/usr/include/trilinos/Tsqr_CacheBlocker.hpp is in libtrilinos-tpetra-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 | //@HEADER
// ************************************************************************
//
// Kokkos: Node API and Parallel Node Kernels
// Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
#ifndef __TSQR_CacheBlocker_hpp
#define __TSQR_CacheBlocker_hpp
#include <Tsqr_CacheBlockingStrategy.hpp>
#include <Tsqr_MatView.hpp>
#include <Tsqr_Util.hpp>
#include <iterator>
#include <sstream>
#include <stdexcept>
namespace TSQR {
/// \class CacheBlocker
/// \brief Break a tall skinny matrix by rows into cache blocks.
/// \author Mark Hoemmen
///
/// A CacheBlocker uses a particular cache blocking strategy to
/// partition an nrows by ncols matrix by rows into cache blocks.
/// The entries in a cache block may be stored contiguously, or as
/// non-contiguous partitions of a matrix stored conventionally (in
/// column-major order).
///
/// The CacheBlocker blocks any matrix with the same number of rows
/// in the same way, regardless of the number of columns (the cache
/// blocking strategy's number of columns is set on construction).
/// This is useful for TSQR's apply() routine, which requires that
/// the output matrix C be blocked in the same way as the input
/// matrix Q (in which the Q factor is stored implicitly).
template<class Ordinal, class Scalar>
class CacheBlocker {
private:
typedef MatView<Ordinal, Scalar> mat_view_type;
typedef ConstMatView<Ordinal, Scalar> const_mat_view_type;
void
validate ()
{
if (nrows_cache_block_ < ncols_)
{
std::ostringstream os;
os << "The typical cache block size is too small. Only "
<< nrows_cache_block_ << " rows fit, but every cache block needs "
"at least as many rows as the number of columns " << ncols_
<< " in the matrix.";
throw std::logic_error (os.str());
}
}
public:
/// \brief Constructor
///
/// \param num_rows Number of rows in the matrix to block.
/// \param num_cols Number of columns in the matrix to block.
/// \param strategy Cache blocking strategy object (passed by copy).
///
/// \note The CacheBlocker's number of columns may differ from the
/// number of columns associated with the cache blocking
/// strategy. The strategy uses a fixed number of columns for
/// all matrices with the same number of rows, so that it blocks
/// all such matrices in the same way (at the same row indices).
/// This is useful for TSQR's apply() and explicit_Q() methods.
CacheBlocker (const Ordinal num_rows,
const Ordinal num_cols,
const CacheBlockingStrategy<Ordinal, Scalar>& strategy) :
nrows_ (num_rows),
ncols_ (num_cols),
strategy_ (strategy),
nrows_cache_block_ (strategy_.cache_block_num_rows (ncols()))
{
validate ();
}
//! Default constructor, so that CacheBlocker is DefaultConstructible.
CacheBlocker () :
nrows_ (0),
ncols_ (0),
nrows_cache_block_ (strategy_.cache_block_num_rows (ncols()))
{}
//! Copy constructor
CacheBlocker (const CacheBlocker& rhs) :
nrows_ (rhs.nrows()),
ncols_ (rhs.ncols()),
strategy_ (rhs.strategy_),
nrows_cache_block_ (rhs.nrows_cache_block_)
{}
//! Assignment operator
CacheBlocker& operator= (const CacheBlocker& rhs) {
nrows_ = rhs.nrows();
ncols_ = rhs.ncols();
strategy_ = rhs.strategy_;
nrows_cache_block_ = rhs.nrows_cache_block_;
return *this;
}
//! Cache size hint (in bytes).
size_t cache_size_hint () const { return strategy_.cache_size_hint(); }
//! Number of rows in the matrix to block.
Ordinal nrows () const { return nrows_; }
//! Number of columns in the matrix to block.
Ordinal ncols () const { return ncols_; }
/// \brief Split A in place into [A_top; A_rest].
///
/// Return the topmost cache block A_top of A, and modify A in
/// place to be the "rest" of the matrix A_rest.
///
/// \param A [in/out] On input: view of the matrix to split.
/// On output: the "rest" of the matrix. If there is only
/// one cache block, A_top contains all of the matrix and
/// A is empty on output.
/// \param contiguous_cache_blocks [in] Whether cache blocks in
/// the matrix A are stored contiguously (default is false).
///
/// \return View of the topmost cache block A_top.
///
/// \note The number of rows in A_top depends on the number of
/// columns with which this CacheBlocker was set up (rather than
/// the number of columns in A, which may not be the same). The
/// idea is to have the number and distribution of rows in the
/// cache blocks be the same as the original nrows() by ncols()
/// matrix with which this CacheBlocker was initialized.
template< class MatrixViewType >
MatrixViewType
split_top_block (MatrixViewType& A, const bool contiguous_cache_blocks) const
{
typedef typename MatrixViewType::ordinal_type ordinal_type;
const ordinal_type nrows_top =
strategy_.top_block_split_nrows (A.nrows(), ncols(),
nrows_cache_block());
// split_top() sets A to A_rest, and returns A_top.
return A.split_top (nrows_top, contiguous_cache_blocks);
}
/// \brief View of the topmost cache block of A.
///
/// The matrix view A is copied so the view itself won't be modified.
///
/// \param A [in] View of the matrix to block.
/// \param contiguous_cache_blocks [in] Whether cache blocks in
/// the matrix A are stored contiguously (default is false).
///
/// \return View of the topmost cache block of A.
template< class MatrixViewType >
MatrixViewType
top_block (const MatrixViewType& A, const bool contiguous_cache_blocks) const
{
typedef typename MatrixViewType::ordinal_type ordinal_type;
// Ignore the number of columns in A, since we want to block all
// matrices using the same cache blocking strategy.
const ordinal_type nrows_top =
strategy_.top_block_split_nrows (A.nrows(), ncols(),
nrows_cache_block());
MatrixViewType A_copy (A);
return A_copy.split_top (nrows_top, contiguous_cache_blocks);
}
/// \brief Split A in place into [A_rest; A_bot].
///
/// Return the bottommost cache block A_bot of A, and modify A in
/// place to be the "rest" of the matrix A_rest.
///
/// \param A [in/out] On input: view of the matrix to split. On
/// output: the "rest" of the matrix. If there is only one
/// cache block, A_bot contains all of the matrix and A is empty
/// on output.
/// \param contiguous_cache_blocks [in] Whether cache blocks in
/// the matrix A are stored contiguously (default is false).
///
/// \return View of the bottommost cache block A_bot.
///
template< class MatrixViewType >
MatrixViewType
split_bottom_block (MatrixViewType& A, const bool contiguous_cache_blocks) const
{
typedef typename MatrixViewType::ordinal_type ordinal_type;
// Ignore the number of columns in A, since we want to block all
// matrices using the same cache blocking strategy.
const ordinal_type nrows_bottom =
strategy_.bottom_block_split_nrows (A.nrows(), ncols(),
nrows_cache_block());
// split_bottom() sets A to A_rest, and returns A_bot.
return A.split_bottom (nrows_bottom, contiguous_cache_blocks);
}
/// \brief Fill the matrix A with zeros, respecting cache blocks.
///
/// A specialization of this method for a particular
/// MatrixViewType will only compile if MatrixViewType has a
/// method "fill(const Scalar)" or "fill(const Scalar&)". The
/// intention is that the method be non-const and that it fill in
/// the entries of the matrix with Scalar(0).
///
/// \param A [in/out] View of the matrix to fill with zeros.
///
/// \param contiguous_cache_blocks [in] Whether the cache blocks
/// in A are stored contiguously.
///
template<class MatrixViewType>
void
fill_with_zeros (MatrixViewType A,
const bool contiguous_cache_blocks) const
{
// Note: if the cache blocks are stored contiguously, A.lda()
// won't be the correct leading dimension of A, but it won't
// matter: we only ever operate on A_cur here, and A_cur's
// leading dimension is set correctly by split_top_block().
while (! A.empty())
{
// This call modifies the matrix view A, but that's OK since
// we passed the input view by copy, not by reference.
MatrixViewType A_cur = split_top_block (A, contiguous_cache_blocks);
A_cur.fill (Scalar(0));
}
}
/// \brief Fill the matrix A with zeros, respecting cache blocks.
///
/// This version of the method takes a raw pointer and matrix
/// dimensions, rather than a matrix view object. If
/// contiguous_cache_blocks==false, the matrix is stored either in
/// column-major order with leading dimension lda; else, the
/// matrix is stored in cache blocks, with each cache block's
/// entries stored contiguously in column-major order.
///
/// \param num_rows [in] Number of rows in the matrix A.
/// \param num_cols [in] Number of columns in the matrix A.
/// \param A [out] The matrix to fill with zeros.
/// \param lda [in] Leading dimension (a.k.a. stride) of the
/// matrix A.
/// \param contiguous_cache_blocks [in] Whether the cache blocks
/// in A are stored contiguously.
void
fill_with_zeros (const Ordinal num_rows,
const Ordinal num_cols,
Scalar A[],
const Ordinal lda,
const bool contiguous_cache_blocks) const
{
// We say "A_rest" because it points to the remaining part of
// the matrix left to process; at the beginning, the "remaining"
// part is the whole matrix, but that will change as the
// algorithm progresses.
//
// Note: if the cache blocks are stored contiguously, lda won't
// be the correct leading dimension of A, but it won't matter:
// we only ever operate on A_cur here, and A_cur's leading
// dimension is set correctly by A_rest.split_top().
mat_view_type A_rest (num_rows, num_cols, A, lda);
while (! A_rest.empty())
{
// This call modifies A_rest.
mat_view_type A_cur = split_top_block (A_rest, contiguous_cache_blocks);
A_cur.fill (Scalar(0));
}
}
/// \brief Cache-block the given A_in matrix into A_out.
///
/// Given an nrows by ncols (with nrows >= ncols) matrix A_in,
/// stored in column-major order with leading dimension lda_in (>=
/// nrows), copy it into A_out in a cache-blocked row block
/// format. Each cache block is a matrix in column-major order,
/// and the elements of a cache block are stored consecutively in
/// A_out. The number of rows in each cache block depends on the
/// cache-blocking strategy that this CacheBlocker uses.
///
/// \param num_rows [in] Total number of rows in the matrices A_in and A_out
/// \param num_cols [in] Number of columns in the matrices A_in and A_out
/// \param A_out [out] nrows*ncols contiguous storage into which to write
/// the cache-blocked output matrix.
/// \param A_in [in] nrows by ncols matrix, stored in column-major
/// order with leading dimension lda_in >= nrows
/// \param lda_in [in] Leading dimension of the matrix A_in
void
cache_block (const Ordinal num_rows,
const Ordinal num_cols,
Scalar A_out[],
const Scalar A_in[],
const Ordinal lda_in) const
{
// We say "*_rest" because it points to the remaining part of
// the matrix left to cache block; at the beginning, the
// "remaining" part is the whole matrix, but that will change as
// the algorithm progresses.
const_mat_view_type A_in_rest (num_rows, num_cols, A_in, lda_in);
// Leading dimension doesn't matter since A_out will be cache blocked.
mat_view_type A_out_rest (num_rows, num_cols, A_out, lda_in);
while (! A_in_rest.empty())
{
if (A_out_rest.empty())
throw std::logic_error("A_out_rest is empty, but A_in_rest is not");
// This call modifies A_in_rest.
const_mat_view_type A_in_cur = split_top_block (A_in_rest, false);
// This call modifies A_out_rest.
mat_view_type A_out_cur = split_top_block (A_out_rest, true);
copy_matrix (A_in_cur.nrows(), num_cols, A_out_cur.get(),
A_out_cur.lda(), A_in_cur.get(), A_in_cur.lda());
}
}
//! "Un"-cache-block the given A_in matrix into A_out.
void
un_cache_block (const Ordinal num_rows,
const Ordinal num_cols,
Scalar A_out[],
const Ordinal lda_out,
const Scalar A_in[]) const
{
// We say "*_rest" because it points to the remaining part of
// the matrix left to cache block; at the beginning, the
// "remaining" part is the whole matrix, but that will change as
// the algorithm progresses.
//
// Leading dimension doesn't matter since A_in is cache blocked.
const_mat_view_type A_in_rest (num_rows, num_cols, A_in, lda_out);
mat_view_type A_out_rest (num_rows, num_cols, A_out, lda_out);
while (! A_in_rest.empty())
{
if (A_out_rest.empty())
throw std::logic_error("A_out_rest is empty, but A_in_rest is not");
// This call modifies A_in_rest.
const_mat_view_type A_in_cur = split_top_block (A_in_rest, true);
// This call modifies A_out_rest.
mat_view_type A_out_cur = split_top_block (A_out_rest, false);
copy_matrix (A_in_cur.nrows(), num_cols, A_out_cur.get(),
A_out_cur.lda(), A_in_cur.get(), A_in_cur.lda());
}
}
/// \brief Return the cache block with index \c cache_block_index.
///
/// \param A [in] The original matrix.
/// \param cache_block_index [in] Zero-based index of the cache block.
/// If the index is out of bounds, silently return an empty matrix
/// view.
/// \param contiguous_cache_blocks [in] Whether cache blocks are
/// stored contiguously.
///
/// \return Cache block of A with the given index, or an empty
/// matrix view if the index is out of bounds.
///
/// \note This method is templated on MatrixViewType, so that it
/// works with any matrix view type.
template<class MatrixViewType>
MatrixViewType
get_cache_block (MatrixViewType A,
const typename MatrixViewType::ordinal_type cache_block_index,
const bool contiguous_cache_blocks) const
{
typedef typename MatrixViewType::ordinal_type ordinal_type;
// Total number of cache blocks.
const ordinal_type num_cache_blocks =
strategy_.num_cache_blocks (A.nrows(), A.ncols(), nrows_cache_block());
if (cache_block_index >= num_cache_blocks)
return MatrixViewType (0, 0, NULL, 0); // empty
// result[0] = starting row index of the cache block
// result[1] = number of rows in the cache block
// result[2] = pointer offset (A.get() + result[2])
// result[3] = leading dimension (a.k.a. stride) of the cache block
std::vector<Ordinal> result =
strategy_.cache_block_details (cache_block_index, A.nrows(), A.ncols(),
A.lda(), nrows_cache_block(),
contiguous_cache_blocks);
if (result[1] == 0)
// For some reason, the cache block is empty.
return MatrixViewType (0, 0, NULL, 0);
// We expect that ordinal_type is signed, so adding signed
// (ordinal_type) to unsigned (pointer) may raise compiler
// warnings.
return MatrixViewType (result[1], A.ncols(),
A.get() + static_cast<size_t>(result[2]),
result[3]);
}
/// \brief Equality operator.
///
/// Two cache blockers are "equal" if they correspond to matrices
/// with the same dimensions (number of rows and number of
/// columns), and if their cache blocking strategies are equal.
bool
operator== (const CacheBlockingStrategy<Ordinal, Scalar>& rhs) const
{
return nrows() == rhs.nrows() &&
ncols() == rhs.ncols() &&
strategy_ == rhs.strategy_;
}
private:
//! Number of rows in the matrix to block.
Ordinal nrows_;
//! Number of columns in the matrix to block.
Ordinal ncols_;
//! Strategy used to break the matrix into cache blocks.
CacheBlockingStrategy<Ordinal, Scalar> strategy_;
/// \brief Number of rows in a "typical" cache block.
///
/// We could instead use the strategy object to recompute this
/// quantity each time, but we choose to cache the computed value
/// here. For an explanation of "typical," see the documentation
/// of \c nrows_cache_block().
Ordinal nrows_cache_block_;
/// \brief Number of rows in a "typical" cache block.
///
/// For an explanation of "typical," see the documentation of
/// CacheBlockingStrategy. In brief, some cache blocks may have
/// more rows (up to but not including nrows_cache_block() +
/// ncols() rows), and some may have less (but no less than
/// ncols() rows).
size_t nrows_cache_block () const { return nrows_cache_block_; }
};
/// \class CacheBlockRangeIterator
/// \brief Bidirectional iterator over a contiguous range of cache blocks.
/// \author Mark Hoemmen
///
/// "Contiguous range of cache blocks" means that the indices of the
/// cache blocks, as interpreted by the CacheBlocker object, are
/// contiguous.
template<class MatrixViewType>
class CacheBlockRangeIterator :
public std::iterator<std::forward_iterator_tag, MatrixViewType>
{
public:
typedef MatrixViewType view_type;
typedef typename MatrixViewType::ordinal_type ordinal_type;
typedef typename MatrixViewType::scalar_type scalar_type;
/// \brief Default constructor.
///
/// \note To implementers: We only implement a default constructor
/// because all iterators (e.g., TrivialIterator) must be
/// DefaultConstructible.
CacheBlockRangeIterator () :
A_ (0, 0, NULL, 0),
curInd_ (0),
reverse_ (false),
contiguousCacheBlocks_ (false)
{}
/// \brief Standard constructor.
///
/// \param A [in] View of the matrix over whose cache block(s) to
/// iterate.
/// \param strategy [in] Cache blocking strategy for a matrix with
/// the same number of rows as the matrix A.
/// \param currentIndex [in] The iterator's current cache block index.
/// \param reverse [in] Whether to iterate over the cache blocks
/// in reverse order of their indices.
/// \param contiguousCacheBlocks [in] Whether cache blocks in the
/// matrix A are stored contiguously.
CacheBlockRangeIterator (const MatrixViewType& A,
const CacheBlockingStrategy<ordinal_type, scalar_type>& strategy,
const ordinal_type currentIndex,
const bool reverse,
const bool contiguousCacheBlocks) :
A_ (A),
blocker_ (A_.nrows(), A_.ncols(), strategy),
curInd_ (currentIndex),
reverse_ (reverse),
contiguousCacheBlocks_ (contiguousCacheBlocks)
{}
//! Copy constructor.
CacheBlockRangeIterator (const CacheBlockRangeIterator& rhs) :
A_ (rhs.A_),
blocker_ (rhs.blocker_),
curInd_ (rhs.curInd_),
reverse_ (rhs.reverse_),
contiguousCacheBlocks_ (rhs.contiguousCacheBlocks_)
{}
//! Assignment operator.
CacheBlockRangeIterator& operator= (const CacheBlockRangeIterator& rhs)
{
A_ = rhs.A_;
blocker_ = rhs.blocker_;
curInd_ = rhs.curInd_;
reverse_ = rhs.reverse_;
contiguousCacheBlocks_ = rhs.contiguousCacheBlocks_;
return *this;
}
//! Prefix increment operator.
CacheBlockRangeIterator& operator++() {
if (reverse_)
--curInd_;
else
++curInd_;
return *this;
}
/// \brief Postfix increment operator.
///
/// This may be less efficient than prefix operator++, since the
/// postfix operator has to make a copy of the iterator before
/// modifying it.
CacheBlockRangeIterator operator++(int) {
CacheBlockRangeIterator retval (*this);
operator++();
return retval;
}
/// \brief Equality operator.
///
/// Equality of cache block range iterators only tests the cache
/// block index, not reverse-ness. This means we can compare a
/// reverse-direction iterator with a forward-direction iterator,
/// and vice versa.
bool operator== (const CacheBlockRangeIterator& rhs) {
// Not correct, but fast. Should return false for different A_
// or different blocker_.
return curInd_ == rhs.curInd_;
}
//! Inequality operator.
bool operator!= (const CacheBlockRangeIterator& rhs) {
// Not correct, but fast. Should return false for different A_
// or different blocker_.
return curInd_ != rhs.curInd_;
}
/// \brief A view of the current cache block.
///
/// If the current cache block index is invalid, this returns an
/// empty cache block (that is, calling empty() on the returned
/// view returns true).
MatrixViewType operator*() const {
return blocker_.get_cache_block (A_, curInd_, contiguousCacheBlocks_);
}
private:
MatrixViewType A_;
CacheBlocker<ordinal_type, scalar_type> blocker_;
ordinal_type curInd_;
bool reverse_;
bool contiguousCacheBlocks_;
};
/// \class CacheBlockRange
/// \brief Collection of cache blocks with a contiguous range of indices.
/// \author Mark Hoemmen
///
/// We mean "collection" in the C++ sense: you can iterate over the
/// elements using iterators. The iterators are valid only when the
/// CacheBlockRange is in scope, just like the iterators of
/// std::vector.
///
/// CacheBlockRange is useful for \c KokkosNodeTsqr, in particular
/// for \c FactorFirstPass and \c ApplyFirstPass. Sequential TSQR's
/// factorization is forward iteration over the collection, and
/// applying the Q factor or computing the explicit Q factor is
/// iteration in the reverse direction (decreasing cache block
/// index).
///
/// This class is templated so that it works with any matrix view.
template<class MatrixViewType>
class CacheBlockRange {
public:
typedef MatrixViewType view_type;
typedef typename MatrixViewType::ordinal_type ordinal_type;
typedef typename MatrixViewType::scalar_type scalar_type;
/// \typedef iterator
/// \brief Type of an iterator over the range of cache blocks.
typedef CacheBlockRangeIterator<MatrixViewType> iterator;
/// \brief Constructor
///
/// \param A [in] View of the matrix to factor.
/// \param strategy [in] Cache blocking strategy to use (copied
/// on input).
/// \param startIndex [in] Starting index of the cache block
/// sequence.
/// \param endIndex [in] Ending index (exclusive) of the cache
/// block sequence. Precondition: startIndex <= endIndex. If
/// startIndex == endIndex, the sequence is empty.
/// \param contiguousCacheBlocks [in] Whether cache blocks in the
/// matrix A are stored contiguously.
CacheBlockRange (MatrixViewType A,
const CacheBlockingStrategy<ordinal_type, scalar_type>& strategy,
const ordinal_type startIndex,
const ordinal_type endIndex,
const bool contiguousCacheBlocks) :
A_ (A),
startIndex_ (startIndex),
endIndex_ (endIndex),
strategy_ (strategy),
contiguousCacheBlocks_ (contiguousCacheBlocks)
{}
bool empty() const {
return startIndex_ >= endIndex_;
}
iterator begin() const {
return iterator (A_, strategy_, startIndex_, false, contiguousCacheBlocks_);
}
iterator end() const {
return iterator (A_, strategy_, endIndex_, false, contiguousCacheBlocks_);
}
iterator rbegin() const {
return iterator (A_, strategy_, endIndex_-1, true, contiguousCacheBlocks_);
}
iterator rend() const {
// Think about it: rbegin() == rend() means that rbegin() is invalid
// and shouldn't be dereferenced. rend() should never be dereferenced.
return iterator (A_, strategy_, startIndex_-1, true, contiguousCacheBlocks_);
}
private:
//! View of the matrix.
MatrixViewType A_;
/// \brief Starting index of the range of cache blocks.
///
/// We always have startIndex_ <= endIndex_. Reverse-order
/// iteration is indicated by the iterator's reverse_ member
/// datum.
ordinal_type startIndex_;
/// \brief Ending index (exclusive) of the range of cache blocks.
///
/// See the documentation of startIndex_ for its invariant.
ordinal_type endIndex_;
//! Cache blocking strategy for a matrix with the same number of rows as A_.
CacheBlockingStrategy<ordinal_type, scalar_type> strategy_;
//! Whether the cache blocks of the matrix A_ are stored contiguously.
bool contiguousCacheBlocks_;
};
} // namespace TSQR
#endif // __TSQR_CacheBlocker_hpp
|