This file is indexed.

/usr/include/trilinos/Tsqr_DistTsqr.hpp is in libtrilinos-tpetra-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
//@HEADER
// ************************************************************************
//
//          Kokkos: Node API and Parallel Node Kernels
//              Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER

/// \file Tsqr_DistTsqr.hpp
/// \brief Internode part of TSQR.
///
#ifndef __TSQR_Tsqr_DistTsqr_hpp
#define __TSQR_Tsqr_DistTsqr_hpp

#include <Tsqr_DistTsqrHelper.hpp>
#include <Tsqr_DistTsqrRB.hpp>
#include <Teuchos_ParameterList.hpp>
#include <Teuchos_ParameterListAcceptorDefaultBase.hpp>
#include <Teuchos_ScalarTraits.hpp>
#include <utility> // std::pair


namespace TSQR {
  /// \class DistTsqr
  /// \brief Internode part of TSQR.
  /// \author Mark Hoemmen
  ///
  /// \tparam LocalOrdinal Index type for dense matrices of Scalar.
  /// \tparam Scalar Value type for matrices to factor.
  ///
  /// This class combines the square R factors computed by the
  /// intranode TSQR factorization (\c NodeTsqr subclass) on
  /// individual MPI processes.
  ///
  /// It should be possible to instantiate
  /// DistTsqr<LocalOrdinal,Scalar> for any LocalOrdinal and Scalar
  /// types for which \c Combine<LocalOrdinal, Scalar> and \c
  /// LAPACK<LocalOrdinal, Scalar> can be instantiated.
  template<class LocalOrdinal, class Scalar>
  class DistTsqr : public Teuchos::ParameterListAcceptorDefaultBase {
  public:
    typedef Scalar scalar_type;
    typedef LocalOrdinal ordinal_type;
    typedef MatView<ordinal_type, scalar_type > mat_view_type;
    typedef std::vector<std::vector<scalar_type> > VecVec;
    typedef std::pair<VecVec, VecVec> FactorOutput;
    typedef int rank_type;

  private:
    typedef Teuchos::ScalarTraits<Scalar> STS;

  public:

    /// \brief Constructor (that accepts a parameter list).
    ///
    /// \param plist [in/out] List of parameters for configuring TSQR.
    ///   The specific parameter keys that are read depend on the TSQR
    ///   implementation.  For details, call \c getValidParameters()
    ///   and examine the documentation embedded therein.
    DistTsqr (const Teuchos::RCP<Teuchos::ParameterList>& plist)
    {
      setParameterList (plist);
    }

    //! Constructor (that uses default parameters).
    DistTsqr ()
    {
      setParameterList (Teuchos::null);
    }

    void
    setParameterList (const Teuchos::RCP<Teuchos::ParameterList>& plist)
    {
      using Teuchos::ParameterList;
      using Teuchos::parameterList;
      using Teuchos::RCP;

      RCP<ParameterList> params = plist.is_null() ?
        parameterList (*getValidParameters()) : plist;

      // Do nothing for now, other than store the list.
      this->setMyParamList (params);
    }

    Teuchos::RCP<const Teuchos::ParameterList>
    getValidParameters() const
    {
      return Teuchos::parameterList ("DistTsqr"); // Empty list for now.
    }

    /// \brief Finish initialization using the messenger object.
    ///
    /// \param messenger [in/out] An object handling communication
    ///   between (MPI) process(es).
    void init (const Teuchos::RCP<MessengerBase<scalar_type> >& messenger)
    {
      messenger_ = messenger;
      reduceBroadcastImpl_ =
        Teuchos::rcp (new DistTsqrRB<ordinal_type, scalar_type> (messenger_));
    }

    /// \brief Rank of this (MPI) process.
    ///
    /// Rank is computed via MPI_Comm_rank() on the underlying
    /// communicator, if the latter is an MPI communicator.  If it's a
    /// serial "communicator," the rank is always zero.
    rank_type rank() const {
      TEUCHOS_TEST_FOR_EXCEPTION(! ready(), std::logic_error,
                                 "Before using DistTsqr computational methods, "
                                 "you must first call init() with a valid "
                                 "MessengerBase instance.");
      return messenger_->rank();
    }

    /// \brief Total number of MPI processes in this communicator.
    ///
    /// The size is communicated via MPI_Comm_size() on the underlying
    /// communicator, if the latter is an MPI communicator.  If it's a
    /// serial "communicator," the size is always one.
    rank_type size() const {
      TEUCHOS_TEST_FOR_EXCEPTION(! ready(), std::logic_error,
                                 "Before using DistTsqr computational methods, "
                                 "you must first call init() with a valid "
                                 "MessengerBase instance.");
      return messenger_->size();
    }

    /// \brief Destructor.
    ///
    /// The destructor doesn't need to do anything, thanks to smart
    /// pointers.
    virtual ~DistTsqr () {}

    /// \brief Does the R factor have a nonnegative diagonal?
    ///
    /// DistTsqr implements a QR factorization (of a distributed
    /// matrix with a special structure).  Some, but not all, QR
    /// factorizations produce an R factor whose diagonal may include
    /// negative entries.  This Boolean tells you whether DistTsqr
    /// promises to compute an R factor whose diagonal entries are all
    /// nonnegative.
    bool QR_produces_R_factor_with_nonnegative_diagonal () const {
      TEUCHOS_TEST_FOR_EXCEPTION(! ready(), std::logic_error,
                                 "Before using DistTsqr computational methods, "
                                 "you must first call init() with a valid "
                                 "MessengerBase instance.");
      typedef Combine<ordinal_type, scalar_type> combine_type;
      return combine_type::QR_produces_R_factor_with_nonnegative_diagonal() &&
        reduceBroadcastImpl_->QR_produces_R_factor_with_nonnegative_diagonal();
    }

    /// \brief Internode TSQR with explicit Q factor.
    ///
    /// Call this routine, instead of \c factor() and \c explicit_Q(),
    /// if you want to compute the QR factorization and only want the
    /// Q factor in explicit form (i.e., as a matrix).
    ///
    /// \param R_mine [in/out] View of a matrix with at least as many
    ///   rows as columns.  On input: upper triangular matrix (R
    ///   factor from intranode TSQR); different on each process..  On
    ///   output: R factor from intranode QR factorization; bitwise
    ///   identical on all processes, since it is effectively
    ///   broadcast from Proc 0.
    ///
    /// \param Q_mine [out] View of a matrix with the same number of
    ///   rows as R_mine has columns.  On output: this process'
    ///   component of the internode Q factor.  (Write into the top
    ///   block of this process' entire Q factor, fill the rest of Q
    ///   with zeros, and call intranode TSQR's apply() on it, to get
    ///   the final explicit Q factor.)
    ///
    /// \param forceNonnegativeDiagonal [in] If true, then (if
    ///   necessary) do extra work (modifying both the Q and R
    ///   factors) in order to force the R factor to have a
    ///   nonnegative diagonal.
    void
    factorExplicit (mat_view_type R_mine,
                    mat_view_type Q_mine,
                    const bool forceNonnegativeDiagonal=false)
    {
      TEUCHOS_TEST_FOR_EXCEPTION(! ready(), std::logic_error,
                                 "Before using DistTsqr computational methods, "
                                 "you must first call init() with a valid "
                                 "MessengerBase instance.");
      reduceBroadcastImpl_->factorExplicit (R_mine, Q_mine,
                                            forceNonnegativeDiagonal);
    }

    /// \brief Get cumulative timings for \c factorExplicit().
    ///
    /// Fill in the timings vector with cumulative timings from
    /// factorExplicit().  The vector gets resized to fit all the
    /// timings.
    void
    getFactorExplicitTimings (std::vector<TimeStats>& stats) const
    {
      TEUCHOS_TEST_FOR_EXCEPTION(! ready(), std::logic_error,
                                 "Before using DistTsqr computational methods, "
                                 "you must first call init() with a valid "
                                 "MessengerBase instance.");
      reduceBroadcastImpl_->getStats (stats);
    }

    /// \brief Get labels for timings for \c factorExplicit().
    ///
    /// Fill in the labels vector with the string labels for the
    /// timings from factorExplicit().  The vector gets resized to fit
    /// all the labels.
    void
    getFactorExplicitTimingLabels (std::vector<std::string>& labels) const
    {
      TEUCHOS_TEST_FOR_EXCEPTION(! ready(), std::logic_error,
                                 "Before using DistTsqr computational methods, "
                                 "you must first call init() with a valid "
                                 "MessengerBase instance.");
      reduceBroadcastImpl_->getStatsLabels (labels);
    }

    /// \brief Compute QR factorization of R factors, one per MPI process.
    ///
    /// Compute the QR factorization of the P*ncols by ncols matrix
    /// consisting of all P nodes' R_mine upper triangular matrices
    /// stacked on top of each other.  Generally these upper triangular
    /// matrices should come from the QR factorization (perhaps computed
    /// by sequential or node-parallel TSQR) of a general matrix on each
    /// node.
    ///
    /// \note "ncols" below is the number of columns in the matrix to
    ///   factor.  Should be the same on all nodes.
    ///
    /// \param R_mine [in,out] On input, an ncols by ncols upper triangular
    ///   matrix with leading dimension ncols, stored unpacked (as a general
    ///   matrix).  Elements below the diagonal are ignored.  On output, the
    ///   final R factor of the QR factorization of all nodes' different
    ///   R_mine inputs.  The final R factor is replicated over all nodes.
    ///
    /// \return Two arrays with the same number of elements: first, an
    ///   array of "local Q factors," and second, an array of "local tau
    ///   arrays."  These together form an implicit representation of
    ///   the Q factor.  They should be passed into the apply() and
    ///   explicit_Q() functions as the "factorOutput" parameter.
    FactorOutput
    factor (mat_view_type R_mine)
    {
      TEUCHOS_TEST_FOR_EXCEPTION(! ready(), std::logic_error,
                                 "Before using DistTsqr computational methods, "
                                 "you must first call init() with a valid "
                                 "MessengerBase instance.");
      VecVec Q_factors, tau_arrays;
      DistTsqrHelper<ordinal_type, scalar_type> helper;
      const ordinal_type ncols = R_mine.ncols();

      std::vector< scalar_type > R_local (ncols*ncols);
      copy_matrix (ncols, ncols, &R_local[0], ncols, R_mine.get(), R_mine.lda());

      const int P = messenger_->size();
      const int my_rank = messenger_->rank();
      const int first_tag = 0;
      std::vector<scalar_type> work (ncols);
      helper.factor_helper (ncols, R_local, my_rank, 0, P-1, first_tag,
                            messenger_.get(), Q_factors, tau_arrays, work);
      copy_matrix (ncols, ncols, R_mine.get(), R_mine.lda(), &R_local[0], ncols);
      return std::make_pair (Q_factors, tau_arrays);
    }

    //! Apply the result of \c factor() to the distributed matrix C.
    void
    apply (const ApplyType& apply_type,
           const ordinal_type ncols_C,
           const ordinal_type ncols_Q,
           scalar_type C_mine[],
           const ordinal_type ldc_mine,
           const FactorOutput& factor_output)
    {
      TEUCHOS_TEST_FOR_EXCEPTION(! ready(), std::logic_error,
                                 "Before using DistTsqr computational methods, "
                                 "you must first call init() with a valid "
                                 "MessengerBase instance.");
      const bool transposed = apply_type.transposed();
      TEUCHOS_TEST_FOR_EXCEPTION(transposed, std::logic_error,
                                 "DistTsqr: Applying Q^T or Q^H has not yet "
                                 "been implemented.");
      const int P = messenger_->size();
      const int my_rank = messenger_->rank();
      const int first_tag = 0;
      std::vector<scalar_type> C_other (ncols_C * ncols_C);
      std::vector<scalar_type> work (ncols_C);

      const VecVec& Q_factors = factor_output.first;
      const VecVec& tau_arrays = factor_output.second;

      // assert (Q_factors.size() == tau_arrays.size());
      const int cur_pos = Q_factors.size() - 1;
      DistTsqrHelper<ordinal_type, scalar_type> helper;
      helper.apply_helper (apply_type, ncols_C, ncols_Q, C_mine, ldc_mine,
                           &C_other[0], my_rank, 0, P-1, first_tag,
                           messenger_.get(), Q_factors, tau_arrays, cur_pos,
                           work);
    }

    //! Apply the result of \c factor() to compute the explicit Q factor.
    void
    explicit_Q (const ordinal_type ncols_Q,
                scalar_type Q_mine[],
                const ordinal_type ldq_mine,
                const FactorOutput& factor_output)
    {
      TEUCHOS_TEST_FOR_EXCEPTION(! ready(), std::logic_error,
                                 "Before using DistTsqr computational methods, "
                                 "you must first call init() with a valid "
                                 "MessengerBase instance.");
      const int myRank = messenger_->rank ();
      fill_matrix (ncols_Q, ncols_Q, Q_mine, ldq_mine, STS::zero());
      if (myRank == 0) {
        for (ordinal_type j = 0; j < ncols_Q; ++j)
          Q_mine[j + j*ldq_mine] = STS::one();
      }
      apply (ApplyType::NoTranspose, ncols_Q, ncols_Q,
             Q_mine, ldq_mine, factor_output);
    }

  private:
    Teuchos::RCP<MessengerBase<scalar_type> > messenger_;
    Teuchos::RCP<DistTsqrRB<ordinal_type, scalar_type> > reduceBroadcastImpl_;

    /// \brief Whether this object is ready to perform computations.
    ///
    /// It is <i>not</i> ready until after \c init() has been called.
    bool ready() const {
      return ! messenger_.is_null() && ! reduceBroadcastImpl_.is_null();
    }
  };

} // namespace TSQR

#endif // __TSQR_Tsqr_DistTsqr_hpp