraries, such as Tpetra, the
  ///   local and global ordinal types may be different.
  ///
  template<class LocalOrdinal,
           class Scalar,
           class NodeTsqrType = SequentialTsqr<LocalOrdinal, Scalar> >
  class Tsqr {
  public:
    typedef MatView<LocalOrdinal, Scalar> mat_view_type;
    typedef ConstMatView<LocalOrdinal, Scalar> const_mat_view_type;
    typedef Matrix<LocalOrdinal, Scalar> matrix_type;

    typedef Scalar scalar_type;
    typedef LocalOrdinal ordinal_type;
    typedef Teuchos::ScalarTraits<Scalar> STS;
    typedef typename STS::magnitudeType magnitude_type;

    typedef NodeTsqrType node_tsqr_type;
    typedef DistTsqr<LocalOrdinal, Scalar> dist_tsqr_type;
    typedef typename Teuchos::RCP<node_tsqr_type> node_tsqr_ptr;
    typedef typename Teuchos::RCP<dist_tsqr_type> dist_tsqr_ptr;
    /// \typedef rank_type
    /// \brief "Rank" here means MPI rank, not linear algebra rank.
    typedef typename dist_tsqr_type::rank_type rank_type;

    typedef typename node_tsqr_type::FactorOutput NodeOutput;
    typedef typename dist_tsqr_type::FactorOutput DistOutput;

    /// \typedef FactorOutput
    /// \brief Return value of \c factor().
    ///
    /// Part of the implicit representation of the Q factor returned
    /// by \c factor().  The other part of that representation is
    /// stored in the A matrix on output.
    typedef std::pair<NodeOutput, DistOutput> FactorOutput;

    /// \brief Constructor
    ///
    /// \param nodeTsqr [in/out] Previously initialized NodeTsqrType
    ///   object.  This takes care of the intranode part of TSQR.
    ///
    /// \param distTsqr [in/out] Previously initialized DistTsqrType
    ///   object.  This takes care of the internode part of TSQR.
    Tsqr (const node_tsqr_ptr& nodeTsqr,
          const dist_tsqr_ptr& distTsqr) :
      nodeTsqr_ (nodeTsqr),
      distTsqr_ (distTsqr)
    {}

    /// \brief Get the intranode part of TSQR.
    ///
    /// Sometimes we need this in order to do post-construction
    /// initialization.
    Teuchos::RCP<node_tsqr_type> getNodeTsqr () {
      return nodeTsqr_;
    }

    /// \brief Cache size hint in bytes used by the intranode part of TSQR.
    ///
    /// This value may differ from the cache size hint given to the
    /// constructor of the NodeTsqrType object, since that constructor
    /// input is merely a suggestion.
    size_t cache_size_hint() const { return nodeTsqr_->cache_size_hint(); }

    /// \brief Does the R factor have a nonnegative diagonal?
    ///
    /// Tsqr implements a QR factorization (of a distributed matrix).
    /// Some, but not all, QR factorizations produce an R factor whose
    /// diagonal may include negative entries.  This Boolean tells you
    /// whether Tsqr promises to compute an R factor whose diagonal
    /// entries are all nonnegative.
    ///
    bool QR_produces_R_factor_with_nonnegative_diagonal () const {
      // Tsqr computes an R factor with nonnegative diagonal, if and
      // only if all QR factorization steps (both intranode and
      // internode) produce an R factor with a nonnegative diagonal.
      return nodeTsqr_->QR_produces_R_factor_with_nonnegative_diagonal() &&
        distTsqr_->QR_produces_R_factor_with_nonnegative_diagonal();
    }

    /// \brief Compute QR factorization with explicit Q factor.
    ///
    /// This method computes the "thin" QR factorization, like
    /// Matlab's [Q,R] = qr(A,0), of a matrix A with more rows than
    /// columns.  Like Matlab, it computes the Q factor "explicitly,"
    /// that is, as a matrix represented in the same format as in the
    /// input matrix A (rather than the implicit representation
    /// returned by \c factor()).
    ///
    /// Calling this method may be faster than calling \c factor() and
    /// \c explicit_Q() in sequence, if you know that you only want
    /// the explicit version of the Q factor.  This method is
    /// especially intended for orthogonalizing the columns of a \c
    /// Tpetra::MultiVector. It can also be used for an \c
    /// Epetra_MultiVector, if you put each node's data in a \c
    /// KokkosClassic::MultiVector first. (This does not require copying.)
    ///
    /// \param A [in/out] On input: my node's part of the matrix to
    ///   factor; the matrix is distributed over the participating
    ///   processors.  If contiguousCacheBlocks is false, my node's
    ///   part of the matrix is stored in column-major order.
    ///   Otherwise, it is stored in the contiguously cache-blocked
    ///   format that would be computed by \c cache_block().  On
    ///   output: overwritten with garbage (part of the implicit Q
    ///   factor, which is not useful in this case).
    ///
    /// \param Q [out] On output: my node's part of the explicit Q
    ///   factor, stored in the same format as the input matrix A.
    ///
    /// \param R [out] On output: the R factor, which is square with
    ///   the same number of rows and columns as the number of columns
    ///   in A.  The R factor is replicated on all nodes.
    ///
    /// \param contiguousCacheBlocks [in] Whether cache blocks of A
    ///   (on input) and Q (on output) are stored contiguously.  If
    ///   you don't know what this means, set it to false.
    ///
    /// \param forceNonnegativeDiagonal [in] If true, then (if
    ///   necessary) do extra work (modifying both the Q and R
    ///   factors) in order to force the R factor to have a
    ///   nonnegative diagonal.
    template<class NodeType>
    void
    factorExplicit (KokkosClassic::MultiVector<Scalar, NodeType>& A,
                    KokkosClassic::MultiVector<Scalar, NodeType>& Q,
                    Teuchos::SerialDenseMatrix<LocalOrdinal, Scalar>& R,
                    const bool contiguousCacheBlocks,
                    const bool forceNonnegativeDiagonal=false)
    {
      using Teuchos::asSafe;

      // Tsqr currently likes LocalOrdinal ordinals, but
      // KokkosClassic::MultiVector has size_t ordinals.  Do conversions
      // here.
      //
      // Teuchos::asSafe() can do safe conversion (e.g., checking for
      // overflow when casting to a narrower integer type), if a
      // custom specialization is defined for
      // Teuchos::ValueTypeConversionTraits<size_t, LocalOrdinal>.
      // Otherwise, this has the same (potentially) unsafe effect as
      // static_cast<LocalOrdinal>(...) would have.
      const LocalOrdinal A_numRows = asSafe<LocalOrdinal> (A.getNumRows());
      const LocalOrdinal A_numCols = asSafe<LocalOrdinal> (A.getNumCols());
      const LocalOrdinal A_stride = asSafe<LocalOrdinal> (A.getStride());
      const LocalOrdinal Q_numRows = asSafe<LocalOrdinal> (Q.getNumRows());
      const LocalOrdinal Q_numCols = asSafe<LocalOrdinal> (Q.getNumCols());
      const LocalOrdinal Q_stride = asSafe<LocalOrdinal> (Q.getStride());

      // Sanity checks for matrix dimensions
      if (A_numRows < A_numCols) {
        std::ostringstream os;
        os << "In Tsqr::factorExplicit: input matrix A has " << A_numRows
           << " local rows, and " << A_numCols << " columns.  The input "
          "matrix must have at least as many rows on each processor as "
          "there are columns.";
        throw std::invalid_argument(os.str());
      } else if (A_numRows != Q_numRows) {
        std::ostringstream os;
        os << "In Tsqr::factorExplicit: input matrix A and output matrix Q "
          "must have the same number of rows.  A has " << A_numRows << " rows"
          " and Q has " << Q_numRows << " rows.";
        throw std::invalid_argument(os.str());
      } else if (R.numRows() < R.numCols()) {
        std::ostringstream os;
        os << "In Tsqr::factorExplicit: output matrix R must have at least "
          "as many rows as columns.  R has " << R.numRows() << " rows and "
           << R.numCols() << " columns.";
        throw std::invalid_argument(os.str());
      } else if (A_numCols != R.numCols()) {
        std::ostringstream os;
        os << "In Tsqr::factorExplicit: input matrix A and output matrix R "
          "must have the same number of columns.  A has " << A_numCols
           << " columns and R has " << R.numCols() << " columns.";
        throw std::invalid_argument(os.str());
      }

      // Check for quick exit, based on matrix dimensions
      if (Q_numCols == 0)
        return;

      // Hold on to nonconst views of A and Q.  This will make TSQR
      // correct (if perhaps inefficient) for all possible Kokkos Node
      // types, even GPU nodes.
      Teuchos::ArrayRCP<scalar_type> A_ptr = A.getValuesNonConst();
      Teuchos::ArrayRCP<scalar_type> Q_ptr = Q.getValuesNonConst();

      R.putScalar (STS::zero());
      NodeOutput nodeResults =
        nodeTsqr_->factor (A_numRows, A_numCols, A_ptr.getRawPtr(), A_stride,
                           R.values(), R.stride(), contiguousCacheBlocks);
      // FIXME (mfh 19 Oct 2010) Replace actions on raw pointer with
      // actions on the KokkosClassic::MultiVector or at least the ArrayRCP.
      nodeTsqr_->fill_with_zeros (Q_numRows, Q_numCols,
                                  Q_ptr.getRawPtr(), Q_stride,
                                  contiguousCacheBlocks);
      mat_view_type Q_rawView (Q_numRows, Q_numCols,
                              Q_ptr.getRawPtr(), Q_stride);
      mat_view_type Q_top_block =
        nodeTsqr_->top_block (Q_rawView, contiguousCacheBlocks);
      if (Q_top_block.nrows() < R.numCols()) {
        std::ostringstream os;
        os << "The top block of Q has too few rows.  This means that the "
           << "the intranode TSQR implementation has a bug in its top_block"
           << "() method.  The top block should have at least " << R.numCols()
           << " rows, but instead has only " << Q_top_block.ncols()
           << " rows.";
        throw std::logic_error (os.str());
      }
      {
        mat_view_type Q_top (R.numCols(), Q_numCols, Q_top_block.get(),
                            Q_top_block.lda());
        mat_view_type R_view (R.numRows(), R.numCols(), R.values(), R.stride());
        distTsqr_->factorExplicit (R_view, Q_top, forceNonnegativeDiagonal);
      }
      nodeTsqr_->apply (ApplyType::NoTranspose,
                        A_numRows, A_numCols, A_ptr.getRawPtr(), A_stride,
                        nodeResults, Q_numCols, Q_ptr.getRawPtr(), Q_stride,
                        contiguousCacheBlocks);

      // If necessary, force the R factor to have a nonnegative diagonal.
      if (forceNonnegativeDiagonal &&
          ! QR_produces_R_factor_with_nonnegative_diagonal()) {
        details::NonnegDiagForcer<LocalOrdinal, Scalar, STS::isComplex> forcer;
        mat_view_type Q_mine (Q_numRows, Q_numCols, Q_ptr.getRawPtr(), Q_stride);
        mat_view_type R_mine (R.numRows(), R.numCols(), R.values(), R.stride());
        forcer.force (Q_mine, R_mine);
      }

      // "Commit" the changes to the multivector.
      A_ptr = Teuchos::null;
      Q_ptr = Teuchos::null;
    }


    /// \brief Compute QR factorization with explicit Q factor: "raw"
    ///   arrays interface, for column-major data.
    ///
    /// If you want to use TSQR to orthogonalize a block of
    /// distributed vectors, and if you have your own data in raw
    /// arrays and don't want to know about KokkosClassic::MultiVector or
    /// Teuchos::SerialDenseMatrix, this method is for you.
    ///
    /// This method computes the "thin" QR factorization, like
    /// Matlab's [Q,R] = qr(A,0), of a matrix A with more rows than
    /// columns.  Like Matlab, it computes the Q factor "explicitly,"
    /// that is, as a matrix represented in the same format as in the
    /// input matrix A (rather than the implicit representation
    /// returned by factor()).  You may use this to orthogonalize a
    /// block of vectors which are the columns of A on input.
    ///
    /// Calling this method may be faster than calling factor() and
    /// explicit_Q() in sequence, if you know that you only want the
    /// explicit version of the Q factor.  This method is especially
    /// intended for orthogonalizing the columns of a distributed
    /// block of vectors.
    ///
    /// \warning No output array may alias any other input or output
    ///   array.  In particular, Q may <i>not</i> alias A.  If you try
    ///   this, you will certainly give you the wrong answer.
    ///
    /// \param numRows [in] Number of rows in my node's part of A.
    ///   Q must have the same number of rows as A on each node.
    /// \param numCols [in] Number of columns in A, Q, and R.
    /// \param A [in/out] On input: my node's part of the matrix to
    ///   factor; the matrix is distributed over the participating
    ///   processors.  My node's part of the matrix is stored in
    ///   column-major order with column stride LDA.  The columns of A
    ///   on input are the vectors to orthogonalize.  On output:
    ///   overwritten with garbage.
    /// \param LDA [in] Leading dimension (column stride) of my node's
    ///   part of A.
    /// \param Q [out] On output: my node's part of the explicit Q
    ///   factor.  My node's part of the matrix is stored in
    ///   column-major order with column stride LDQ (which may differ
    ///   from LDA).  Q may <i>not</i> alias A.
    /// \param LDQ [in] Leading dimension (column stride) of my node's
    ///   part of Q.
    /// \param R [out] On output: the R factor, which is square with
    ///   the same number of rows and columns as the number of columns
    ///   in A.  The R factor is replicated on all nodes.  It is
    ///   stored in column-major order with column stride LDR.
    /// \param LDR [in] Leading dimension (column stride) of my node's
    ///   part of R.
    /// \param forceNonnegativeDiagonal [in] If true, then (if
    ///   necessary) do extra work (modifying both the Q and R
    ///   factors) in order to force the R factor to have a
    ///   nonnegative diagonal.
    void
    factorExplicit (const LocalOrdinal numRows,
                    const LocalOrdinal numCols,
                    Scalar A[],
                    const LocalOrdinal LDA,
                    Scalar Q[],
                    const LocalOrdinal LDQ,
                    Scalar R[],
                    const LocalOrdinal LDR,
                    const bool forceNonnegativeDiagonal=false)
    {
      const bool contiguousCacheBlocks = false;

      // Sanity checks for matrix dimensions.
      if (numRows < numCols) {
        std::ostringstream os;
        os << "In Tsqr::factorExplicit: input matrix A has " << numRows
           << " local rows, and " << numCols << " columns.  The input "
          "matrix must have at least as many rows on each processor as "
          "there are columns.";
        throw std::invalid_argument (os.str ());
      }

      // Check for quick exit, based on matrix dimensions.
      if (numCols == 0) {
        return;
      }

      // Fill R initially with zeros.
      {
        Scalar* R_j = R;
        for (LocalOrdinal j = 0; j < numCols; ++j) {
          for (LocalOrdinal i = 0; i < numCols; ++i) {
            R_j[i] = STS::zero ();
          }
          R_j += LDR;
        }
      }
      // Compute the local QR factorization, in place in A, with the R
      // factor written to R.
      NodeOutput nodeResults =
        nodeTsqr_->factor (numRows, numCols, A, LDA, R, LDR,
                           contiguousCacheBlocks);
      // Prepare the output matrix Q by filling with zeros.
      nodeTsqr_->fill_with_zeros (numRows, numCols, Q, LDQ,
                                  contiguousCacheBlocks);
      // Wrap the output matrix Q in a "view."
      mat_view_type Q_rawView (numRows, numCols, Q, LDQ);
      // Wrap the uppermost cache block of Q.  We will need to extract
      // its numCols x numCols uppermost block below.  We can't just
      // extract the numCols x numCols top block from all of Q, in
      // case Q is arranged using contiguous cache blocks.
      mat_view_type Q_top_block =
        nodeTsqr_->top_block (Q_rawView, contiguousCacheBlocks);
      if (Q_top_block.nrows () < numCols) {
        std::ostringstream os;
        os << "The top block of Q has too few rows.  This means that the "
           << "the intranode TSQR implementation has a bug in its top_block"
           << "() method.  The top block should have at least " << numCols
           << " rows, but instead has only " << Q_top_block.ncols ()
           << " rows.";
        throw std::logic_error (os.str ());
      }
      // Use the numCols x numCols top block of Q and the local R
      // factor (computed above) to compute the distributed-memory
      // part of the QR factorization.
      {
        mat_view_type Q_top (numCols, numCols, Q_top_block.get(),
                            Q_top_block.lda());
        mat_view_type R_view (numCols, numCols, R, LDR);
        distTsqr_->factorExplicit (R_view, Q_top, forceNonnegativeDiagonal);
      }
      // Apply the local part of the Q factor to the result of the
      // distributed-memory QR factorization, to get the explicit Q
      // factor.
      nodeTsqr_->apply (ApplyType::NoTranspose,
                        numRows, numCols, A, LDA,
                        nodeResults, numCols, Q, LDQ,
                        contiguousCacheBlocks);

      // If necessary, and if the user asked, force the R factor to
      // have a nonnegative diagonal.
      if (forceNonnegativeDiagonal &&
          ! QR_produces_R_factor_with_nonnegative_diagonal ()) {
        details::NonnegDiagForcer<LocalOrdinal, Scalar, STS::isComplex> forcer;
        mat_view_type Q_mine (numRows, numCols, Q, LDQ);
        mat_view_type R_mine (numCols, numCols, R, LDR);
        forcer.force (Q_mine, R_mine);
      }
    }

    /// \brief Compute QR factorization of the global dense matrix A
    ///
    /// Compute the QR factorization of the tall and skinny dense
    /// matrix A.  The matrix A is distributed in a row block layout
    /// over all the MPI processes.  A_local contains the matrix data
    /// for this process.
    ///
    /// \param nrows_local [in] Number of rows of this node's local
    ///   component (A_local) of the matrix.  May differ on different
    ///   nodes.  Precondition: nrows_local >= ncols.
    ///
    /// \param ncols [in] Number of columns in the matrix to factor.
    ///   Should be the same on all nodes.
    ///   Precondition: nrows_local >= ncols.
    ///
    /// \param A_local [in,out] On input, this node's local component of
    ///   the matrix, stored as a general dense matrix in column-major
    ///   order.  On output, overwritten with an implicit representation
    ///   of the Q factor.
    ///
    /// \param lda_local [in] Leading dimension of A_local.
    ///   Precondition: lda_local >= nrows_local.
    ///
    /// \param R [out] The final R factor of the QR factorization of the
    ///   global matrix A.  An ncols by ncols upper triangular matrix with
    ///   leading dimension ldr.
    ///
    /// \param ldr [in] Leading dimension of the matrix R.
    ///
    /// \param contiguousCacheBlocks [in] Whether or not cache blocks
    ///   of A_local are stored contiguously.  The default value of
    ///   false means that A_local uses ordinary column-major
    ///   (Fortran-style) order.  Otherwise, the details of the format
    ///   depend on the specific NodeTsqrType.  Tsqr's cache_block()
    ///   and un_cache_block() methods may be used to convert between
    ///   cache-blocked and non-cache-blocked (column-major order)
    ///   formats.
    ///
    /// \return Part of the representation of the implicitly stored Q
    ///   factor.  It should be passed into apply() or explicit_Q() as
    ///   the "factorOutput" parameter.  The other part of the
    ///   implicitly stored Q factor is stored in A_local (the input
    ///   is overwritten).  Both parts go together.
    FactorOutput
    factor (const LocalOrdinal nrows_local,
            const LocalOrdinal ncols,
            Scalar A_local[],
            const LocalOrdinal lda_local,
            Scalar R[],
            const LocalOrdinal ldr,
            const bool contiguousCacheBlocks = false)
    {
      mat_view_type R_view (ncols, ncols, R, ldr);
      R_view.fill (STS::zero());
      NodeOutput nodeResults =
        nodeTsqr_->factor (nrows_local, ncols, A_local, lda_local,
                          R_view.get(), R_view.lda(),
                          contiguousCacheBlocks);
      DistOutput distResults = distTsqr_->factor (R_view);
      return std::make_pair (nodeResults, distResults);
    }

    /// \brief Apply Q factor to the global dense matrix C
    ///
    /// Apply the Q factor (computed by factor() and represented
    /// implicitly) to the global dense matrix C, consisting of all
    /// nodes' C_local matrices stacked on top of each other.
    ///
    /// \param [in] If "N", compute Q*C.  If "T", compute Q^T * C.
    ///   If "H" or "C", compute Q^H * C.  (The last option may not
    ///   be implemented in all cases.)
    ///
    /// \param nrows_local [in] Number of rows of this node's local
    ///   component (C_local) of the matrix C.  Should be the same on
    ///   this node as the nrows_local argument with which factor() was
    ///   called  Precondition: nrows_local >= ncols.
    ///
    /// \param ncols_Q [in] Number of columns in Q.  Should be the same
    ///   on all nodes.  Precondition: nrows_local >= ncols_Q.
    ///
    /// \param Q_local [in] Same as A_local output of factor()
    ///
    /// \param ldq_local [in] Same as lda_local of factor()
    ///
    /// \param factor_output [in] Return value of factor()
    ///
    /// \param ncols_C [in] Number of columns in C.  Should be the same
    ///   on all nodes.  Precondition: nrows_local >= ncols_C.
    ///
    /// \param C_local [in,out] On input, this node's local component of
    ///   the matrix C, stored as a general dense matrix in column-major
    ///   order.  On output, overwritten with this node's component of
    ///   op(Q)*C, where op(Q) = Q, Q^T, or Q^H.
    ///
    /// \param ldc_local [in] Leading dimension of C_local.
    ///   Precondition: ldc_local >= nrows_local.
    ///
    /// \param contiguousCacheBlocks [in] Whether or not the cache
    ///   blocks of Q and C are stored contiguously.
    ///
    void
    apply (const std::string& op,
           const LocalOrdinal nrows_local,
           const LocalOrdinal ncols_Q,
           const Scalar Q_local[],
           const LocalOrdinal ldq_local,
           const FactorOutput& factor_output,
           const LocalOrdinal ncols_C,
           Scalar C_local[],
           const LocalOrdinal ldc_local,
           const bool contiguousCacheBlocks = false)
    {
      ApplyType applyType (op);

      // This determines the order in which we apply the intranode
      // part of the Q factor vs. the internode part of the Q factor.
      const bool transposed = applyType.transposed();

      // View of this node's local part of the matrix C.
      mat_view_type C_view (nrows_local, ncols_C, C_local, ldc_local);

      // Identify top ncols_C by ncols_C block of C_local.
      // top_block() will set C_top_view to have the correct leading
      // dimension, whether or not cache blocks are stored
      // contiguously.
      //
      // C_top_view is the topmost cache block of C_local.  It has at
      // least as many rows as columns, but it likely has more rows
      // than columns.
      mat_view_type C_view_top_block =
        nodeTsqr_->top_block (C_view, contiguousCacheBlocks);

      // View of the topmost ncols_C by ncols_C block of C.
      mat_view_type C_top_view (ncols_C, ncols_C, C_view_top_block.get(),
                                C_view_top_block.lda());

      if (! transposed) {
        // C_top (small compact storage) gets a deep copy of the top
        // ncols_C by ncols_C block of C_local.
        matrix_type C_top (C_top_view);

        // Compute in place on all processors' C_top blocks.
        distTsqr_->apply (applyType, C_top.ncols(), ncols_Q, C_top.get(),
                          C_top.lda(), factor_output.second);

        // Copy the result from C_top back into the top ncols_C by
        // ncols_C block of C_local.
        deep_copy (C_top_view, C_top);

        // Apply the local Q factor (in Q_local and
        // factor_output.first) to C_local.
        nodeTsqr_->apply (applyType, nrows_local, ncols_Q,
                          Q_local, ldq_local, factor_output.first,
                          ncols_C, C_local, ldc_local,
                          contiguousCacheBlocks);
      }
      else {
        // Apply the (transpose of the) local Q factor (in Q_local
        // and factor_output.first) to C_local.
        nodeTsqr_->apply (applyType, nrows_local, ncols_Q,
                          Q_local, ldq_local, factor_output.first,
                          ncols_C, C_local, ldc_local,
                          contiguousCacheBlocks);

        // C_top (small compact storage) gets a deep copy of the top
        // ncols_C by ncols_C block of C_local.
        matrix_type C_top (C_top_view);

        // Compute in place on all processors' C_top blocks.
        distTsqr_->apply (applyType, ncols_C, ncols_Q, C_top.get(),
                          C_top.lda(), factor_output.second);

        // Copy the result from C_top back into the top ncols_C by
        // ncols_C block of C_local.
        deep_copy (C_top_view, C_top);
      }
    }

    /// \brief Compute the explicit Q factor from factor()
    ///
    /// Compute the explicit version of the Q factor computed by
    /// factor() and represented implicitly (via Q_local_in and
    /// factor_output).
    ///
    /// \param nrows_local [in] Number of rows of this node's local
    ///   component (Q_local_in) of the matrix Q_local_in.  Also, the
    ///   number of rows of this node's local component (Q_local_out) of
    ///   the output matrix.  Should be the same on this node as the
    ///   nrows_local argument with which factor() was called.
    ///   Precondition: nrows_local >= ncols_Q_in.
    ///
    /// \param ncols_Q_in [in] Number of columns in the original matrix
    ///   A, whose explicit Q factor we are computing.  Should be the
    ///   same on all nodes.  Precondition: nrows_local >= ncols_Q_in.
    ///
    /// \param Q_local_in [in] Same as A_local output of factor().
    ///
    /// \param ldq_local_in [in] Same as lda_local of factor()
    ///
    /// \param factorOutput [in] Return value of factor().
    ///
    /// \param ncols_Q_out [in] Number of columns of the explicit Q
    ///   factor to compute.  Should be the same on all nodes.
    ///
    /// \param Q_local_out [out] This node's component of the Q factor
    ///   (in explicit form).
    ///
    /// \param ldq_local_out [in] Leading dimension of Q_local_out.
    ///
    /// \param contiguousCacheBlocks [in] Whether or not cache blocks
    ///   in Q_local_in and Q_local_out are stored contiguously.
    void
    explicit_Q (const LocalOrdinal nrows_local,
                const LocalOrdinal ncols_Q_in,
                const Scalar Q_local_in[],
                const LocalOrdinal ldq_local_in,
                const FactorOutput& factorOutput,
                const LocalOrdinal ncols_Q_out,
                Scalar Q_local_out[],
                const LocalOrdinal ldq_local_out,
                const bool contiguousCacheBlocks = false)
    {
      nodeTsqr_->fill_with_zeros (nrows_local, ncols_Q_out, Q_local_out,
                                  ldq_local_out, contiguousCacheBlocks);
      // "Rank" here means MPI rank, not linear algebra rank.
      const rank_type myRank = distTsqr_->rank();
      if (myRank == 0) {
        // View of this node's local part of the matrix Q_out.
        mat_view_type Q_out_view (nrows_local, ncols_Q_out,
                                  Q_local_out, ldq_local_out);

        // View of the topmost cache block of Q_out.  It is
        // guaranteed to have at least as many rows as columns.
        mat_view_type Q_out_top =
          nodeTsqr_->top_block (Q_out_view, contiguousCacheBlocks);

        // Fill (topmost cache block of) Q_out with the first
        // ncols_Q_out columns of the identity matrix.
        for (ordinal_type j = 0; j < ncols_Q_out; ++j) {
          Q_out_top(j, j) = Scalar (1);
        }
      }
      apply ("N", nrows_local,
             ncols_Q_in, Q_local_in, ldq_local_in, factorOutput,
             ncols_Q_out, Q_local_out, ldq_local_out,
             contiguousCacheBlocks);
    }

    /// \brief Compute Q*B
    ///
    /// Compute matrix-matrix product Q*B, where Q is nrows by ncols
    /// and B is ncols by ncols.  Respect cache blocks of Q.
    void
    Q_times_B (const LocalOrdinal nrows,
               const LocalOrdinal ncols,
               Scalar Q[],
               const LocalOrdinal ldq,
               const Scalar B[],
               const LocalOrdinal ldb,
               const bool contiguousCacheBlocks = false) const
    {
      // This requires no internode communication.  However, the work
      // is not redundant, since each MPI process has a different Q.
      nodeTsqr_->Q_times_B (nrows, ncols, Q, ldq, B, ldb,
                           contiguousCacheBlocks);
      // We don't need a barrier after this method, unless users are
      // doing mean MPI_Get() things.
    }

    /// \brief Reveal the rank of the R factor, using the SVD.
    ///
    /// Compute the singular value decomposition (SVD) of the R
    /// factor: \f$R = U \Sigma V^*\f$, not in place.  Use the
    /// resulting singular values to compute the numerical rank of R,
    /// with respect to the relative tolerance tol.  If R is full
    /// rank, return without modifying R.  If R is not full rank,
    /// overwrite R with \f$\Sigma \cdot V^*\f$.
    ///
    /// \return Numerical rank of R: 0 <= rank <= ncols.
    LocalOrdinal
    reveal_R_rank (const LocalOrdinal ncols,
                   Scalar R[],
                   const LocalOrdinal ldr,
                   Scalar U[],
                   const LocalOrdinal ldu,
                   const magnitude_type& tol) const
    {
      // Forward the request to the intranode TSQR implementation.
      // Currently, this work is performed redundantly on all MPI
      // processes, without communication or agreement.
      //
      // FIXME (mfh 26 Aug 2010) This be a problem if your cluster is
      // heterogeneous, because then you might obtain different
      // integer rank results.  This is because heterogeneous nodes
      // might each compute the rank-revealing decomposition with
      // slightly different rounding error.
      return nodeTsqr_->reveal_R_rank (ncols, R, ldr, U, ldu, tol);
    }

    /// \brief Rank-revealing decomposition
    ///
    /// Using the R factor and explicit Q factor from
    /// factorExplicit(), compute the singular value decomposition
    /// (SVD) of R (\f$R = U \Sigma V^*\f$).  If R is full rank (with
    /// respect to the given relative tolerance tol), don't change Q
    /// or R.  Otherwise, compute \f$Q := Q \cdot U\f$ and \f$R :=
    /// \Sigma V^*\f$ in place (the latter may be no longer upper
    /// triangular).
    ///
    /// \param Q [in/out] On input: explicit Q factor computed by
    ///   factorExplicit().  (Must be an orthogonal resp. unitary
    ///   matrix.)  On output: If R is of full numerical rank with
    ///   respect to the tolerance tol, Q is unmodified.  Otherwise, Q
    ///   is updated so that the first rank columns of Q are a basis
    ///   for the column space of A (the original matrix whose QR
    ///   factorization was computed by factorExplicit()).  The
    ///   remaining columns of Q are a basis for the null space of A.
    ///
    /// \param R [in/out] On input: ncols by ncols upper triangular
    ///   matrix with leading dimension ldr >= ncols.  On output: if
    ///   input is full rank, R is unchanged on output.  Otherwise, if
    ///   \f$R = U \Sigma V^*\f$ is the SVD of R, on output R is
    ///   overwritten with $\Sigma \cdot V^*$.  This is also an ncols by
    ///   ncols matrix, but may not necessarily be upper triangular.
    ///
    /// \param tol [in] Relative tolerance for computing the numerical
    ///   rank of the matrix R.
    ///
    /// \param contiguousCacheBlocks [in] Whether or not the cache
    ///   blocks of Q are stored contiguously.  Defaults to false,
    ///   which means that Q uses the ordinary column-major layout on
    ///   each MPI process.
    ///
    /// \return Rank \f$r\f$ of R: \f$ 0 \leq r \leq ncols\f$.
    ///
    template<class NodeType>
    LocalOrdinal
    revealRank (KokkosClassic::MultiVector<Scalar, NodeType>& Q,
                Teuchos::SerialDenseMatrix<LocalOrdinal, Scalar>& R,
                const magnitude_type& tol,
                const bool contiguousCacheBlocks = false) const
    {
      const LocalOrdinal nrows = static_cast<LocalOrdinal> (Q.getNumRows());
      const LocalOrdinal ncols = static_cast<LocalOrdinal> (Q.getNumCols());
      const LocalOrdinal ldq = static_cast<LocalOrdinal> (Q.getStride());
      Teuchos::ArrayRCP<Scalar> Q_ptr = Q.getValuesNonConst();

      // Take the easy exit if available.
      if (ncols == 0)
        return 0;

      //
      // FIXME (mfh 16 Jul 2010) We _should_ compute the SVD of R (as
      // the copy B) on Proc 0 only.  This would ensure that all
      // processors get the same SVD and rank (esp. in a heterogeneous
      // computing environment).  For now, we just do this computation
      // redundantly, and hope that all the returned rank values are
      // the same.
      //
      matrix_type U (ncols, ncols, STS::zero());
      const ordinal_type rank =
        reveal_R_rank (ncols, R.values(), R.stride(),
                       U.get(), U.lda(), tol);
      if (rank < ncols)
        {
          // cerr << ">>> Rank of R: " << rank << " < ncols=" << ncols << endl;
          // cerr << ">>> Resulting U:" << endl;
          // print_local_matrix (cerr, ncols, ncols, R, ldr);
          // cerr << endl;

          // If R is not full rank: reveal_R_rank() already computed
          // the SVD \f$R = U \Sigma V^*\f$ of (the input) R, and
          // overwrote R with \f$\Sigma V^*\f$.  Now, we compute \f$Q
          // := Q \cdot U\f$, respecting cache blocks of Q.
          Q_times_B (nrows, ncols, Q_ptr.getRawPtr(), ldq,
                     U.get(), U.lda(), contiguousCacheBlocks);
        }
      return rank;
    }

    /// \brief Cache-block A_in into A_out.
    ///
    /// Cache-block the given A_in matrix, writing the results to
    /// A_out.
    void
    cache_block (const LocalOrdinal nrows_local,
                 const LocalOrdinal ncols,
                 Scalar A_local_out[],
                 const Scalar A_local_in[],
                 const LocalOrdinal lda_local_in) const
    {
      nodeTsqr_->cache_block (nrows_local, ncols,
                              A_local_out,
                              A_local_in, lda_local_in);
    }

    /// \brief Un-cache-block A_in into A_out.
    ///
    /// "Un"-cache-block the given A_in matrix, writing the results to
    /// A_out.
    void
    un_cache_block (const LocalOrdinal nrows_local,
                    const LocalOrdinal ncols,
                    Scalar A_local_out[],
                    const LocalOrdinal lda_local_out,
                    const Scalar A_local_in[]) const
    {
      nodeTsqr_->un_cache_block (nrows_local, ncols,
                                 A_local_out, lda_local_out,
                                 A_local_in);
    }

  private:
    node_tsqr_ptr nodeTsqr_;
    dist_tsqr_ptr distTsqr_;
  }; // class Tsqr

} // namespace TSQR

#endif // __TSQR_Tsqr_hpp