This file is indexed.

/usr/include/trilinos/Tsqr_CombineDefault.hpp is in libtrilinos-tpetra-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
//@HEADER
// ************************************************************************
//
//          Kokkos: Node API and Parallel Node Kernels
//              Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER

/// \file Tsqr_CombineDefault.hpp
/// \brief Default copy-in, copy-out implementation of \c TSQR::Combine.
///
#ifndef __TSQR_CombineDefault_hpp
#define __TSQR_CombineDefault_hpp

#include <Teuchos_ScalarTraits.hpp>

#include <Tsqr_ApplyType.hpp>
#include <Teuchos_LAPACK.hpp>
#include <Tsqr_Matrix.hpp>

#include <algorithm>
#include <sstream>
#include <stdexcept>


namespace TSQR {

  /// \class CombineDefault
  /// \brief Default copy-in, copy-out implementation of \c TSQR::Combine.
  ///
  /// This is a default implementation of TSQR::Combine, which
  /// TSQR::Combine may use (via a "has-a" relationship) if it doesn't
  /// have a specialized, faster implementation.  This default
  /// implementation copies the inputs into a contiguous matrix
  /// buffer, operates on them there via standard LAPACK calls, and
  /// copies out the results again.  It truncates to zero any values
  /// that should be zero because of the input's structure (e.g.,
  /// upper triangular).
  template<class Ordinal, class Scalar>
  class CombineDefault {
  private:
    typedef Teuchos::LAPACK<Ordinal, Scalar> lapack_type;

  public:
    typedef Ordinal ordinal_type;
    typedef Scalar scalar_type;
    typedef typename Teuchos::ScalarTraits< Scalar >::magnitudeType magnitude_type;
    typedef ConstMatView<Ordinal, Scalar> const_mat_view_type;
    typedef MatView<Ordinal, Scalar> mat_view_type;

    CombineDefault () {}

    /// \brief Does the R factor have a nonnegative diagonal?
    ///
    /// CombineDefault implements a QR factorization (of a matrix with
    /// a special structure).  Some, but not all, QR factorizations
    /// produce an R factor whose diagonal may include negative
    /// entries.  This Boolean tells you whether CombineDefault
    /// promises to compute an R factor whose diagonal entries are all
    /// nonnegative.
    static bool QR_produces_R_factor_with_nonnegative_diagonal()
    {
      return false; // lapack_type::QR_produces_R_factor_with_nonnegative_diagonal();
    }

    void
    factor_first (const Ordinal nrows,
                  const Ordinal ncols,
                  Scalar A[],
                  const Ordinal lda,
                  Scalar tau[],
                  Scalar work[])
    {
      // info must be an int, not a LocalOrdinal, since LAPACK
      // routines always (???) use int for the INFO output argument,
      // whether or not they were built with 64-bit integer index
      // support.
      int info = 0;
      lapack_.GEQR2 (nrows, ncols, A, lda, tau, work, &info);
      if (info != 0)
        {
          std::ostringstream os;
          os << "TSQR::CombineDefault::factor_first(): LAPACK\'s "
             << "GEQR2 failed with INFO = " << info;
          throw std::logic_error (os.str());
        }
    }

    void
    apply_first (const ApplyType& applyType,
                 const Ordinal nrows,
                 const Ordinal ncols_C,
                 const Ordinal ncols_A,
                 const Scalar A[],
                 const Ordinal lda,
                 const Scalar tau[],
                 Scalar C[],
                 const Ordinal ldc,
                 Scalar work[])
    {
      int info = 0;
      // LAPACK has the nice feature that it only reads the first
      // letter of input strings that specify things like which side
      // to which to apply the operator, or whether to apply the
      // transpose.  That means we can make the strings more verbose,
      // as in "Left" here for the SIDE parameter.
      lapack_.UNM2R ('L', (applyType.toString ().c_str ())[0],
                     nrows, ncols_C, ncols_A,
                     A, lda, tau,
                     C, ldc, work, &info);
      if (info != 0) {
        std::ostringstream os;
        os << "TSQR::CombineDefault::apply_first(): LAPACK\'s "
           << "UNM2R failed with INFO = " << info;
        throw std::logic_error (os.str());
      }
    }

    void
    apply_inner (const ApplyType& apply_type,
                 const Ordinal m,
                 const Ordinal ncols_C,
                 const Ordinal ncols_Q,
                 const Scalar A[],
                 const Ordinal lda,
                 const Scalar tau[],
                 Scalar C_top[],
                 const Ordinal ldc_top,
                 Scalar C_bot[],
                 const Ordinal ldc_bot,
                 Scalar work[])
    {
      const Ordinal numRows = m + ncols_Q;

      A_buf_.reshape (numRows, ncols_Q);
      A_buf_.fill (Scalar(0));
      const_mat_view_type A_bot (m, ncols_Q, A, lda);
      mat_view_type A_buf_bot (m, ncols_Q, &A_buf_(ncols_Q, 0), A_buf_.lda());
      deep_copy (A_buf_bot, A_bot);

      C_buf_.reshape (numRows, ncols_C);
      C_buf_.fill (Scalar(0));
      mat_view_type C_buf_top (ncols_Q, ncols_C, &C_buf_(0, 0), C_buf_.lda());
      mat_view_type C_buf_bot (m, ncols_C, &C_buf_(ncols_Q, 0), C_buf_.lda());
      mat_view_type C_top_view (ncols_Q, ncols_C, C_top, ldc_top);
      mat_view_type C_bot_view (m, ncols_C, C_bot, ldc_bot);
      deep_copy (C_buf_top, C_top_view);
      deep_copy (C_buf_bot, C_bot_view);

      int info = 0;
      lapack_.UNM2R ('L', (apply_type.toString ().c_str ())[0],
                     numRows, ncols_C, ncols_Q,
                     A_buf_.get(), A_buf_.lda(), tau,
                     C_buf_.get(), C_buf_.lda(),
                     work, &info);
      if (info != 0) {
        std::ostringstream os;
        os << "TSQR::CombineDefault::apply_inner(): LAPACK\'s "
           << "UNM2R failed with INFO = " << info;
        throw std::logic_error (os.str());
      }
      // Copy back the results.
      deep_copy (C_top_view, C_buf_top);
      deep_copy (C_bot_view, C_buf_bot);
    }

    void
    factor_inner (const Ordinal m,
                  const Ordinal n,
                  Scalar R[],
                  const Ordinal ldr,
                  Scalar A[],
                  const Ordinal lda,
                  Scalar tau[],
                  Scalar work[])
    {
      const Ordinal numRows = m + n;

      A_buf_.reshape (numRows, n);
      A_buf_.fill (Scalar(0));
      // R might be a view of the upper triangle of a cache block, but
      // we only want to include the upper triangle in the
      // factorization.  Thus, only copy the upper triangle of R into
      // the appropriate place in the buffer.
      copy_upper_triangle (n, n, &A_buf_(0, 0), A_buf_.lda(), R, ldr);
      copy_matrix (m, n, &A_buf_(n, 0), A_buf_.lda(), A, lda);

      int info = 0;
      lapack_.GEQR2 (numRows, n, A_buf_.get(), A_buf_.lda(), tau, work, &info);
      if (info != 0)
        throw std::logic_error ("TSQR::CombineDefault: GEQR2 failed");

      // Copy back the results.  R might be a view of the upper
      // triangle of a cache block, so only copy into the upper
      // triangle of R.
      copy_upper_triangle (n, n, R, ldr, &A_buf_(0, 0), A_buf_.lda());
      copy_matrix (m, n, A, lda, &A_buf_(n, 0), A_buf_.lda());
    }

    void
    factor_pair (const Ordinal n,
                 Scalar R_top[],
                 const Ordinal ldr_top,
                 Scalar R_bot[],
                 const Ordinal ldr_bot,
                 Scalar tau[],
                 Scalar work[])
    {
      const Ordinal numRows = Ordinal(2) * n;

      A_buf_.reshape (numRows, n);
      A_buf_.fill (Scalar(0));
      // Copy the inputs into the compute buffer.  Only touch the
      // upper triangles of R_top and R_bot, since they each may be
      // views of some cache block (where the strict lower triangle
      // contains things we don't want to include in the
      // factorization).
      copy_upper_triangle (n, n, &A_buf_(0, 0), A_buf_.lda(), R_top, ldr_top);
      copy_upper_triangle (n, n, &A_buf_(n, 0), A_buf_.lda(), R_bot, ldr_bot);

      int info = 0;
      lapack_.GEQR2 (numRows, n, A_buf_.get(), A_buf_.lda(), tau, work, &info);
      if (info != 0)
        {
          std::ostringstream os;
          os << "TSQR::CombineDefault::factor_pair(): "
             << "GEQR2 failed with INFO = " << info;
          throw std::logic_error (os.str());
        }

      // Copy back the results.  Only read the upper triangles of the
      // two n by n row blocks of A_buf_ (this means we don't have to
      // zero out the strict lower triangles), and only touch the
      // upper triangles of R_top and R_bot.
      copy_upper_triangle (n, n, R_top, ldr_top, &A_buf_(0, 0), A_buf_.lda());
      copy_upper_triangle (n, n, R_bot, ldr_bot, &A_buf_(n, 0), A_buf_.lda());
    }

    void
    apply_pair (const ApplyType& apply_type,
                const Ordinal ncols_C,
                const Ordinal ncols_Q,
                const Scalar R_bot[],
                const Ordinal ldr_bot,
                const Scalar tau[],
                Scalar C_top[],
                const Ordinal ldc_top,
                Scalar C_bot[],
                const Ordinal ldc_bot,
                Scalar work[])
    {
      const Ordinal numRows = Ordinal(2) * ncols_Q;

      A_buf_.reshape (numRows, ncols_Q);
      A_buf_.fill (Scalar(0));
      copy_upper_triangle (ncols_Q, ncols_Q,
                           &A_buf_(ncols_Q, 0), A_buf_.lda(),
                           R_bot, ldr_bot);
      C_buf_.reshape (numRows, ncols_C);
      copy_matrix (ncols_Q, ncols_C, &C_buf_(0, 0), C_buf_.lda(), C_top, ldc_top);
      copy_matrix (ncols_Q, ncols_C, &C_buf_(ncols_Q, 0), C_buf_.lda(), C_bot, ldc_bot);

      int info = 0;
      lapack_.UNM2R ('L', (apply_type.toString ().c_str ())[0],
                     numRows, ncols_C, ncols_Q,
                     A_buf_.get(), A_buf_.lda(), tau,
                     C_buf_.get(), C_buf_.lda(),
                     work, &info);
      if (info != 0) {
        std::ostringstream os;
        os << "TSQR::CombineDefault: UNM2R failed with INFO = " << info;
        throw std::logic_error (os.str ());
      }

      // Copy back the results.
      copy_matrix (ncols_Q, ncols_C, C_top, ldc_top, &C_buf_(0, 0), C_buf_.lda());
      copy_matrix (ncols_Q, ncols_C, C_bot, ldc_bot, &C_buf_(ncols_Q, 0), C_buf_.lda());
    }

  private:
    lapack_type lapack_;
    Matrix<Ordinal, Scalar> A_buf_;
    Matrix<Ordinal, Scalar> C_buf_;
  };


} // namespace TSQR

#endif // __TSQR_CombineDefault_hpp